JP2582176B2 - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JP2582176B2
JP2582176B2 JP2075208A JP7520890A JP2582176B2 JP 2582176 B2 JP2582176 B2 JP 2582176B2 JP 2075208 A JP2075208 A JP 2075208A JP 7520890 A JP7520890 A JP 7520890A JP 2582176 B2 JP2582176 B2 JP 2582176B2
Authority
JP
Japan
Prior art keywords
elastic substrate
vibrating body
protrusion
ultrasonic motor
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2075208A
Other languages
Japanese (ja)
Other versions
JPH03273880A (en
Inventor
修 川崎
孝弘 西倉
正則 住原
克 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2075208A priority Critical patent/JP2582176B2/en
Publication of JPH03273880A publication Critical patent/JPH03273880A/en
Application granted granted Critical
Publication of JP2582176B2 publication Critical patent/JP2582176B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧電セラミック等の圧電体を用いて弾性進
行波を励振することにより駆動力を発生する超音波モー
タに関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic motor that generates a driving force by exciting an elastic traveling wave using a piezoelectric material such as a piezoelectric ceramic.

従来の技術 以下に本発明の実施例を図面を参照して説明する。2. Description of the Related Art Embodiments of the present invention will be described below with reference to the drawings.

第3図は、従来の円環形超音波モータの一部切り欠き
斜視図であり、一方の円環面に突起体3を形成した円環
形弾性基板1のもう一方の円環面に圧電体として円環形
圧電セラミック2を貼合せて円環形振動体4を構成して
いる。6は振動体4との接触面側に耐磨耗性材料の摩擦
材5を形成した移動体である。摩擦材5は出力特性の安
定化および耐摩耗性の向上のために設置しているのであ
って省くことも出来る。ここでは示していないが、移動
耐6は皿バネなどの加圧手段により振動体4と加圧接触
して設置されている。
FIG. 3 is a partially cutaway perspective view of a conventional ring-shaped ultrasonic motor, and a piezoelectric body is formed on the other ring-shaped surface of the ring-shaped elastic substrate 1 having the projections 3 formed on one ring-shaped surface. The ring-shaped vibrating body 4 is formed by laminating the ring-shaped piezoelectric ceramics 2. Reference numeral 6 denotes a moving body in which a friction material 5 of a wear-resistant material is formed on a contact surface side with the vibrating body 4. Since the friction material 5 is provided for stabilizing the output characteristics and improving the wear resistance, it can be omitted. Although not shown here, the movement resistance 6 is installed in pressure contact with the vibrating body 4 by pressure means such as a disc spring.

圧電体2には所定の位置だけずらせて2組の駆動電極
(図示省略)が形成されており、この駆動電極に所定の
位相差を有する2つの交流電圧を印加すると、第4図に
示すような径方向の振幅を有する2つの撓み振動の定在
波が励振され、この2つの定在波が重畳されて進行波と
なる。この進行波の波頭の横方向成分により移動体6は
摩擦駆動され回転運動をする。
Two sets of drive electrodes (not shown) are formed on the piezoelectric body 2 shifted by a predetermined position, and when two AC voltages having a predetermined phase difference are applied to the drive electrodes, as shown in FIG. A standing wave of two bending vibrations having a large radial amplitude is excited, and the two standing waves are superposed to form a traveling wave. The moving body 6 is frictionally driven by the lateral component of the wave front of the traveling wave and rotates.

第5図は、円板型超音波モータの一部切り欠き斜視図
であり、一方の円板面に突起体9を有する円板形の弾性
基板7のもう一方の円板面に、円板形圧電体8を貼合せ
て円板形振動体10を構成している。13は振動体10との接
触面側に耐磨耗性材料の摩耗材12を形成した移動体であ
る。円環型超音波モータの場合と同様に摩耗材12は省く
ことも出来る。ここでは示していないが、移動体13は皿
バネなどの加圧手段により突起体9の先端に加圧接触し
て設置されている。
FIG. 5 is a partially cutaway perspective view of a disk-type ultrasonic motor, in which a disk-shaped elastic substrate 7 having a projection 9 on one disk surface is provided with a disk. The disk-shaped vibrating body 10 is formed by bonding the piezoelectric bodies 8 together. Reference numeral 13 denotes a moving body in which a wear material 12 of a wear-resistant material is formed on a contact surface side with the vibrating body 10. As in the case of the annular ultrasonic motor, the wear material 12 can be omitted. Although not shown here, the moving body 13 is placed in pressure contact with the tip of the projection 9 by a pressing means such as a disc spring.

圧電体8には所定の位置だけずらせて2組の駆動電極
が形成されており、この駆動電極に所定の位相差を有す
る2つの交流電圧を印加すると、第6図に示すような径
方向の振幅を有する撓み振動の進行波が励振される。こ
の進行波の波頭の横方向成分により、移動体13は摩擦駆
動され回転軸11を中心にして回転運動をする。
Two sets of drive electrodes are formed on the piezoelectric body 8 so as to be shifted from each other by a predetermined position. When two AC voltages having a predetermined phase difference are applied to the drive electrodes, a radial direction as shown in FIG. A traveling wave of bending vibration having an amplitude is excited. Due to the transverse component of the wave front of the traveling wave, the moving body 13 is driven by friction and rotates around the rotating shaft 11.

第7図は、振動体14に励振された撓み振動の進行波に
より、移動体15が摩擦力により駆動される原理を示す断
面図である。振動体14の表面の任意の点は撓み振動の進
行波の励振によって、同図に示すように長軸2w、短軸2u
の楕円運動をする。振動体14上に加圧して設置された移
動体15は、楕円軌跡の頂点近傍でのみ接触することによ
り、摩擦駆動され波の進行方向と逆方向に移動する。移
動体15の速度vは、上記の進行波の波頭の横方向成分u
は振動の角周波数ωによって、 v=uω (1) で決まり、出力トルクは振動体と移動体の間の摩擦係数
と加圧力の積である摩擦力と駆動半径によって決まる。
FIG. 7 is a sectional view showing the principle that the moving body 15 is driven by the frictional force by the traveling wave of the bending vibration excited by the vibrating body 14. An arbitrary point on the surface of the vibrating body 14 is excited by the traveling wave of the flexural vibration, as shown in FIG.
Make an elliptical motion. The moving body 15 placed under pressure on the vibrating body 14 comes into contact only near the apex of the elliptical trajectory, and is driven by friction to move in the direction opposite to the traveling direction of the wave. The velocity v of the moving body 15 is the horizontal component u of the wave front of the traveling wave.
Is determined by the angular frequency ω of the vibration, and v = uω (1), and the output torque is determined by the frictional force, which is the product of the friction coefficient between the vibrating body and the moving body and the pressing force, and the driving radius.

第8図は突起体の役目を説明するための振動体の断面
図である。移動体18の速度vは、(1)式より撓み振動
の進行波による振動体16の表面の横方向成分uに比例
し、横方向成分uは、振動の振幅A、振動体14内の中性
面Nから接触面までの距離h、波数kによって、 u=hAk (2) で与えられる。従って、移動体18の速度vを大きくする
ためには、撓み振動の振幅Aを大きくすればよい。しか
し、振動体16の材料には破壊限界があり、撓み振動の振
幅を大きくして移動体18の速度vを大きくするには限界
がある。そこで、振動体16に突起体17を形成し、中性面
Nから接触面までの距離hをh′に拡大することによ
り、横方向成分を拡大して、撓み振動の振幅を破壊限界
内にして移動体18の速度を大きくしている。
FIG. 8 is a cross-sectional view of the vibrating body for explaining the role of the projection. The velocity v of the moving body 18 is proportional to the lateral component u of the surface of the vibrating body 16 due to the traveling wave of the bending vibration according to the equation (1). U = hAk (2) is given by the distance h from the active surface N to the contact surface and the wave number k. Therefore, in order to increase the speed v of the moving body 18, the amplitude A of the bending vibration may be increased. However, the material of the vibrating body 16 has a breaking limit, and there is a limit in increasing the amplitude of the bending vibration and increasing the speed v of the moving body 18. Therefore, by forming a projection 17 on the vibrating body 16 and expanding the distance h from the neutral surface N to the contact surface to h ', the lateral component is expanded, and the amplitude of the bending vibration is kept within the breaking limit. Therefore, the speed of the moving body 18 is increased.

発明が解決しようとする課題 超音波モータは、その振幅が数ミクロン程度と小さい
撓み振動の進行波による横方向成分uを突起体で拡大し
て、安定に移動体を駆動するものである。しかし、速度
の拡大をするための突起体の設計指針が明確になってい
なかったために、突起体の形成により、振動体の撓み振
動による歪が、振動体を構成する材料の破壊限界を越え
て信頼性が著しく低下し、移動体の速度を効率的に高く
出来ない等の課題があった。
Problems to be Solved by the Invention The ultrasonic motor drives the moving body stably by enlarging the lateral component u due to the traveling wave of the bending vibration having a small amplitude of about several microns by the projection. However, since the design guideline of the protrusion for increasing the speed was not clear, the distortion due to the bending vibration of the vibrator exceeded the breaking limit of the material constituting the vibrator due to the formation of the protrusion. There have been problems such as a remarkable decrease in reliability, and an inability to efficiently increase the speed of the moving body.

本発明は、このような従来の超音波モータの課題を解
決した超音波モータを提供することを目的とする。
An object of the present invention is to provide an ultrasonic motor that solves the above-described problems of the conventional ultrasonic motor.

課題を解決するための手段 本発明は、弾性基板内の中性面から弾性基板の表面ま
での距離をh1、突起体の高さをh2、突起体の根元間の幅
をw1、振動体に励振する進行波の振幅を、突起体がない
時の最大許容振幅の w1/(w1+w2) 以内に限定するとともに、 ((h1+h2)/h1)(w1/(w1+w2))>1 が成立する様に、弾性基板と突起体の形状を決めた超音
波モータである。
Means for Solving the Problems The present invention provides a distance h 1 from the neutral surface in the elastic substrate to the surface of the elastic substrate, a height h 2 of the protrusion, a width w 1 between the roots of the protrusion, The amplitude of the traveling wave to be excited on the vibrating body is limited to w 1 / (w 1 + w 2 ) of the maximum allowable amplitude when there is no protrusion, and ((h 1 + h 2 ) / h 1 ) (w 1 / (W 1 + w 2 ))> 1 is an ultrasonic motor in which the shapes of the elastic substrate and the projection are determined so that the following condition is satisfied.

作用 本発明においては、弾性基板内の中性面から弾性基板
の表面までの距離をh1、突起体の高さをh2、突起体の根
元間の幅をw1、振動体に励振する進行波の振幅を、突起
体がない時の最大許容振幅の w1/(w1+w2) 以内にするとともに、 ((h1+h2)/h1)(w1/(w1+w2))>1 が成立する様に、弾性基板と突起体の形状を決めること
により、振動体の撓み振動の歪を破壊限界以内にしたま
まで、突起体がない場合よりも速度の向上を実現し、信
頼性を向上した、しかも速度の大きい超音波モータを実
現する。
In effect the present invention, to excite h 1 the distance from the neutral surface of the elastic substrate to the surface of the elastic substrate, h 2 the height of the protrusions, the width between the base of the projections w 1, a vibrator The amplitude of the traveling wave should be within w 1 / (w 1 + w 2 ) of the maximum allowable amplitude when there are no protrusions, and ((h 1 + h 2 ) / h 1 ) (w 1 / (w 1 + w 2) ))> By determining the shapes of the elastic substrate and the projection so that> 1 is satisfied, the speed is improved as compared with the case without the projection, while keeping the distortion of the flexural vibration of the vibrator within the breaking limit. Thus, an ultrasonic motor with improved reliability and high speed is realized.

実施例 以下に本発明の実施例を図面を参照して説明する。
尚、本実施例は円環型超音波モータおよび円板型超音波
モータに共通の実施例である。
Embodiments Embodiments of the present invention will be described below with reference to the drawings.
This embodiment is an embodiment common to an annular ultrasonic motor and a disk ultrasonic motor.

第1図は本発明の1実施例の超音波モータの振動体の
断面図である。101は一方の面に突起体103を有する弾性
基板であり、他方の面に圧電体102を接着剤にて結合し
て振動体104を構成している。同図において、h0は弾性
基板101内の中性面Nから圧電体102の表面までの距離、
h1は弾性基板101内の中性面Nから弾性基板101の表面ま
での距離、h2は突起体103の高さ、w1は突起体103の根元
間の幅(突起体103のない部分の幅)、w2は突起体103の
根元の幅である。
FIG. 1 is a sectional view of a vibrating body of an ultrasonic motor according to one embodiment of the present invention. Reference numeral 101 denotes an elastic substrate having a protrusion 103 on one surface, and a vibrator 104 formed by bonding a piezoelectric body 102 to the other surface with an adhesive. In the figure, h 0 is the distance from the neutral surface N in the elastic substrate 101 to the surface of the piezoelectric body 102,
h 1 is the distance from the neutral plane N in the elastic substrate 101 to the surface of the elastic substrate 101, h 2 is the height of the projection 103, w 1 is the width between the roots of the projection 103 (the part without the projection 103). ), W 2 is the width of the base of the projection 103.

第2図は第1図の振動体の断面図と直交する面での断
面図である。同図において、振動体104は幅がwの矩形
断面を有する。振動体104の突起体103のない部分の撓み
振動に対する剛性(曲げ剛性)D1は、 D1=(h0+h13wE/12 (3) であり、振動体104の突起体103のある部分の撓み振動に
対する曲げ剛性D2は、D2=(h0+h1+h23wE/12(4) である。従って、突起体の無い所の有る所と曲げ剛性の
比率は D2/D1=[1+{h2/(h0+h1)}] (5) となり、h2/(h0+h1)が大きければ突起体103の有る部
分の曲げ剛性は突起体103の無い所の曲げ剛性より充分
に大きいので、撓みはほとんど突起体103の無い所で起
きる。
FIG. 2 is a sectional view taken on a plane orthogonal to the sectional view of the vibrating body of FIG. In the figure, the vibrating body 104 has a rectangular cross section having a width w. Stiffness (flexural rigidity) D 1 with respect to flexural vibration of the portion having no protrusion 103 of the vibrator 104, D 1 = a (h 0 + h 1) 3 wE / 12 (3), the protrusions 103 of the vibrator 104 The bending stiffness D 2 of a certain portion against flexural vibration is D 2 = (h 0 + h 1 + h 2 ) 3 wE / 12 (4). Therefore, the ratio of the bending stiffness to the place where there is no protrusion is D 2 / D 1 = [1+ {h 2 / (h 0 + h 1 )}] 3 (5), and h 2 / (h 0 + h 1) If) is large, the bending stiffness of the portion having the protrusion 103 is sufficiently larger than the bending stiffness of the portion without the protrusion 103, and therefore, the bending occurs almost in the portion without the protrusion 103.

(1)、(2)式より、通常は移動体の速度vを大き
くするために振動の振幅Aを大きくするが、移動体104
を構成している材料は歪に対して破壊限界があり、この
破壊限界内で振幅Aを大きくしなければならない。従っ
て、移動体の最大速度は破壊限界歪により決まる。突起
体103を付けない場合は振動体全体が均一に歪むが、突
起体103を付けた場合は、前述より突起体103の無い所で
歪むことにより振動体104が撓み振動をする。つまり第
1図の振動体104は幅w2の部分でのみ撓む。この部分の
歪を突起体103の無い場合の歪と同じ破壊限界内のある
値にすれば、突起体103の有る時の振幅A′は突起体103
の無い時の振幅Aの比べて A′={w1/(w1+w2)}A (6) になる。つまり、信頼性の向上のためには、振動体104
に励振する撓み振動の振幅は、突起体103のない場合の
破壊限界内の振幅値から(6)式を満たすように設定す
る。従って、中性面位置が大きく変化しない条件が成り
立つ通常の場合には、突起体103の有るときの移動体の
速度v1は無い時の移動体の速度v0に対して、 v0=h1kAω (7) v1=(h1+h2)(w1/(w1+w2))kAω =((h1+h2)/h1)(w1/(w1+w2))v0 (8) となる。故に、 ((h1+h2)/h1)(w1/(w1+w2))>1 (9) を満たすように弾性基板101の突起体103の形状を決めれ
ば、振動対104の歪を破壊限界内の値のままにして、移
動体の速度を突起体103の無い時よりも効果的に大きく
することが出来る。
From the expressions (1) and (2), the amplitude A of the vibration is usually increased to increase the speed v of the moving body.
Has a fracture limit with respect to strain, and the amplitude A must be increased within the fracture limit. Therefore, the maximum speed of the moving body is determined by the breaking limit strain. When the projection 103 is not provided, the entire vibrating body is uniformly distorted. However, when the projection 103 is provided, the vibrating body 104 bends and vibrates due to the distortion at the place where the projection 103 is not provided as described above. That vibrator 104 of FIG. 1 deflects only the portion of the width w 2. If the strain in this portion is set to a certain value within the same breaking limit as the strain without the protrusion 103, the amplitude A 'with the protrusion 103 is
A ′ = {w 1 / (w 1 + w 2 )} A (6) That is, in order to improve the reliability,
The amplitude of the bending vibration to be excited is set so as to satisfy the expression (6) from the amplitude value within the breaking limit when the projection 103 is not provided. Therefore, in the normal case where the condition that the neutral plane position does not change significantly is satisfied, the speed v 1 of the moving object with the protrusion 103 is equal to the speed v 0 of the moving object without the protrusion 103, v 0 = h 1 kAω (7) v 1 = (h 1 + h 2 ) (w 1 / (w 1 + w 2 )) kAω = ((h 1 + h 2 ) / h 1 ) (w 1 / (w 1 + w 2 )) v 0 (8). Therefore, if the shape of the projection 103 of the elastic substrate 101 is determined so as to satisfy ((h 1 + h 2 ) / h 1 ) (w 1 / (w 1 + w 2 ))> 1 (9), the vibration pair 104 By keeping the strain at a value within the breaking limit, the speed of the moving body can be increased more effectively than when there is no protrusion 103.

発明の効果 以上述べた様に、本発明は振動体を構成する弾性基板
と突起体の形状を条件式(9)を満たすように設計する
ことによって、振動体の歪を破壊限界内にして信頼性を
向上すると共に、移動体の速度を突起体の無い時より効
率よく大きくした超音波モータを提供することができ
る。
As described above, according to the present invention, by designing the shape of the elastic substrate and the projections constituting the vibrating body so as to satisfy the conditional expression (9), the distortion of the vibrating body is kept within the breaking limit, and the reliability is improved. It is possible to provide an ultrasonic motor in which the speed of the moving body is increased more efficiently than when there is no protrusion, while improving the performance.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の1実施例の超音波モータの振動体の断
面図、第2図は第1図の断面と直交する面での断面図、
第3図は従来の円環形超音波モータの一部切り欠き斜視
図、第4図は従来の円環形超音波モータの振動体の半径
方向の変位分布図、第5図は従来の円板形超音波モータ
の一部切り欠き斜視図、第6図は円板型超音波モータの
振動体の半径方向の変位分布図、第7図は超音波モータ
の動作原理の説明のための断面図、第8図は突起体の役
目を説明するための断面図である。 101……弾性基板、102……圧電体、103……突起体、104
……振動体、h0……弾性基板内の中性面から圧電体の表
面までの距離、h1……弾性基板内の中性面から弾性基板
の表面までの距離、h2……突起体の高さ、w1……突起体
の根元間の幅(突起体のない部分の幅)、w2……突起体
の根元の幅。
FIG. 1 is a cross-sectional view of a vibrating body of an ultrasonic motor according to one embodiment of the present invention, FIG. 2 is a cross-sectional view taken along a plane orthogonal to the cross section of FIG.
FIG. 3 is a partially cutaway perspective view of a conventional annular ultrasonic motor, FIG. 4 is a radial displacement distribution diagram of a vibrating body of the conventional annular ultrasonic motor, and FIG. FIG. 6 is a partially cutaway perspective view of the ultrasonic motor, FIG. 6 is a radial displacement distribution diagram of a vibrating body of the disk-type ultrasonic motor, FIG. 7 is a cross-sectional view for explaining the operation principle of the ultrasonic motor, FIG. 8 is a cross-sectional view for explaining the role of the projection. 101: elastic substrate, 102: piezoelectric body, 103: projection, 104
…… oscillator, h 0 …… distance from the neutral surface in the elastic substrate to the surface of the piezoelectric body, h 1 …… distance from the neutral surface in the elastic substrate to the surface of the elastic substrate, h 2 …… protrusion Body height, w 1 … width between bases of protrusions (width of part without protrusions), w 2 … width of bases of protrusions.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武田 克 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平1−255484(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsushi Takeda 1006 Kazuma Kadoma, Kadoma City, Osaka Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-1-255484 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1面に複数の突起体を形成した弾性基板の
もう1方の面に圧電体を結合することにより振動体を構
成し、前記圧電体に形成された2組の駆動電極に所定の
位相差を有する2つの電圧をそれぞれ印加することによ
り、前記振動体に撓み振動の進行波を励振し、前記突起
体の先端に加圧当接された移動体を移動させる超音波モ
ータにおいて、 前記振動体を構成する弾性基板内の中性面から前記弾性
基板の表面までの距離をh1、前記弾性基板の1面に形成
された突起体の高さをh2、前記突起体の根元間の距離を
w1、前記突起体の根元の幅をw2として、 前記振動体に励振する前記進行波の振幅を、突起体がな
い時の最大許容振幅の w1/(w1+w2) 以内に限定するとともに、 ((h1+h2)/h1)(w1/(w1+w2))>1 が成立するように、前記弾性基板と前記突起体が構成さ
れた振動体を備えたことを特徴とする超音波モータ。
1. A vibrating body is formed by coupling a piezoelectric body to another surface of an elastic substrate having a plurality of protrusions formed on one surface, and two sets of driving electrodes formed on the piezoelectric body are provided. By applying two voltages each having a predetermined phase difference, an ultrasonic motor that excites the traveling wave of the bending vibration to the vibrating body and moves the moving body pressed and abutted on the tip of the protruding body. The distance from the neutral surface in the elastic substrate constituting the vibrating body to the surface of the elastic substrate is h 1 , the height of the protrusion formed on one surface of the elastic substrate is h 2 , The distance between the roots
w 1 , assuming that the width of the base of the protrusion is w 2 , the amplitude of the traveling wave to be excited in the vibrator is limited to within w 1 / (w 1 + w 2 ) of the maximum allowable amplitude when there is no protrusion. And (vii) the elastic substrate and the vibrating body having the protrusions so that ((h 1 + h 2 ) / h 1 ) (w 1 / (w 1 + w 2 ))> 1 is satisfied. The ultrasonic motor characterized by the above.
JP2075208A 1990-03-22 1990-03-22 Ultrasonic motor Expired - Lifetime JP2582176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2075208A JP2582176B2 (en) 1990-03-22 1990-03-22 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2075208A JP2582176B2 (en) 1990-03-22 1990-03-22 Ultrasonic motor

Publications (2)

Publication Number Publication Date
JPH03273880A JPH03273880A (en) 1991-12-05
JP2582176B2 true JP2582176B2 (en) 1997-02-19

Family

ID=13569550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2075208A Expired - Lifetime JP2582176B2 (en) 1990-03-22 1990-03-22 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JP2582176B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255484A (en) * 1988-04-05 1989-10-12 Aisin Seiki Co Ltd Elastic body for ultrasonic motor

Also Published As

Publication number Publication date
JPH03273880A (en) 1991-12-05

Similar Documents

Publication Publication Date Title
JPS61224878A (en) Vibration wave motor
JPS6311073A (en) Vibrating wave motor
JP2582176B2 (en) Ultrasonic motor
JP2902712B2 (en) Ultrasonic motor
JPS63174581A (en) Oscillatory wave motor
JP2574577B2 (en) Linear actuator
JPS62193569A (en) Ultrasonic motor
JP2574284B2 (en) Ultrasonic motor
JP3001956B2 (en) Disk type ultrasonic motor
JPS62193571A (en) Ultrasonic motor
JPS60174078A (en) Piezoelectric motor
JP2543145B2 (en) Ultrasonic motor
JP2769151B2 (en) Ultrasonic motor
JPH03273878A (en) Supersonic motor
JPH0315278A (en) Elastic vibrator in traveling bending vibration motor
JPS62196085A (en) Ultrasonic motor
JP2864479B2 (en) Annular ultrasonic motor
JP2636280B2 (en) Driving method of ultrasonic motor
JPS6135176A (en) Piezoelectric motor
JP2004007858A (en) Oscillatory wave driving device and electric apparatus
JP3089750B2 (en) Ultrasonic motor
JPH0479238B2 (en)
JP3207488B2 (en) Ultrasonic actuator
JP2946947B2 (en) Linear actuator
JP3213570B2 (en) Ultrasonic motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 14