JPS62196085A - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JPS62196085A
JPS62196085A JP61035967A JP3596786A JPS62196085A JP S62196085 A JPS62196085 A JP S62196085A JP 61035967 A JP61035967 A JP 61035967A JP 3596786 A JP3596786 A JP 3596786A JP S62196085 A JPS62196085 A JP S62196085A
Authority
JP
Japan
Prior art keywords
driving unit
driving
ultrasonic motor
moving
driving body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61035967A
Other languages
Japanese (ja)
Inventor
Osamu Kawasaki
修 川崎
Akira Tokushima
晃 徳島
Ritsuo Inaba
律夫 稲葉
Katsu Takeda
克 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61035967A priority Critical patent/JPS62196085A/en
Publication of JPS62196085A publication Critical patent/JPS62196085A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves

Abstract

PURPOSE:To increase mechanical output, by forming a driving unit in the shape of a disc, and by exciting the progressive wave of a bending oscillation mode tertiary or more in the peripheral direction and secondary in the diameter direction, on the driving unit. CONSTITUTION:The piezo-electric unit 7 of piezo-electric ceramics or the like for exciting the progressive wave of a bending oscillation mode tertiary or more in the peripheral direction and secondary in the diameter direction is put on an elastic unit 8, to compose a disc-formed driving unit 9. At the position of the nodal circle of the oscillation of the driving unit 9, a projection 10 is set, and via the projection 10, the driving unit 9 is positioned and fixed on a base 13. Sliders 14, 17 in contact with projections 11, 12 arranged near the outer periphery of the driving unit 9 and on the web of oscillation are put together with elastic units 15, 18 to compose moving units 16, 19. When voltage is applied to the piezo-electric unit 7, then the progressive wave of higher bending oscillation is excited on the driving unit 9, and the moving units 16, 19 are rotated with a rotary shaft 22 for the center.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は圧電体を用いて駆動力を発生する超音波モータ
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic motor that generates driving force using a piezoelectric material.

従来の技術 近年、圧電セラミック等の圧電体を用いた駆動体に弾性
振動を励起し、これを駆動力とした超音波モータが注目
されている。
BACKGROUND OF THE INVENTION In recent years, ultrasonic motors have attracted attention, in which elastic vibrations are excited in a drive body using a piezoelectric body such as a piezoelectric ceramic, and this vibration is used as a driving force.

以下、図面を参照しながら超音波モータの原理について
説明を行う。
The principle of the ultrasonic motor will be explained below with reference to the drawings.

第3図は超音波モータの1例であり、円環形の弾性体1
の円環面の一方に円環形圧電セラミック2を貼合せて、
圧電駆動体3を構成している。4は耐磨耗性材料のスラ
イダ、6は弾性体であり、互いに貼合せられて動体6を
構成している。動体6はスライダ4を介して駆動体3と
接触している。
Figure 3 shows an example of an ultrasonic motor, with an annular elastic body 1
An annular piezoelectric ceramic 2 is pasted on one of the annular surfaces of the
It constitutes a piezoelectric drive body 3. 4 is a slider made of a wear-resistant material, and 6 is an elastic body, which are pasted together to form the moving body 6. The moving body 6 is in contact with the driving body 3 via the slider 4.

圧電セラミック2に電界を印加すると、駆動体3の周方
向に曲げ振動の進行波が励起されて、動体6を駆動する
。尚、同図中の矢印は動体6の回転方向を示す。
When an electric field is applied to the piezoelectric ceramic 2, a traveling wave of bending vibration is excited in the circumferential direction of the driving body 3, thereby driving the moving body 6. Note that the arrow in the figure indicates the direction of rotation of the moving body 6.

第4図は第3図の超音波モータに使用した圧電セラミッ
ク2の電極構造の1例を示している。同図では円周方向
に曲げ振動が9波のるようにしである。同図において、
人、Bはそれぞれ2分の1波長相当の小領域から成る電
極群で、C,Dはそれぞれ4分の3波長、4分の1波長
の長さの電極である。従って、ムの電極群とBの電極群
とは周方向に4分の1波長(=90度)の位相ずれがあ
る。電極群人、B内の隣合う小電極部は互いに反対方向
に厚み方向に分極されている。圧電セラミック2の弾性
体1との接着面は第4図に示された面と反対の面であり
、電極はベタ電極である。使用時には電極郡部、Bは第
4図に斜線で示されたように、それぞれ短絡して用いら
れ、ベタ電極が共通電極として用いられる。
FIG. 4 shows an example of the electrode structure of the piezoelectric ceramic 2 used in the ultrasonic motor of FIG. In the figure, nine waves of bending vibration are applied in the circumferential direction. In the same figure,
Person and B are electrode groups each consisting of a small region corresponding to a half wavelength, and C and D are electrodes having a length of three-quarter wavelength and one-quarter wavelength, respectively. Therefore, there is a phase shift of a quarter wavelength (=90 degrees) between the electrode group M and the electrode group B in the circumferential direction. Adjacent small electrode portions in electrode group B are polarized in mutually opposite directions in the thickness direction. The bonding surface of the piezoelectric ceramic 2 with the elastic body 1 is the surface opposite to the surface shown in FIG. 4, and the electrodes are solid electrodes. When in use, the electrode groups B are short-circuited as shown by diagonal lines in FIG. 4, and the solid electrode is used as a common electrode.

以上のように構成された超音波モータについて、その動
作を以下に説明するっ前記圧電体2の電極郡部に電圧 V = V(1−5in(wt )      −−−
−(1)を印加すると、駆動体3は円周方向に曲げ振動
をする。第5図は第3図の超音波モータの駆動体を直線
で近似した時の斜視図であり、同図へは圧電体2に電圧
を印加していない時、同図すは圧電体2に電圧を印加し
た時の様子を示す。
The operation of the ultrasonic motor configured as above will be explained below.A voltage V = V (1-5 in (wt)) applied to the electrode group of the piezoelectric body 2.
When −(1) is applied, the driving body 3 bends and vibrates in the circumferential direction. FIG. 5 is a perspective view of the driving body of the ultrasonic motor shown in FIG. 3 when approximated by a straight line. This shows what happens when voltage is applied.

第6図は動体6と駆動体3の接触状況を拡大して描いた
ものである。前記圧電体2の電極郡部にvo@ Sin
 (W t ) 、電極群BにVo−cos(wt)の
互いに位相がπ/2だけずれだ電圧を印加すれば、駆動
体3の円周方向に曲げ振動の進行波を作ることができる
。一般に進行波は振幅をξとすればξ=ξ(1−cos
(wt−kx)    −=−(2)で表せる。(2)
式は ξ=ξ0@ (cos(wt)−cos(kx )+s
in(wt)−8in(kx))−(3)と書き直せ、
(3)式は進行波が時間的にπ/2だけ位相のずれた波
cos (wt )とsin(wt)、および位置的に
π/2だけ位相のずれたoos(kx)とsin (k
x )との、それぞれの積の和で得られることを示して
いる。前述の説明より、圧電体2は互いに位置的にπ/
2(=λ/4)だけ位相のずれだ電極郡部。
FIG. 6 is an enlarged depiction of the contact situation between the moving body 6 and the driving body 3. vo@Sin on the electrode group part of the piezoelectric body 2
(W t ), and by applying Vo-cos (wt) voltages whose phases are shifted by π/2 from each other to the electrode group B, a traveling wave of bending vibration can be created in the circumferential direction of the driving body 3. Generally speaking, if the amplitude of a traveling wave is ξ, then ξ=ξ(1-cos
It can be expressed as (wt-kx) -=-(2). (2)
The formula is ξ=ξ0@(cos(wt)−cos(kx)+s
Rewrite it as in(wt)-8in(kx))-(3),
Equation (3) shows that the traveling waves are composed of waves cos (wt) and sin (wt) whose phase is temporally shifted by π/2, and oos (kx) and sin (kx) whose phase is shifted positionally by π/2.
It shows that it can be obtained by the sum of the respective products. From the above explanation, the piezoelectric bodies 2 are positioned at π/
The electrode group has a phase shift of 2 (=λ/4).

Bを持っているので、前記電極群のそれぞれにπ/2だ
け位相のずれた電圧を印加すれば、駆動体3に曲げ振動
の進行波を作れる。
B, a traveling wave of bending vibration can be created in the driving body 3 by applying voltages with a phase difference of π/2 to each of the electrode groups.

第6図は駆動体3の表面入点が進行波の励起により、長
軸2W、短軸2uの楕円運動をしている様子を示し、駆
動体3上に置かれた動体6が楕円の頂点で接触すること
により、波の進行方向とは逆方向にマ=w * uの速
度で運動する様子を示している。即ち、動体6は任意の
静圧で駆動体3に押し付けられて、駆動体3の表面に接
触し、動体6と駆動体3との摩擦力で波の進行方向と逆
方向に速度マで駆動される。両者の間に滑りがある時に
は、速度は上記のマよりも小さくなる。
Figure 6 shows that the surface entry point of the driving body 3 is moving in an ellipse with the long axis 2W and the short axis 2u due to the excitation of the traveling wave, and the moving body 6 placed on the driving body 3 is at the apex of the ellipse. The figure shows how the waves move at a speed of Ma = w * u in the opposite direction to the direction of wave travel. That is, the moving body 6 is pressed against the driving body 3 with an arbitrary static pressure, contacts the surface of the driving body 3, and is driven by the frictional force between the moving body 6 and the driving body 3 at a speed in the direction opposite to the direction of wave propagation. be done. When there is slippage between the two, the velocity will be smaller than the above Ma.

発明が解決しようとする問題点 第7図は従来の超音波モータの円環形態動体の径方向変
位分布図である。超音波モータの速度マは 7 = W* ucx: Weξo @h      
、、印、、、、  ←)で表せる。従って、第7図に示
した周方向3次以上、径方向1次の曲げ振動モードを使
う時には、動体が外周部近傍に接触するように設置すれ
ば速度マは大きくなる。しかし、円環形態動体は同一占
有空間内での体積が小さくその質量も小さいので、その
中に蓄えられるエネルギ量が小さく、機械出力を大きく
とれない。質量を増加するため円環の幅を広くしても、
上記の振動モードでは内周部での振幅は、幅が広くなる
につれ小さくなり、結果として蓄積エネルギをそれ程増
加できない。
Problems to be Solved by the Invention FIG. 7 is a radial displacement distribution diagram of the annular moving body of a conventional ultrasonic motor. The speed of the ultrasonic motor is 7 = W* ucx: Weξo @h
,, mark, ,,, ←). Therefore, when using the third-order or higher-order bending vibration mode in the circumferential direction and the first-order bending vibration mode in the radial direction shown in FIG. 7, if the moving body is installed so as to be in contact with the vicinity of the outer circumferential portion, the velocity ma will increase. However, a toroidal moving body has a small volume within the same occupied space and a small mass, so the amount of energy stored therein is small and the mechanical output cannot be increased. Even if the width of the ring is widened to increase the mass,
In the above vibration mode, the amplitude at the inner circumference becomes smaller as the width becomes wider, and as a result, the stored energy cannot be increased that much.

問題点を解決するだめの手段 本発明では、駆動体として中心部に穴を有するか、ある
いは穴を有しない円板を用い、該駆動体に周方向3次以
上、径方向に2次の曲げ振動を励振して、少なくても該
駆動体の外周部近傍に動体を接触して配置する。
Means for Solving the Problems In the present invention, a disk having a hole in the center or having no hole is used as the driving body, and the driving body is bent by three degrees or more in the circumferential direction and second degree in the radial direction. A moving body is placed in contact with at least the outer peripheral portion of the driving body by exciting vibrations.

作用 駆動体として円板を用いて、周方向3次以上・径方向2
次の高次の曲げ振動を励起することにより、同一占有空
間内に蓄積されるエネルギを増加して、機械的出力を大
きくする。加えて、外周部では、周方径の次数、駆動周
波数を変えても、振幅の極大点が必ずくるので、安定に
振幅の極太点から出力を取出せる。
Using a disk as the driving body, the third order or more in the circumferential direction and the second order in the radial direction
By exciting the next higher order bending vibration, the energy stored in the same occupied space is increased and the mechanical output is increased. In addition, at the outer periphery, even if the order of the circumferential diameter and the driving frequency are changed, the maximum amplitude point always comes, so the output can be stably obtained from the maximum amplitude point.

実施例 以下、図面に従って本発明の一実施例について説明する
EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の超音波モータの断面図であ
る。同図において、7は円板形駆動体に周方向3次・径
方向2次の曲げ振動モードの進行波を励起するだめの圧
電セラミックなどの圧電体であり、弾性体8に貼付けら
れて駆動体9を構成する。駆動体9の振動の節円の位置
には突起1゜が設置され、突起1oを介して駆動体9は
土台13に位置固定される。11と12は駆動体9の外
周近傍と振動の腹に設けられた突起で、機械的出力を上
記の2ケ所から取出すために設けられる。14は耐磨耗
性のスライダで、突起11に接触させて配置し、弾性体
16と貼合せられて動体16を構成する。17も耐磨耗
性のスライダで、突起12に接触して配され、弾性体1
8と貼合せられて動体19を構成する。動体16と19
はそれぞれベアリング20.21を介して、土台13に
設置された回転軸22に取付けられる。圧電体7に電圧
が印加されると、駆動体9に高次の曲げ振動の進行波が
励振されて、動体16と19は回転軸22を中心にして
回転する。
FIG. 1 is a sectional view of an ultrasonic motor according to an embodiment of the present invention. In the figure, 7 is a piezoelectric body such as a piezoelectric ceramic that excites traveling waves in the bending vibration mode of 3rd order in the circumferential direction and 2nd order in the radial direction in the disk-shaped drive body, and is attached to the elastic body 8 and is driven. constitutes a body 9. A protrusion 1° is installed at the nodal circle of vibration of the drive body 9, and the drive body 9 is fixed to the base 13 via the protrusion 1o. Numerals 11 and 12 are protrusions provided near the outer periphery of the driving body 9 and at the antinode of vibration, and are provided to extract mechanical output from the two locations mentioned above. Reference numeral 14 denotes a wear-resistant slider, which is placed in contact with the protrusion 11 and bonded to the elastic body 16 to form the moving body 16. 17 is also a wear-resistant slider, which is placed in contact with the protrusion 12, and which is attached to the elastic body 1.
8 to form a moving object 19. Moving objects 16 and 19
are attached to a rotating shaft 22 installed on the base 13 via bearings 20 and 21, respectively. When a voltage is applied to the piezoelectric body 7, a traveling wave of high-order bending vibration is excited in the driving body 9, and the moving bodies 16 and 19 rotate around the rotation axis 22.

第2図は上記実施例に用いる圧電体の電極構造を示す平
面図である。同図において、裏面は共通電極として用い
るベタ電極であり、弾性体8への接着面である。電極A
′、B′は周方向に腸波長相当の長さを有し、互いに厚
み方向に逆方向に分極されている小電極部から成り、ま
た電極ム′、B′はそれぞれ周方向に位相が、猛波長領
域D′によりπ/2だけずらせである。C′は%領域で
あり、領域D′の設定により生じる。電極ム′、B′に
それぞれsin波。
FIG. 2 is a plan view showing the electrode structure of the piezoelectric body used in the above embodiment. In the figure, the back surface is a solid electrode used as a common electrode, and is the adhesive surface to the elastic body 8. Electrode A
', B' have a length corresponding to the intestine wavelength in the circumferential direction, and are composed of small electrode parts that are polarized in opposite directions in the thickness direction. It is shifted by π/2 due to the intense wavelength region D'. C' is a % area and is generated by setting area D'. A sine wave is applied to electrodes M' and B' respectively.

coS波の電圧を印加すれば(3)式により、周方向3
次・径方向2次の曲げ振動の周方向に移動する進行波が
励振される。上記実施例では周方向3次を使ったが、動
作原理上3次以上であればよい。
If a coS wave voltage is applied, according to equation (3), the circumferential direction 3
A traveling wave that moves in the circumferential direction of second-order bending vibration in the radial direction is excited. Although the third order in the circumferential direction is used in the above embodiment, any order greater than or equal to the third order is sufficient in view of the operating principle.

なお、曲げ振動モードは、電極構成との関係において外
部駆動周波数を適当に設定することにより選択可能であ
る。
Note that the bending vibration mode can be selected by appropriately setting the external drive frequency in relation to the electrode configuration.

第8図は円板形駆動体の振動モードを示す斜視図と径方
向の変位分布図であり、図より径方向2次の振動モード
は一つの節円を有するーこの節円の位置に位置固定のだ
めの突起10が駆動体9に付けられている。また、実施
例では速度を大きくするだめに、振動の腹と外周近傍に
突起12゜11が付加されている。突起11.12によ
って、この位置における振幅成分によって決まる速度(
(4)式による)を機械的出力として取出せる。ここで
、突起11.12の位置の振幅の位相が逆なので、動体
16と19は互いに反対の方向に回転する。振幅値の等
しい所から機械出力を取出せば、双方の速度は等しくな
り、半径の逆数と振幅値との積が等しいように突起12
の位置を選べば、双方の回転数を合わせることができる
Fig. 8 is a perspective view and a radial displacement distribution diagram showing the vibration mode of the disc-shaped drive body. From the figure, the radial secondary vibration mode has one nodal circle and is located at the position of this nodal circle. A fixed dowel projection 10 is attached to the drive body 9. Further, in the embodiment, in order to increase the speed, protrusions 12.degree. 11 are added to the antinode of the vibration and near the outer periphery. The projection 11.12 allows the velocity (
(according to equation (4)) can be extracted as a mechanical output. Here, since the phases of the amplitudes at the positions of the protrusions 11 and 12 are opposite, the movable bodies 16 and 19 rotate in opposite directions. If the mechanical output is taken from the point where the amplitude value is equal, both speeds will be equal, and the protrusion 12 will be adjusted so that the product of the reciprocal of the radius and the amplitude value is equal.
If you choose the position of , you can match the rotation speed of both.

第9図は駆動体9の平面図で、駆動体上に設けられた突
起11と12を図示している。突起11と12は周方向
の曲げ剛性を大きくしないように、同図のようにス’J
 ノ)が入れられている。突起11と12はその位置で
の機械出力を取出すとともに、進行方向の速度を(4)
式の距離りを増大させることにより大きくする役目もあ
る。
FIG. 9 is a plan view of the drive body 9, showing the protrusions 11 and 12 provided on the drive body. The protrusions 11 and 12 are made of s'J as shown in the figure, so as not to increase the bending rigidity in the circumferential direction.
) is included. The protrusions 11 and 12 take out the mechanical output at that position and also calculate the speed in the traveling direction (4)
It also serves to increase the distance of the equation.

尚、本実施例では駆動体として中心部に穴を有する円板
を用いているが、穴のない円板を用いても同様の効果が
得られる。また第8図より円板の中心付近では振動して
いないので、駆動体の中心部より回転軸を出すことも可
能である。また、外周部のみから機械出力を取出すこと
も同様に類推できる。
In this embodiment, a disk having a hole in the center is used as the driving body, but the same effect can be obtained even if a disk without a hole is used. Further, as shown in FIG. 8, since there is no vibration near the center of the disk, it is possible to extend the rotation axis from the center of the drive body. Further, it can be similarly inferred that the mechanical output is extracted only from the outer circumferential portion.

発明の詳細 な説明したように、本発明では駆動体の形状を円板にし
、該駆動体に周方向3次以上・径方向2次の曲げ振動モ
ードの進行波を励振することにより、該駆動体内に蓄積
されるエネルギを大きくして機械出力を大きくできる、
また振動の節円内・外で振動の位相が異なるので、外周
付近から機械的出力を取出すことにより、上の効果を実
現しながら一つの駆動体で多様な回転が得られるという
まったく新規なモータを実現できる。
As described in detail, in the present invention, the shape of the driving body is a disk, and the driving body is excited by exciting a traveling wave in a bending vibration mode of third order or higher order in the circumferential direction and second order in the radial direction. By increasing the energy stored in the body, mechanical output can be increased.
In addition, since the phase of vibration is different inside and outside the vibration nodal circle, by extracting mechanical output from near the outer periphery, a completely new motor that achieves the above effects and can obtain various rotations with one drive body. can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の超音波モータの断面図、第
2図は第1図の実施例に用いる圧電体の平面図、第3図
は従来の超音波モータの切欠き斜視図、第4図は第3図
の超音波モータに用いる圧電体の平面図、第5図は超音
波モータの駆動体部の振動状態を示す直線モデル図、第
6図は超音波モータの原理説明図、第7図は従来の円環
形駆動体の振動状態の併要劣塘径方向変位分布図、第8
図は円板形態動体の振動状態の需鳴徊璧径方向変位分布
図、第9図は円板形態動体の平面図である。 7・・・・・・圧電体、8・・・・・・弾性体、9・・
・・・・駆動体、10.11.12・・・・・・突起、
13・・・・・・土台、14゜17・・・・・・スライ
ダ、15.18・・・・・・弾性体、16゜19・・・
・・・動体、2o、21・・・・・・ベアリング、22
・・・・・・回転軸。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 D゛ 第3図 第4図 (cL) 第 6 図 第7図 (1:方tジ1イエ乙工l
Fig. 1 is a sectional view of an ultrasonic motor according to an embodiment of the present invention, Fig. 2 is a plan view of a piezoelectric body used in the embodiment of Fig. 1, and Fig. 3 is a cutaway perspective view of a conventional ultrasonic motor. , Fig. 4 is a plan view of the piezoelectric body used in the ultrasonic motor of Fig. 3, Fig. 5 is a linear model diagram showing the vibration state of the driving body part of the ultrasonic motor, and Fig. 6 is an explanation of the principle of the ultrasonic motor. 7 is a diagram of the radial displacement distribution of the conventional annular drive body in the vibration state, and FIG.
The figure is a radial displacement distribution diagram of the vibration state of the disc-shaped moving body, and FIG. 9 is a plan view of the disc-shaped moving body. 7...Piezoelectric body, 8...Elastic body, 9...
...Driver, 10.11.12...Protrusion,
13...Base, 14°17...Slider, 15.18...Elastic body, 16°19...
...Moving object, 2o, 21...Bearing, 22
······Axis of rotation. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2D Figure 3 Figure 4 (cL) Figure 6 Figure 7 (1: Direction 1

Claims (1)

【特許請求の範囲】[Claims] 弾性体と圧電体とから成る駆動体に弾性進行波を励起す
ることにより、上記駆動体上に接触して設置された動体
を移動させる超音波モータにおいて、駆動体として円板
を用い、該駆動体に周方向3次以上・径方向2次の曲げ
振動モードを進行波として励起し、少なくても該駆動体
の外周部近辺に動体を接触して配置し、該移動体を移動
させることを特徴とする超音波モータ。
In an ultrasonic motor that moves a moving body placed in contact with the driving body by exciting an elastic traveling wave in the driving body made of an elastic body and a piezoelectric body, a disk is used as the driving body, and the driving body Exciting third or higher order bending vibration modes in the circumferential direction and second order in the radial direction in the body as traveling waves, placing a moving body in contact with at least the vicinity of the outer periphery of the driving body, and moving the moving body. Features an ultrasonic motor.
JP61035967A 1986-02-20 1986-02-20 Ultrasonic motor Pending JPS62196085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61035967A JPS62196085A (en) 1986-02-20 1986-02-20 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61035967A JPS62196085A (en) 1986-02-20 1986-02-20 Ultrasonic motor

Publications (1)

Publication Number Publication Date
JPS62196085A true JPS62196085A (en) 1987-08-29

Family

ID=12456711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61035967A Pending JPS62196085A (en) 1986-02-20 1986-02-20 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JPS62196085A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262069A (en) * 1987-04-15 1988-10-28 Nippon Soken Inc Piezoelectric vibration motor
JPH01144371A (en) * 1987-11-30 1989-06-06 Matsushita Electric Ind Co Ltd Ultrasonic motor device
JPH01177874A (en) * 1987-12-29 1989-07-14 Seiko Instr & Electron Ltd Progressive wave motor
CN107014907A (en) * 2017-04-10 2017-08-04 中国科学院声学研究所 A kind of flexible probe structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262069A (en) * 1987-04-15 1988-10-28 Nippon Soken Inc Piezoelectric vibration motor
JPH01144371A (en) * 1987-11-30 1989-06-06 Matsushita Electric Ind Co Ltd Ultrasonic motor device
JPH01177874A (en) * 1987-12-29 1989-07-14 Seiko Instr & Electron Ltd Progressive wave motor
CN107014907A (en) * 2017-04-10 2017-08-04 中国科学院声学研究所 A kind of flexible probe structure
CN107014907B (en) * 2017-04-10 2023-05-26 中国科学院声学研究所 Flexible probe structure

Similar Documents

Publication Publication Date Title
JPH01129782A (en) Ultrasonic motor
JPS62196085A (en) Ultrasonic motor
KR100661311B1 (en) Piezoelectric ultrasonic motor
JP2574284B2 (en) Ultrasonic motor
JPS62193569A (en) Ultrasonic motor
JP2769151B2 (en) Ultrasonic motor
JP2632158B2 (en) Ultrasonic motor
JPS62196081A (en) Ultrasonic motor
JPS62193571A (en) Ultrasonic motor
JPS62196080A (en) Ultrasonic motor
JP2689425B2 (en) Ultrasonic motor
JPS62193573A (en) Ultrasonic motor
JPH03273878A (en) Supersonic motor
JP2558661B2 (en) Ultrasonic motor
JP2864479B2 (en) Annular ultrasonic motor
JP2746578B2 (en) Ultrasonic motor
JP2537874B2 (en) Ultrasonic motor
JPS62193576A (en) Ultrasonic motor
JPS62196084A (en) Ultrasonic motor
JPS6292782A (en) Ultrasonic motor device
JP2537848B2 (en) Ultrasonic motor
JPS6323573A (en) Ultrasonic motor
JPH06113568A (en) Ultrasonic motor
JP2885802B2 (en) Ultrasonic motor
JP2523634B2 (en) Ultrasonic motor