JP2523634B2 - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JP2523634B2
JP2523634B2 JP62115015A JP11501587A JP2523634B2 JP 2523634 B2 JP2523634 B2 JP 2523634B2 JP 62115015 A JP62115015 A JP 62115015A JP 11501587 A JP11501587 A JP 11501587A JP 2523634 B2 JP2523634 B2 JP 2523634B2
Authority
JP
Japan
Prior art keywords
ultrasonic motor
vibrating body
bending vibration
electrode
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62115015A
Other languages
Japanese (ja)
Other versions
JPS63283472A (en
Inventor
克 武田
修 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62115015A priority Critical patent/JP2523634B2/en
Publication of JPS63283472A publication Critical patent/JPS63283472A/en
Application granted granted Critical
Publication of JP2523634B2 publication Critical patent/JP2523634B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は圧電体を用いて駆動力を発生する超音波モー
タに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic motor that uses a piezoelectric body to generate a driving force.

従来の技術 近年圧電セラミック等の圧電体を用いた振動体に弾性
振動を励振し、これを駆動力とした超音波モータが注目
されている。
2. Description of the Related Art In recent years, attention has been paid to ultrasonic motors which use elastic vibration as a driving force by exciting elastic vibration in a vibrating body using a piezoelectric body such as a piezoelectric ceramic.

以下、図面を参照しながら超音波モータの従来技術に
ついて説明を行う。
Hereinafter, a conventional technique of an ultrasonic motor will be described with reference to the drawings.

第5図は従来の円環形超音波モータの斜視図であり、
円環形の弾性体1の円環面の一方に圧電体として円環形
の圧電セラミック2を貼合せて振動体3を構成してい
る。4は耐磨耗性材料の摩擦材、5は弾性体であり、互
いに貼合せられて移動体6を構成している。移動体6は
摩擦材4を介して振動体3と接触している。圧電体2に
電界を印加すると振動体3の周方向に曲げ振動の進行波
が励振され、移動体6を駆動する。尚、同図中の矢印は
移動体6の回転方向を示す。
FIG. 5 is a perspective view of a conventional annular ultrasonic motor,
A vibrating body 3 is constructed by laminating an annular piezoelectric ceramic 2 as a piezoelectric body on one of the annular surfaces of the annular elastic body 1. Reference numeral 4 is a friction material made of a wear resistant material, and 5 is an elastic body, which are bonded to each other to form a moving body 6. The moving body 6 is in contact with the vibrating body 3 via the friction material 4. When an electric field is applied to the piezoelectric body 2, a traveling wave of bending vibration is excited in the circumferential direction of the vibrating body 3 to drive the moving body 6. The arrow in the figure indicates the rotation direction of the moving body 6.

第6図は第5図の超音波モータに使用した圧電セラミ
ック2の電極構造の一例を示している。同図では円周方
向に9波の弾性波がのるようにしてある。同図におい
て、AおよびBはそれぞれ2分の1波長相当の小領域か
ら成る電極群で、Cは4分の3波長、Dは4分の1波長
の長さの電極である。電極CおよびDは電極群AとBに
位置的に4分の1波長(=90度)の位相差を作ってい
る。電極AとB内の隣り合う小電極部は互いに反対に厚
み方向に分極されている。圧電体2の弾性体1との接着
面は、第6図に示された面と反対の面であり、電極はベ
タ電極である。使用時には、電極群AおよびBは第6図
に斜線で示されたように、それぞれ短絡して用いられ
る。
FIG. 6 shows an example of the electrode structure of the piezoelectric ceramic 2 used in the ultrasonic motor of FIG. In the figure, nine elastic waves are arranged in the circumferential direction. In the figure, A and B are electrode groups each consisting of a small region corresponding to a half wavelength, C is a quarter wavelength, and D is a quarter wavelength electrode. The electrodes C and D have a phase difference of a quarter wavelength (= 90 degrees) between the electrode groups A and B. Adjacent small electrode portions in the electrodes A and B are polarized in the thickness direction opposite to each other. The bonding surface of the piezoelectric body 2 with the elastic body 1 is the surface opposite to the surface shown in FIG. 6, and the electrode is a solid electrode. In use, the electrode groups A and B are short-circuited and used as indicated by the hatched lines in FIG.

以上のように構成された超音波モータの圧電体2の電
極AおよびBに V1=VO×sin(ωt) …(1) V2=VO×cos(ωt) …(2) ただし、VO:電圧の瞬時値 ω:角周波数 t:時間 で表される電圧V1およびV2をそれぞれ印加すれば、振動
体3には ξ=ξ×(cos(ωt)×cos(kx) +sin(ωt)×sin(kx)) =ξ×cos(ωt−kx) …(2) ただし ξ:曲げ振動の振幅値 ξO:曲げ振動の瞬時値 k:波数(2π/λ) λ:波長 x:位置 で表せる、円周方向に進行する曲げ振動の進行波が励起
される。
V 1 = V O × sin (ωt) (1) V 2 = V O × cos (ωt) (2) on the electrodes A and B of the piezoelectric body 2 of the ultrasonic motor configured as above V O : Instantaneous voltage value ω: Angular frequency t: By applying voltages V 1 and V 2 represented by time, respectively, the vibrating body 3 has ξ = ξ O × (cos (ωt) × cos (kx) + sin (ωt) × sin ( kx)) = ξ O × cos (ωt-kx) ... (2) where ξ: the amplitude value of the bending vibration ξ O: bending the instantaneous value k of the vibration wave number (2π / λ) λ: Wavelength x: A traveling wave of bending vibration that propagates in the circumferential direction, which can be represented by a position, is excited.

第7図は振動体3の表面のA点が進行波の励起によっ
て、長軸2w、短軸2uの楕円運動をし、振動体3上に加圧
して設置された移動体6が、楕円の頂点近傍で接触する
ことにより、摩擦力により波の進行方向とは逆方向にv
=ω×uの速度で運動する様子を示している。
FIG. 7 shows that the point A on the surface of the vibrating body 3 makes an elliptical motion of the long axis 2w and the short axis 2u by the excitation of the traveling wave, and the moving body 6 installed by pressing on the vibrating body 3 has an elliptical shape. By contacting in the vicinity of the apex, frictional force causes v in the direction opposite to the traveling direction of the wave.
It shows that the object moves at a speed of ω × u.

発明が解決しようとする問題点 超音波モータを効率良く駆動させるためには、振動体
の持っている運動エネルギーを大きくすればよい。運動
エネルギーは振動体の質量と速度の2乗に比例するの
で、振動体の質量、或は速度を増やせば出力を増加でき
る。超音波モータの外形が決まれば、質量を増やすため
に振動体の穴の大きさを小さくし、速度を大きくするに
は振動の振幅を大きくすればよい。しかし、圧電体の許
容歪みにより、振動の振幅には制限がある。また、従来
の超音波モータは径方向1次、周方向3次以上の円環曲
げ振動を使用しているので、第8図に示すように、内周
近傍では急に振幅値は小さくなり、振動体の穴を小さく
しても運動エネルギーはあまり大きくならない。従っ
て、従来のように径方向1次、周方向3次以上の円環の
曲げ振動を使用した超音波モータは出力を大きくできな
いという問題点がある。
Problems to be Solved by the Invention In order to efficiently drive the ultrasonic motor, it is sufficient to increase the kinetic energy of the vibrating body. Since the kinetic energy is proportional to the square of the mass and speed of the vibrating body, the output can be increased by increasing the mass or speed of the vibrating body. When the outer shape of the ultrasonic motor is determined, the size of the hole of the vibrating body may be reduced to increase the mass, and the amplitude of vibration may be increased to increase the speed. However, the vibration amplitude is limited due to the allowable strain of the piezoelectric body. Further, since the conventional ultrasonic motor uses circular bending vibration of radial first order and circumferential third order or higher, the amplitude value suddenly decreases near the inner circumference as shown in FIG. Even if the hole of the vibrating body is made small, the kinetic energy does not become so large. Therefore, there is a problem in that the output cannot be increased in the ultrasonic motor using the bending vibration of the circular ring of the first order in the radial direction and the third order or more in the circumferential direction as in the related art.

また、円環形超音波モータの振動体は、第8図に示す
ように全体が振動しているので、振動体の位置固定が困
難である。また、固定によって機械的な損失は避けられ
ない。
Further, since the entire vibrating body of the annular ultrasonic motor vibrates as shown in FIG. 8, it is difficult to fix the position of the vibrating body. Moreover, mechanical loss is inevitable due to fixing.

本発明はかかる点に鑑みてなされたもので、同体積で
出力を大きくでき、しかも効率の良い超音波モータを提
供することを目的としている。
The present invention has been made in view of the above, and an object of the present invention is to provide an efficient ultrasonic motor capable of increasing the output with the same volume.

問題点を解決するための手段 振動体として円板形の振動体を用い、前記進行波とし
て、径方向2次、周方向3次以上の曲げ振動モードを用
い、前記圧電体の駆動電極として、前記曲げ振動によっ
て誘起される電荷が0となる円の内側、或は内側及び外
側に、電気インピーダンスと機械インピーダンスとが共
に等しくなるように設定された、互いに周方向に4分の
1波長相当分だけ位相の異なる2対の電極群を構成す
る。
Means for Solving the Problems A disk-shaped vibrating body is used as a vibrating body, a bending vibration mode of a radial second order, a circumferential third order or more is used as the traveling wave, and a drive electrode of the piezoelectric body is Inside the circle in which the electric charge induced by the bending vibration is 0, or inside and outside the circle, the electric impedance and the mechanical impedance are set to be equal to each other, and a portion corresponding to a quarter wavelength in the circumferential direction is provided. Only two pairs of electrodes having different phases are formed.

作 用 上記の構成によれば、振動体の内側も有効に振動体の
運動エネルギーに寄与するようにし、不要な定在波を励
振することなく、容易に理想的な進行波が励振でき、駆
動効率の良い、しかも出力の大きい超音波モータを実現
できる。
Operation With the above configuration, the inside of the vibrating body is also effectively contributed to the kinetic energy of the vibrating body, and ideal traveling waves can be easily excited without exciting unnecessary standing waves It is possible to realize an ultrasonic motor with high efficiency and high output.

実施例 以下、図面に従って本発明の実施例について詳細な説
明を行う。
Embodiment Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

実施例1 第1図(a)は本発明の実施例1における円板形超音
波モータの径方向2次、周方向4次の曲げ振動モードに
おける振動体の変位分布図、同図(b)は、前記振動体
の前記振動により誘起された電荷分布図、同図(c)
は、同実施例の円板形圧電体8の電極構造を示す平面図
である。同図において、E、Fは、それぞれ周方向が2
分の1波長相当の長さを持ち、互いに隣り合う電極部の
分極方向が厚み方向に逆である小電極部から成る電極群
である。電極群E、Fは、径方向2次、周方向4次の曲
げ振動により誘起される電荷量が0になる境界円の内側
に、電気インピーダンスと機械インピーダンスとが共に
等しくなるように設定されており、周方向に位相が4分
の1波長(90度)だけずらせて構成されている。従っ
て、電極群E、Fをそれぞれ短絡し、時間的に90度位相
の異なる同電圧で駆動すれば、不要な定在波を励振する
ことなく、振動体9に径方向2次、周方向4次の曲げ振
動の進行波が励振される。
Example 1 FIG. 1 (a) is a displacement distribution diagram of a vibrating body in a radial vibration secondary mode and a circumferential direction quaternary bending vibration mode of a disk-shaped ultrasonic motor in Example 1 of the present invention, and FIG. Is a charge distribution diagram induced by the vibration of the vibrating body, FIG.
[FIG. 6] is a plan view showing an electrode structure of the disk-shaped piezoelectric body 8 of the example. In the figure, E and F each have a circumferential direction of 2
The electrode group is composed of small electrode portions having a length corresponding to one-half wavelength, and the polarization directions of the electrode portions adjacent to each other are opposite to the thickness direction. The electrode groups E and F are set such that both the electrical impedance and the mechanical impedance are equal to each other inside the boundary circle where the charge amount induced by the bending vibration of the radial second order and the circumferential fourth order is zero. The phase is shifted in the circumferential direction by a quarter wavelength (90 degrees). Therefore, if the electrode groups E and F are short-circuited and driven by the same voltage with a phase difference of 90 degrees with respect to time, the radial direction secondary and circumferential direction 4 are applied to the vibrating body 9 without exciting unnecessary standing waves. The traveling wave of the next bending vibration is excited.

実施例2 第2図(a)は本発明の実施例2における円板形超音
波モータの径方向2次、周方向4次の曲げ振動モードに
おける振動体の変位分布図、同図(b)は、前記振動体
の前記振動により誘起された電荷分布図、同図(c)
は、同実施例の円板形圧電体8の電極構造を示す平面図
である。同図において、F、Gは、それぞれ周方向が2
分の1波長相当の長さを持ち、互いに隣り合う電極部の
分極方向が厚み方向に逆である小電極部から成る電極群
である。電極群F、Gは、径方向2次、周方向4次の曲
げ振動により誘起される電荷量が0になる境界円の内側
と外側に、電気インピーダンスと機械インピーダンスと
が共に等しくなるように設定されており、周方向に位相
が4分の1波長(90度)だけずらせて構成されている。
従って、電極群F、Gをそれぞれ短絡し、時間的に90度
位相の異なる同電圧で駆動すれば、不要な定在波を励振
することなく、振動体9に径方向2次、周方向4次の曲
げ振動の進行波が励振される。
Example 2 FIG. 2 (a) is a displacement distribution diagram of a vibrating body in a radial vibration mode and a circumferential quaternary bending vibration mode of a disk-shaped ultrasonic motor in Example 2 of the present invention, FIG. 2 (b). Is a charge distribution diagram induced by the vibration of the vibrating body, FIG.
[FIG. 6] is a plan view showing an electrode structure of the disk-shaped piezoelectric body 8 of the example. In the figure, each of F and G has a circumferential direction of 2
The electrode group is composed of small electrode portions having a length corresponding to one-half wavelength, and the polarization directions of the electrode portions adjacent to each other are opposite to the thickness direction. The electrode groups F and G are set so that both the electrical impedance and the mechanical impedance are equal to each other inside and outside the boundary circle where the electric charge amount induced by the bending vibration of the quadratic radial direction and the quaternary circumferential direction becomes zero. The phase is shifted by a quarter wavelength (90 degrees) in the circumferential direction.
Therefore, if the electrode groups F and G are short-circuited and driven at the same voltage with a phase difference of 90 degrees with respect to time, the radial direction secondary and circumferential direction 4 are applied to the vibrating body 9 without exciting unnecessary standing waves. The traveling wave of the next bending vibration is excited.

実施例3 第3図(a)は本発明の実施例3における円板形超音
波モータの径方向2次、周方向4次の曲げ振動モードに
おける振動体の変位分布図、同図(b)は、前記振動体
の前記振動により誘起された電荷分布図、同図(c)
は、同実施例の円板形圧電体8の電極構造を示す平面図
である。同図において、E、F、Gは、それぞれ周方向
が2分の1波長相当の長さを持ち、互いに隣り合う電極
部の分極方向が厚み方向に逆である小電極部から成る電
極群である。電極群E、F、Gは、径方向2次、周方向
4次の曲げ振動により誘起される電荷量が0になる境界
円の内側と外側に、電極群Eだけと、電極群F、Gを合
わせた電気インピーダンスと機械インピーダンスとが、
共に等しくなるように設定されており、電極群Eと、電
極群F、Gとは周方向に位相が4分の1波長(90度)だ
けずらせて構成されている。従って、電極群E、F、G
をそれぞれ短絡し、更に電極群F、Gを短絡して、電極
群Eと、電極群F、Gとで時間的に90度位相の異なる同
電圧で駆動すれば、不要な定在波を励振することなく、
振動体9に径方向2次、周方向4次の曲げ振動の進行波
が励振される。
Embodiment 3 FIG. 3 (a) is a displacement distribution diagram of a vibrating body in a radial vibration secondary and circumferential quaternary bending vibration mode of a disk type ultrasonic motor in Embodiment 3 of the present invention, FIG. 3 (b). Is a charge distribution diagram induced by the vibration of the vibrating body, FIG.
[FIG. 6] is a plan view showing an electrode structure of the disk-shaped piezoelectric body 8 of the example. In the figure, E, F, and G are electrode groups each including a small electrode portion having a length corresponding to a half wavelength in the circumferential direction, and the polarization directions of adjacent electrode portions are opposite to the thickness direction. is there. The electrode groups E, F, and G include only the electrode group E and the electrode groups F and G on the inside and outside of the boundary circle where the charge amount induced by the bending vibration of the radial second order and the circumferential fourth order is zero. The electrical impedance and mechanical impedance, which are
They are set to be equal to each other, and the electrode group E and the electrode groups F and G are configured such that their phases are shifted in the circumferential direction by a quarter wavelength (90 degrees). Therefore, the electrode groups E, F, G
, And the electrode groups F and G are further short-circuited, and the electrode group E and the electrode groups F and G are driven with the same voltage which is 90 degrees out of phase with respect to time. Without doing
A traveling wave of bending vibration of radial second order and circumferential fourth order is excited in the vibrating body 9.

第4図は前記実施例1、実施例2及び実施例3におい
て用いた円板形超音波モータの構成を示す切り欠き斜視
図である。円板形の弾性体7の主面の一方に、圧電体と
して円板形の圧電セラミック8を貼り合わせて振動体9
を構成している。また、弾性体7の他の主面には、機械
出力取り出し用の突起体10が構成されている。11は耐磨
耗性材料の摩擦材、12は弾性体であり、互いに貼り合わ
されて移動体13を構成している。移動体13は、摩擦材11
を介して、移動体9に設置された突起体10と加圧接触し
ている。圧電体8に電界を印加すると振動体9の周方向
に曲げ振動の進行波が励振され、移動体13を摩擦力によ
り駆動する。移動体13は回転軸14を中心にして回転運動
を始める。また、振動体9は前記曲げ振動モードによっ
て駆動するため、振動による変位の少ない中心部、或は
前記振動の節部において該振動を妨げることなく確実に
固定できる。
FIG. 4 is a cutaway perspective view showing the configuration of the disc type ultrasonic motor used in the first, second and third embodiments. A disk-shaped piezoelectric ceramic 8 as a piezoelectric body is attached to one of the main surfaces of the disk-shaped elastic body 7 to form a vibrator 9.
Is composed. Further, on the other main surface of the elastic body 7, a protrusion 10 for taking out mechanical output is formed. Reference numeral 11 is a friction material made of a wear resistant material, and 12 is an elastic body, which are bonded to each other to form a moving body 13. The moving body 13 is the friction material 11
Through, and is in pressure contact with the protrusion 10 installed on the moving body 9. When an electric field is applied to the piezoelectric body 8, a traveling wave of bending vibration is excited in the circumferential direction of the vibrating body 9 and the moving body 13 is driven by a frictional force. The moving body 13 starts rotating motion around the rotation axis 14. Further, since the vibrating body 9 is driven in the bending vibration mode, the vibrating body 9 can be securely fixed without disturbing the vibration at the center portion where the displacement due to the vibration is small or the node portion of the vibration.

発明の効果 以上述べたように、本発明によれば、振動モードとし
て径方向2次、周方向3次以上の曲げ振動を用いること
により出力が大きくでき、前記曲げ振動によって誘起さ
れる電荷が0となる円の内側、或は内側及び外側に、電
気インピーダンスと機械インピーダンスとが共に等しく
なるように設定することにより、同電圧をそれぞれの電
極群に印加すれば理想的な進行波が励起され、また固定
による損失が少ないので、簡単な駆動方法により駆動効
率の良い超音波モータを実現することができる。
EFFECTS OF THE INVENTION As described above, according to the present invention, the output can be increased by using the bending vibration of the secondary radial direction and the cubic tertiary or higher as the vibration mode, and the electric charge induced by the bending vibration is 0. By setting the electrical impedance and the mechanical impedance to be equal to each other inside the circle, or inside and outside, the ideal traveling wave is excited by applying the same voltage to each electrode group, Further, since the loss due to fixing is small, it is possible to realize an ultrasonic motor with good driving efficiency by a simple driving method.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は本発明の実施例1における円板型超音波
モータの駆動体の変位分布図、同図(b)は前記駆動体
の前記曲げ振動により誘起される電荷分布図、同図
(c)は同実施例の圧電セラミック電極構造を示す平面
図、第2図(a)は本発明の実施例2における円板型超
音波モータの駆動体の変位分布図、同図(b)は前記駆
動体の前記曲げ振動により誘起される電荷分布図、同図
(c)は同実施例の圧電セラミック電極構造を示す平面
図、第3図(a)は本発明の実施例3における円板型超
音波モータの駆動体の変位分布図、同図(b)は前記駆
動体の前記曲げ振動により誘起される電荷分布図、同図
(c)は同実施例の圧電セラミック電極構造を示す平面
図、第4図は円板形超音波モータの切り欠き斜視図、第
5図は円環形超音波モータの切り欠き斜視図、第6図は
第5図の超音波モータに用いた圧電体の形状と電極構造
を示す平面図、第7図は超音波モータの動作原理の説明
図、第8図は第5図で用いた円板型超音波モータの駆動
体の変位分布図である。 1……弾性体、2……圧電体、3……振動体、4……摩
擦材、5……弾性体、6……移動体、7……弾性体、8
……圧電体、9……振動体、10……突起体、11……摩擦
材、12……弾性体、13……移動体、14……回転軸。
FIG. 1 (a) is a displacement distribution diagram of a driving body of a disk type ultrasonic motor in Embodiment 1 of the present invention, and FIG. 1 (b) is a charge distribution diagram induced by the bending vibration of the driving body. FIG. 2 (c) is a plan view showing the piezoelectric ceramic electrode structure of the same embodiment, FIG. 2 (a) is a displacement distribution map of a driving body of a disc type ultrasonic motor in embodiment 2 of the present invention, and FIG. 6A is a charge distribution diagram induced by the bending vibration of the driving body, FIG. 6C is a plan view showing the piezoelectric ceramic electrode structure of the same embodiment, and FIG. 3A is a third embodiment of the present invention. The displacement distribution diagram of the driving body of the disk type ultrasonic motor, the same figure (b) shows the charge distribution diagram induced by the bending vibration of the driving body, and the same figure (c) shows the piezoelectric ceramic electrode structure of the same embodiment. The plan view shown in FIG. 4, FIG. 4 is a cutaway perspective view of the disc type ultrasonic motor, and FIG. 6 is a plan view showing the shape and electrode structure of the piezoelectric body used in the ultrasonic motor of FIG. 5, FIG. 7 is an explanatory view of the operating principle of the ultrasonic motor, and FIG. FIG. 6 is a displacement distribution diagram of a driving body of the disc type ultrasonic motor used in FIG. 1 ... elastic body, 2 ... piezoelectric body, 3 ... vibrating body, 4 ... friction material, 5 ... elastic body, 6 ... moving body, 7 ... elastic body, 8
...... Piezoelectric body, 9 ...... vibration body, 10 ...... projection body, 11 ...... friction material, 12 ...... elastic body, 13 ...... moving body, 14 ...... rotating shaft.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧電体を交流電圧で駆動して、該圧電体と
弾性体とから構成される振動体に弾性進行波を励振する
ことにより、該振動体上に接触して設置された移動体を
移動させる超音波モータにおいて、該振動体として円板
形の振動体を用い、前記進行波として、径方向2次、周
方向3次以上の曲げ振動モードを用い、前記圧電体の駆
動電極として、前記曲げ振動によって誘起される電荷が
0となる円の内側、或は内側及び外側に、電気インピー
ダンスと機械インピーダンスとが共に等しくなるように
設定された、互いに周方向に4分の1波長相当分だけ位
相の異なる2対の電極群を構成したことを特徴とする超
音波モータ。
1. A movement installed in contact with the piezoelectric body by driving the piezoelectric body with an alternating voltage to excite an elastic traveling wave in the vibrating body composed of the piezoelectric body and the elastic body. In an ultrasonic motor for moving a body, a disk-shaped vibrating body is used as the vibrating body, a bending vibration mode of radial second order, circumferential third order or higher is used as the traveling wave, and a drive electrode of the piezoelectric body is used. Is a quarter wavelength in the circumferential direction in which the electric impedance and the mechanical impedance are set to be equal to each other inside or inside and outside the circle where the electric charge induced by the bending vibration is zero. An ultrasonic motor characterized by comprising two pairs of electrode groups whose phases differ by a considerable amount.
JP62115015A 1987-05-12 1987-05-12 Ultrasonic motor Expired - Lifetime JP2523634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62115015A JP2523634B2 (en) 1987-05-12 1987-05-12 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62115015A JP2523634B2 (en) 1987-05-12 1987-05-12 Ultrasonic motor

Publications (2)

Publication Number Publication Date
JPS63283472A JPS63283472A (en) 1988-11-21
JP2523634B2 true JP2523634B2 (en) 1996-08-14

Family

ID=14652147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62115015A Expired - Lifetime JP2523634B2 (en) 1987-05-12 1987-05-12 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JP2523634B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669198U (en) * 1979-10-24 1981-06-08
JPS6022478A (en) * 1983-07-18 1985-02-04 Shinsei Kogyo:Kk Stator of surface wave linear motor
JPH0632569B2 (en) * 1984-07-27 1994-04-27 松下電器産業株式会社 Ultrasonic motor driving method

Also Published As

Publication number Publication date
JPS63283472A (en) 1988-11-21

Similar Documents

Publication Publication Date Title
EP0258449B1 (en) Ultrasonic motor
JP2638856B2 (en) Ultrasonic motor
JP2523634B2 (en) Ultrasonic motor
JP2574284B2 (en) Ultrasonic motor
JP2769151B2 (en) Ultrasonic motor
JP2568707B2 (en) Ultrasonic motor
JP2537874B2 (en) Ultrasonic motor
JP2507083B2 (en) Ultrasonic motor
JP2532425B2 (en) Ultrasonic motor
JP2543144B2 (en) Ultrasonic motor
JP2537848B2 (en) Ultrasonic motor
JPS60183981A (en) Supersonic wave motor
JP2689425B2 (en) Ultrasonic motor
JP2506859B2 (en) Ultrasonic motor
JPH0479238B2 (en)
JP2558661B2 (en) Ultrasonic motor
JP2885802B2 (en) Ultrasonic motor
EP0539969B1 (en) Ultrasonic motor
JPH0636674B2 (en) Ultrasonic motor
JPS62196080A (en) Ultrasonic motor
JPH0223074A (en) Ultrasonic motor
JPS63277483A (en) Ultrasonic motor
JPH0223076A (en) Ultrasonic motor
JPS62193574A (en) Ultrasonic motor
JPH02142366A (en) Ultrasonic motor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term