JPH02142366A - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JPH02142366A
JPH02142366A JP63294903A JP29490388A JPH02142366A JP H02142366 A JPH02142366 A JP H02142366A JP 63294903 A JP63294903 A JP 63294903A JP 29490388 A JP29490388 A JP 29490388A JP H02142366 A JPH02142366 A JP H02142366A
Authority
JP
Japan
Prior art keywords
ultrasonic motor
vibrating body
groove
vibration
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63294903A
Other languages
Japanese (ja)
Inventor
Takahiro Nishikura
西倉 孝弘
Katsu Takeda
克 武田
Osamu Kawasaki
修 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63294903A priority Critical patent/JPH02142366A/en
Publication of JPH02142366A publication Critical patent/JPH02142366A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the output by providing a groove near the nodal circle section of a disc-shaped oscillating body and by pressing an oscillation-proof material to the oscillating body for supporting with a spring. CONSTITUTION:In an ultrasonic motor a groove 15 is provided up to the neutral surface 14 near a nodal circle section 20 of an oscillating body 9. An oscillating- proof material 16 is provided to this groove 15 and with a diaphragm spring 17 fitted into the groove 15 the oscillating body 9 is supported and fixed. Under this spring 17 a moving body 13 is installed through a bearing 18 and with a pressure adjuster 19 the oscillation-proof material 16 is pressed to and brought into contact with the oscillating body 9. Stress concentration in the diametrical direction can thereby be moderated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は圧電体を用いて駆動力を発生する超音波モータ
の支持固定に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to supporting and fixing an ultrasonic motor that generates driving force using a piezoelectric body.

従来の技術 近年、圧電セラミック等の圧電体を用いた振動体に弾性
撮動を励振し、これを駆動力とした超音波モータが注目
されている。
BACKGROUND OF THE INVENTION In recent years, ultrasonic motors have attracted attention in which elastic imaging is excited in a vibrating body using a piezoelectric material such as a piezoelectric ceramic, and this is used as a driving force.

以下、図面を参照しながら超音波モータの従来技術につ
いて説明を行う。
Hereinafter, the conventional technology of an ultrasonic motor will be explained with reference to the drawings.

第5図は従来の円環形超音波モータの斜視図であり、円
環形の弾性体1の円環面の一方に圧電体として円環形の
圧電セラミック2を貼合せて振動体3を構成している。
FIG. 5 is a perspective view of a conventional toroidal ultrasonic motor, in which a vibrating body 3 is constructed by pasting a toroidal piezoelectric ceramic 2 as a piezoelectric body to one of the toric surfaces of a toroidal elastic body 1. There is.

4は耐磨耗性材料の摩擦材、5は弾性体であり、互いに
貼合せられて移動体6を構成している。移動体6は摩擦
材4を介して撮動体3と接触している。圧電体2に電界
を印加すると振動体3の周方向に曲げ振動の進行波が励
起され、移動体6を駆動する。尚、同図中の矢印は移動
体6の回転方向を示す。
Reference numeral 4 indicates a friction material made of a wear-resistant material, and reference numeral 5 indicates an elastic body, which are pasted together to form a moving body 6. The moving body 6 is in contact with the moving body 3 via the friction material 4 . When an electric field is applied to the piezoelectric body 2, a traveling wave of bending vibration is excited in the circumferential direction of the vibrating body 3, thereby driving the movable body 6. Note that the arrow in the figure indicates the rotation direction of the moving body 6.

第6図は第5図の超音波モータに使用した圧電セラミッ
ク2の電極構造の一例を示している。同図では円周方向
に9波の弾性波がのるようにしである。同図において、
AおよびBはそれぞれ2分の1波長相当の小領域から成
る電極群で、Cは4分の3波長、Dは4分の1波長の長
さの電極である。電極CおよびDは電極群AとBに位置
的に4分の1波長(=90度)の位相差を作っている。
FIG. 6 shows an example of the electrode structure of the piezoelectric ceramic 2 used in the ultrasonic motor of FIG. In the figure, nine elastic waves are placed in the circumferential direction. In the same figure,
A and B are electrode groups each consisting of a small region corresponding to a half wavelength, C is an electrode group having a length of three-quarters of a wavelength, and D is an electrode having a length of a quarter of a wavelength. Electrodes C and D create a positional phase difference of 1/4 wavelength (=90 degrees) between electrode groups A and B.

電極AとB内の隣り合う小電極部は互いに反対に厚み方
向に分極されている。圧電体2の弾性体1との接着面は
、第6図に示めされた面と反対の面であり、電極はベタ
電極である。使用時には、電極群AおよびBは第6図に
斜線で示されたように、それぞれ短絡して用いられる。
Adjacent small electrode portions in electrodes A and B are polarized oppositely to each other in the thickness direction. The adhesive surface of the piezoelectric body 2 with the elastic body 1 is the opposite surface to the surface shown in FIG. 6, and the electrode is a solid electrode. When in use, electrode groups A and B are short-circuited, as indicated by diagonal lines in FIG.

以上のように構成された超音波モータの圧電体2の電極
AおよびBに Vt−VoXsin(ωt)        −−−<
1)V2−Voxcos(ωt)        −−
−(2)ただし、vo:電圧の瞬時値 ω:角周波数 t:時間 で表される電圧V、およびv2をそれぞれ印加すれば、
振動体3には ξ−ξox(cos(ωt )×cos(kx )+5
in(ωt)xsin(kx)) −ξoxcos(ωt−kx)      −−−(3
)ただし  ξ :曲げ撮動の振幅値 ξ0:曲げ振動の瞬時値 k :波数(2π/λ) λ :波長 X :位置 で表せる、円周方向に進行する曲げ振動の進行波が励起
される。
Vt-VoXsin(ωt) ---<
1) V2-Voxcos(ωt) --
-(2) However, if vo: instantaneous value of voltage ω: angular frequency t: voltage expressed in time, and v2 are applied, respectively,
The vibration body 3 has ξ−ξox(cos(ωt)×cos(kx)+5
in(ωt)xsin(kx)) −ξoxcos(ωt−kx) ---(3
) where ξ: amplitude value of bending imaging ξ0: instantaneous value of bending vibration k: wave number (2π/λ) λ: wavelength

第7図は撮動体3の表面のA点が進行波の励起によって
、長軸2w、短軸2uの楕円運動をし、撮動体3上に加
圧して設置された移動体6が、楕円の頂点近傍で接触す
ることにより、摩擦力により波の進行方向とは逆方向に
V−ω×uの速度で運動する様子を示している。
FIG. 7 shows that point A on the surface of the photographing body 3 moves in an ellipse with a long axis 2w and a short axis 2u due to the excitation of the traveling wave, and the movable body 6 placed under pressure on the photographing body 3 moves in an ellipse. This figure shows how the waves move at a speed of V-ω×u in the direction opposite to the direction of wave travel due to frictional force due to contact near the apex.

超音波モータの出力を大きくするためには、振動体の持
っている運動エネルギーを大きくずればよい。運動エネ
ルギーは振動体の質量と速度の2乗に比例するので、振
動体の質量または速度を増やせば出力を増加できる。超
音波モータの外形が決まれば、質量を増やすためには振
動体の穴の大きさを小さ(し、速度を大きくするには撮
動の振幅を大きくすればよい。しかし、圧電体の許容歪
みにより、撮動の振幅は制限される。また、従来の超音
波モータは径方向1次、周方向3次以上の円環の曲げ撮
動を使用しているので、第8図に示すように、内周近傍
では急に振幅値は小さ(なり、撮動体の穴を小さくして
も運動エネルギーはあまり太き(ならない。従って、従
来のように径方向1次、周方向3次以上の円環の曲げ振
動を使用した超音波モータは出力を太き(できないとい
う問題点がある。
In order to increase the output of the ultrasonic motor, the kinetic energy of the vibrating body can be greatly shifted. Since kinetic energy is proportional to the square of the mass and speed of the vibrating body, the output can be increased by increasing the mass or speed of the vibrating body. Once the external shape of the ultrasonic motor is determined, the size of the hole in the vibrating body can be reduced to increase the mass (and the amplitude of the imaging can be increased to increase the speed. However, the allowable distortion of the piezoelectric body The amplitude of imaging is limited by , the amplitude value suddenly becomes small (becomes) near the inner circumference, and even if the hole in the object is made small, the kinetic energy does not become very large (does not become so large). Ultrasonic motors that use ring bending vibration have a problem in that they cannot produce large output.

また、円環形超音波モータの振動体は、第8図に示すよ
うに全体が撮動しているので、振動体の位置固定が困難
である。また、振動部の固定によって機械的な損失や支
持材と振動体との振動ズレによる騒音が避けられない。
Further, since the entire vibrating body of the annular ultrasonic motor is photographed as shown in FIG. 8, it is difficult to fix the position of the vibrating body. Further, by fixing the vibrating part, noise due to mechanical loss and vibration misalignment between the support material and the vibrating body cannot be avoided.

発明が解決しようとする課題 従来のように、径方向1次、周方向3次以上の円環の曲
げ撮動を使用した超音波モータは、出力を大きくできず
、固定により機械的な損失を伴い効率が低下するという
問題点がある。
Problems to be Solved by the Invention Conventionally, ultrasonic motors that use circular bending imaging with primary radial direction, tertiary or higher circumferential direction cannot increase the output, and are fixed due to mechanical loss. Accordingly, there is a problem that efficiency decreases.

本発明はかかる点に鑑みてなされたもので、同体積で出
力を大きくでき、しかも固定による機械的な損失を低減
し効率の良い超音波モータを提供することを目的として
いる。
The present invention has been made in view of these points, and an object of the present invention is to provide an efficient ultrasonic motor that can increase output with the same volume and reduce mechanical loss due to fixation.

課題を解決するための手段 圧電体を交流電圧で駆動して、該圧電体と弾性体とから
構成される円板形撮動体に径方向2次、周方向3次以上
の曲げ振動の進行波を励振することにより、該振動体上
に接触して設置された移動体を移動させる超音波モータ
において、該振動体の節円部近傍に溝を設け、該溝に防
振材を設置し該防振材をダイアフラムバネで加圧支持す
ることによって、該振動体を固定する。
Means for Solving the Problem A piezoelectric body is driven with an alternating current voltage, and a traveling wave of bending vibration of second order in the radial direction, third order in the circumferential direction or more is generated in a disc-shaped moving body composed of the piezoelectric body and an elastic body. In an ultrasonic motor that moves a movable body placed in contact with the vibrating body by exciting the vibrating body, a groove is provided in the vicinity of the nodal part of the vibrating body, and a vibration-proofing material is installed in the groove. The vibrating body is fixed by pressurizing and supporting the vibration isolating material with a diaphragm spring.

作  用 撮動体として円板形の振動体を用い、振動モードとして
径方向2次、周方向3次以上の曲げ振動を用いることに
より、振動体の内債をも有効に振動体の運動エネルギー
に寄与するようにし、出力の増大を図り、振動体が振動
しない節円部近傍の中性面に防振材を設置し、防振材を
介してダイアフラムバネで直接撮動体を固定することに
より、支持固定による損失を小さくすると共に加圧機構
を簡素化し、また、防振材によって不要な共振による騒
音を防ぎ、安定で効率の良い超音波モータを実現できる
By using a disk-shaped vibrating body as the moving body and using bending vibration of 2nd order in the radial direction, 3rd order or more in the circumferential direction as the vibration mode, the internal energy of the vibrating body can be effectively converted into kinetic energy of the vibrating body. By installing a vibration isolating material on the neutral surface near the nodal part where the vibrating body does not vibrate, and directly fixing the imaging body with a diaphragm spring through the vibration isolating material, Loss due to support and fixation can be reduced, the pressurizing mechanism can be simplified, and noise caused by unnecessary resonance can be prevented by the vibration isolating material, making it possible to realize a stable and efficient ultrasonic motor.

実施例 以下、図面に従って本発明の安定で効率の良い支持、加
圧方法を目的とした一実施例について詳細な説明を行う
EXAMPLE Hereinafter, an example aimed at a stable and efficient support and pressurizing method of the present invention will be described in detail with reference to the drawings.

第1図は本発明の超音波モータの1実施例の断面図であ
る。第2図は径方向2次、周方向4次の曲げ振動を励振
した時の振動体9の振動変位状態と変位分布図である。
FIG. 1 is a sectional view of one embodiment of the ultrasonic motor of the present invention. FIG. 2 is a diagram showing the vibration displacement state and displacement distribution of the vibrating body 9 when radial second order and circumferential direction fourth order bending vibrations are excited.

同図においては、中性面14における節円部20を示し
ている。第1図に示す様に、撮動体9の節円部20近傍
の中性面14まで溝15を設け、溝15に防振材16を
設置し溝15にはまるダイアフラムバネ17で撮動体9
が支持固定されている。さらに、ダイアフラムバネ17
の下部においてはベアリング18を介して移動体13が
取り付けられ、加圧調整具19によって移動体13が撮
動体9に加圧接触されている。
In the figure, a nodal portion 20 on the neutral surface 14 is shown. As shown in FIG. 1, a groove 15 is provided up to the neutral surface 14 in the vicinity of the nodal part 20 of the photographing body 9, a vibration isolating material 16 is installed in the groove 15, and a diaphragm spring 17 fitted in the groove 15 is attached to the photographing body 9.
is supported and fixed. Furthermore, the diaphragm spring 17
A moving body 13 is attached to the lower part of the moving body 9 via a bearing 18 , and the moving body 13 is pressed into contact with the moving body 9 by a pressure adjustment tool 19 .

第3図は超音波モータの構成を示す切り欠き斜視図であ
る。円板形の弾性体7の主面の一方に、圧電体として円
板形の圧電セラミック8を貼合せて振動体9を構成して
いる。また、弾性体7の他の主面には、機械出力取り出
し用の突起体10が構成されている。11は耐磨耗性材
料の摩擦材、12は弾性体であり、互いに貼合せられて
移動体13を構成している。移動体13は、摩擦材11
を介して、振動体9に設置された突起体10と加圧接触
している。圧電体8に電界を印加すると撮動体9の周方
向に曲げ振動の進行波が励起され、移動体13を摩擦力
により駆動する。移動体13は中心軸を中心にして回転
運動を始める。
FIG. 3 is a cutaway perspective view showing the configuration of the ultrasonic motor. A vibrating body 9 is constructed by pasting a disk-shaped piezoelectric ceramic 8 as a piezoelectric body to one of the main surfaces of the disk-shaped elastic body 7. Further, on the other main surface of the elastic body 7, a protrusion 10 for extracting mechanical output is formed. 11 is a friction material made of a wear-resistant material, and 12 is an elastic body, which are pasted together to form a moving body 13. The moving body 13 includes the friction material 11
It is in pressurized contact with a protrusion 10 installed on the vibrating body 9 via. When an electric field is applied to the piezoelectric body 8, a traveling wave of bending vibration is excited in the circumferential direction of the moving body 9, and the movable body 13 is driven by a frictional force. The moving body 13 starts rotating around the central axis.

第4図は円板形圧電セラミック8の電極構造を示す平面
図である。同図において、E、Fは、それぞれ周方向が
2分の1波長相当の長さを持ち、互いに隣り合う電極部
の分極方向が厚み方向に逆である小電極部から成る電極
群である。そして、電極群E、Fは、周方向に位相が4
分の1波長相当分(90度)だけずらせて構成されてい
る。
FIG. 4 is a plan view showing the electrode structure of the disc-shaped piezoelectric ceramic 8. As shown in FIG. In the figure, E and F are electrode groups each having a length equivalent to a half wavelength in the circumferential direction, and consisting of small electrode portions in which the polarization directions of adjacent electrode portions are opposite in the thickness direction. The electrode groups E and F have a phase of 4 in the circumferential direction.
They are configured to be shifted by an amount equivalent to one-tenth of a wavelength (90 degrees).

従って、電極群E、Fをそれぞれ短絡し、裏面のベタ電
極との間に時間的に90度位相の異なる電圧を印加すれ
ば、振動体9に径方向2次、周方向4次の曲げ振動の進
行波が励振される。
Therefore, if electrode groups E and F are short-circuited and voltages with a temporal phase difference of 90 degrees are applied between them and the solid electrodes on the back surface, the vibrating body 9 will be subjected to bending vibrations of second order in the radial direction and fourth order in the circumferential direction. traveling waves are excited.

また、第2図に示した様に径方向2次、周方向4次の曲
げ振動を励振することにより、従来の径方向1次の撮動
モードを使用した円環形超音波モータと異なり、内周部
においても振動変位が急に小さ(なることはない。従っ
て、超音波モータが同一体積を占有した時、径方向1次
の振動モードを使用した時よりも、振動体9の運動エネ
ルギーを大きくすることができ、大きな出力を取り出せ
る超音波モータを実現できる。また、節円部20近傍の
中性面14では原理的に全(振動しないので防振材16
を介してダイアフラムバネ17で直接振動体9を支持固
定および加圧調整具19で加圧することにより、振動体
の支持固定による機械的損失がなく、かつ、加圧機構を
簡素化できると共に防振材16によって撮動体9とダイ
アフラムバネ17との振動ズレを吸収し騒音の発生を防
止でき、しかも、溝15によって径方向の応力集中が緩
和されるので、撮動の励振が容易となり、安定で効率良
(移動体13を駆動できる。
In addition, as shown in Figure 2, by exciting bending vibrations in the 2nd order in the radial direction and the 4th order in the circumferential direction, unlike the conventional annular ultrasonic motor that uses the 1st order imaging mode in the radial direction, The vibration displacement at the periphery also suddenly becomes small (it does not become small). Therefore, when the ultrasonic motor occupies the same volume, the kinetic energy of the vibrating body 9 can be used more than when using the first-order vibration mode in the radial direction. It is possible to realize an ultrasonic motor that can increase the size of the motor and generate a large output.In addition, in principle, the neutral surface 14 near the nodal portion 20 does not vibrate, so it is possible to realize an ultrasonic motor that can generate a large output.
By directly supporting and fixing the vibrating body 9 with the diaphragm spring 17 via the diaphragm spring 17 and pressurizing it with the pressure adjustment tool 19, there is no mechanical loss caused by supporting and fixing the vibrating body, and the pressurizing mechanism can be simplified and vibration-proofing can be achieved. The material 16 absorbs the vibration misalignment between the imaging body 9 and the diaphragm spring 17 and prevents the generation of noise. Furthermore, the grooves 15 relieve stress concentration in the radial direction, making excitation for imaging easy and stable. Efficient (can drive the moving body 13).

本発明によれば、簡単な構成で騒音の無い安定で効率の
良い、しかも機械的出力の大きな超音波モータを提供で
きる。
According to the present invention, it is possible to provide an ultrasonic motor that has a simple configuration, is noiseless, stable, and efficient, and has a large mechanical output.

発明の効果 本発明によれば、撮動モードとして径方向2次、周方向
3次以上の曲げ振動を用いることにより機械的出力の大
きな、モして撮動体の振動しない節円部近傍の中性面に
防振材を設置し、防振材を直接ダイアフラムバネで加圧
・支持固定することにより撮動変位を阻害せず、加圧機
構の簡素化と同時に騒音の発生も防止でき、しかも、振
動体に設けた溝15によって径方向の応力集中が緩和さ
れるので、安定で効率の良い超音波モータを提供できる
Effects of the Invention According to the present invention, by using bending vibrations of 2nd order in the radial direction, 3rd order in the circumferential direction or higher as the imaging mode, the mechanical output is large, and the vibration is achieved in the vicinity of the nodal part of the imaging object where the vibration does not occur. By installing a vibration isolator on the surface of the camera and directly pressurizing and supporting the vibration isolator with a diaphragm spring, it does not impede the imaging displacement, simplifies the pressure mechanism, and prevents noise generation. Since stress concentration in the radial direction is alleviated by the grooves 15 provided in the vibrating body, a stable and efficient ultrasonic motor can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の円板形超音波モータの1実施例の断面
図、第2図は振動モードとして径方向2次、周方向3次
の曲げ撮動を用いた時の振動体の振動状態と径方向の変
位分布図、第3図は円板形超音波モータの動作説明のた
めの切り欠き斜視図、第4図は第1図の超音波モータで
使用する圧電セラミックの平面図、第5図は円環形超音
波モータの切り欠き斜視図、第6図は第5図の超音波モ
ータに用いた圧電体の形状と電極構造を示す平面図、第
7図は超音波モータの動作原理の説明図、第8図は撮動
モードとして径方向1次、局方向8次の曲げ振動を用い
た時の撮動体の振動状態と径方向の変位分布図である。 7・・・・・・弾性体、8・・・・・・圧電体、9・・
・・・・振動体10・・・・・・突起体、11・・・・
・・摩擦材、12・・・・・・弾性体、13・・・・・
・移動体、14・・・・・・中性面、15・・・・・・
溝、16・・・・・・防擾材、17・・・・・・ダイア
フラムバネ、 18・・・・・・ベアリング、19・・・・・・加圧調
整具、20・・・・・・節内部。 代理人の氏名 弁理士 粟野重孝 ほか1名簿 図 第 図
Fig. 1 is a cross-sectional view of one embodiment of the disc-shaped ultrasonic motor of the present invention, and Fig. 2 shows the vibration of the vibrating body when the vibration mode is 2nd order in the radial direction and 3rd order in the circumferential direction. Condition and radial displacement distribution diagram, Figure 3 is a cutaway perspective view to explain the operation of the disc-shaped ultrasonic motor, Figure 4 is a plan view of the piezoelectric ceramic used in the ultrasonic motor of Figure 1, Fig. 5 is a cutaway perspective view of the annular ultrasonic motor, Fig. 6 is a plan view showing the shape and electrode structure of the piezoelectric body used in the ultrasonic motor of Fig. 5, and Fig. 7 is the operation of the ultrasonic motor. FIG. 8, which is an explanatory diagram of the principle, is a vibration state and a radial displacement distribution diagram of the imaging body when bending vibration of first order in the radial direction and eighth order in the local direction is used as the imaging mode. 7...Elastic body, 8...Piezoelectric body, 9...
... Vibrating body 10 ... Protrusion, 11 ...
...Friction material, 12...Elastic body, 13...
- Moving body, 14... Neutral surface, 15...
Groove, 16... Damaging material, 17... Diaphragm spring, 18... Bearing, 19... Pressure adjustment tool, 20...・Inside the knot. Name of agent: Patent attorney Shigetaka Awano and 1 other list

Claims (1)

【特許請求の範囲】[Claims]  圧電体を交流電圧で駆動して、該圧電体と弾性体とか
ら構成される円板形振動体に径方向2次、周方向3次以
上の曲げ振動の進行波を励振することにより、該振動体
上に接触して設置された移動体を移動させる超音波モー
タにおいて、該振動体の節円部近傍に溝を設け、該溝に
防振材を設置し該防振材をダイアフラムバネで加圧支持
することによって、該振動体を固定する事を特徴とする
超音波モータ。
By driving the piezoelectric body with an alternating current voltage and exciting a traveling wave of bending vibration of second order in the radial direction, third order in the circumferential direction or higher in the disc-shaped vibrating body composed of the piezoelectric body and the elastic body, In an ultrasonic motor that moves a movable body installed in contact with a vibrating body, a groove is provided near the nodal part of the vibrating body, a vibration isolating material is installed in the groove, and the vibration isolating material is connected with a diaphragm spring. An ultrasonic motor characterized in that the vibrating body is fixed by being supported under pressure.
JP63294903A 1988-11-22 1988-11-22 Ultrasonic motor Pending JPH02142366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63294903A JPH02142366A (en) 1988-11-22 1988-11-22 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63294903A JPH02142366A (en) 1988-11-22 1988-11-22 Ultrasonic motor

Publications (1)

Publication Number Publication Date
JPH02142366A true JPH02142366A (en) 1990-05-31

Family

ID=17813747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63294903A Pending JPH02142366A (en) 1988-11-22 1988-11-22 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JPH02142366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104123A (en) * 1997-09-22 2000-08-15 Nikon Corporation Vibration actuator having a supporting member to support a vibration member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104123A (en) * 1997-09-22 2000-08-15 Nikon Corporation Vibration actuator having a supporting member to support a vibration member

Similar Documents

Publication Publication Date Title
JP3059031B2 (en) Vibration wave drive device and device provided with vibration wave drive device
US5146129A (en) Vibration wave motor
KR100485882B1 (en) Vibration element and vibration wave driving apparatus
JPH02142366A (en) Ultrasonic motor
JP2769151B2 (en) Ultrasonic motor
JPS63277482A (en) Ultrasonic motor
JP2574284B2 (en) Ultrasonic motor
JP2532425B2 (en) Ultrasonic motor
JPH0223074A (en) Ultrasonic motor
JP2994023B2 (en) Ultrasonic motor
JPH02311184A (en) Ultrasonic motor
JP2885802B2 (en) Ultrasonic motor
JP2725767B2 (en) Vibration wave drive
JP2689425B2 (en) Ultrasonic motor
JPH0270277A (en) Ultrasonic motor
JPH0226277A (en) Ultrasonic motor
JPH0223076A (en) Ultrasonic motor
JP3089750B2 (en) Ultrasonic motor
JPS6118370A (en) Piezoelectric motor
JPH01311878A (en) Ultrasonic motor
JPS63277483A (en) Ultrasonic motor
JPS6118369A (en) Piezoelectric motor
JPS63283472A (en) Ultrasonic motor
JPH02131374A (en) Ultrasonic motor
JP3001957B2 (en) Annular ultrasonic motor