JPS62193574A - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JPS62193574A
JPS62193574A JP61035955A JP3595586A JPS62193574A JP S62193574 A JPS62193574 A JP S62193574A JP 61035955 A JP61035955 A JP 61035955A JP 3595586 A JP3595586 A JP 3595586A JP S62193574 A JPS62193574 A JP S62193574A
Authority
JP
Japan
Prior art keywords
driving unit
order
ultrasonic motor
disc
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61035955A
Other languages
Japanese (ja)
Inventor
Akira Tokushima
晃 徳島
Osamu Kawasaki
修 川崎
Ritsuo Inaba
律夫 稲葉
Katsu Takeda
克 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61035955A priority Critical patent/JPS62193574A/en
Publication of JPS62193574A publication Critical patent/JPS62193574A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/166Motors with disc stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To increase energy stored in a driving unit and increase mechanical output, by using a disc with a hole or a holeless disc for a driving unit, and by generating specified progressive wave on the driving unit. CONSTITUTION:An elastic unit 7 is bonded to a piezoelectric unit 8 to compose a driving unit. An abrasion-proof slider 11 is put on an elastic unit 12 to compose a mover 13. For the driving unit 14, a disc with a hole bored through the central section or a holeless disc is used. On the driving unit, the progressive waves of bending oscillation mode tertiary or more in the circumferential direction and secondary in the diameter direction are excited, and the mover set in contact with the upper section of the driving unit is moved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は圧電体を用いて駆動力を発生する超音波モータ
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic motor that generates driving force using a piezoelectric material.

従来の技術 近年、圧電セラミック等の圧電体を用いた駆動体に弾性
振動を励起し、これを、駆動力とした超音波モータが注
目されている。
2. Description of the Related Art In recent years, ultrasonic motors have attracted attention, in which elastic vibrations are excited in a driving body using a piezoelectric body such as a piezoelectric ceramic, and this vibration is used as a driving force.

以下、図面を参照しながら超音波モータの原理について
説明を行う。
The principle of the ultrasonic motor will be explained below with reference to the drawings.

第3図は超音波モータの1例であり、円環形の弾性体1
の円環面の一方に円環形圧電セラミック2を貼合せて、
圧電駆動体3を構成している。4は耐磨耗性材料のスラ
イダ、6は弾性体であり、互いに貼合せられて動体6を
構成している。動体6はスライダ4を介して駆動体3と
接触している。
Figure 3 shows an example of an ultrasonic motor, with an annular elastic body 1
An annular piezoelectric ceramic 2 is pasted on one of the annular surfaces of the
It constitutes a piezoelectric drive body 3. 4 is a slider made of a wear-resistant material, and 6 is an elastic body, which are pasted together to form the moving body 6. The moving body 6 is in contact with the driving body 3 via the slider 4.

圧電セラミック2に電界を印加すると、駆動体30周方
向に曲げ振動の進行波が励起されて、動体6を駆動する
。尚、同図中の矢印は動体6の回味方向を示す。
When an electric field is applied to the piezoelectric ceramic 2, a traveling wave of bending vibration is excited in the circumferential direction of the driving body 30, thereby driving the moving body 6. Note that the arrow in the figure indicates the direction of recirculation of the moving object 6.

第4図は第3図の超音波モータに使用したrf電セラミ
ック2の電極構造の1例を示している。同図では円周方
向に曲げ振動が9vのるようにしである。同図において
、A、  Bはそれぞれ2分の1波長相当の小領域から
成る電極群で、C,Dはそれぞれ4分の3波長、4分の
1波長の長さの電極である。従って、人の電極群とBの
電極群とは周方向に4分の1波長(=90度)の位相ず
れがある。電極群A、  B内の隣合う小電極部は互い
に反対方向に厚み方向に分極されている。圧電セラミッ
ク2の弾性体1との接着面は第4図に示された面と反対
の面であり、電極ばベタ電極である。使用時には電極群
A、  Bは第4図に斜線で示されたように、それぞれ
短絡して用いられ、ペタ電極が共通電極として用いられ
る。
FIG. 4 shows an example of the electrode structure of the RF electroceramic 2 used in the ultrasonic motor of FIG. In the figure, the bending vibration is applied in the circumferential direction at 9V. In the figure, A and B are electrode groups each consisting of a small region corresponding to a half wavelength, and C and D are electrodes having a length of three-quarter wavelength and a quarter wavelength, respectively. Therefore, there is a phase shift of a quarter wavelength (=90 degrees) between the electrode group of the person and the electrode group of B in the circumferential direction. Adjacent small electrode portions in electrode groups A and B are polarized in mutually opposite directions in the thickness direction. The bonding surface of the piezoelectric ceramic 2 with the elastic body 1 is the surface opposite to the surface shown in FIG. 4, and the electrode is a solid electrode. When in use, electrode groups A and B are short-circuited, as indicated by diagonal lines in FIG. 4, and the peta electrode is used as a common electrode.

以上のように構成された超音波モータについて、その動
作を以下に説明する。前記圧電体2の電極群人に電圧 V = VO−sin (wt)      −=−(
1)を印加すると、駆動体3は円周方向に曲げ撮動をす
る。第5図は第3図の超音波モータの駆動体を直線で近
似した時の斜視図であり、同図(a)は圧電体2に電圧
を印加していない時、同図(b)は圧電体2に電圧を印
加した時の様子を示す。
The operation of the ultrasonic motor configured as above will be described below. Voltage V = VO-sin (wt) -=-(
When 1) is applied, the driver 3 performs bending motion in the circumferential direction. FIG. 5 is a perspective view of the drive body of the ultrasonic motor shown in FIG. 3 when it is approximated by a straight line. The situation when a voltage is applied to the piezoelectric body 2 is shown.

第6図は動体6と1駆動体3の接触状況を拡大して描い
たものである。前記圧電体2の電極群AにVo−sin
 (wt)、電極群BにVg−cos (wt)の互い
に位相がπ/またけずれた電圧を印加すれば1、小動体
3の円周方向に曲げ振動の進行波を作ることができる。
FIG. 6 is an enlarged depiction of the contact situation between the moving body 6 and the first driving body 3. Vo-sin is applied to the electrode group A of the piezoelectric body 2.
(wt), and Vg-cos (wt), which are mutually shifted in phase by π/1, are applied to the electrode group B.1, it is possible to create a traveling wave of bending vibration in the circumferential direction of the small moving body 3.

一般に進行波は振幅をξとすればξ=ξ(3−cos 
(wt−kx)    −・・・・ (2で表せる。(
2)式は ξ=ξO−(cos(wt) −cosQcx)+si
n (wt) −sin (kx) )・・・・・・ 
(3) と書き直せ、(3)式は進行波が時間的にπ/2だけ位
相のずれた波cos(wt)と5in (wt)、およ
び位置的にπ/2だけ位相のずれたcos(kx)とs
in (kx)との、それぞれの積の和で得られること
を示している。前述の説明より、圧電体2は互いに位置
的にπ/2(=λ/4)だけ位相のずれた電極群人。
Generally speaking, if the amplitude of a traveling wave is ξ, then ξ=ξ(3-cos
(wt-kx) −・・・・ (Can be expressed as 2. (
2) The formula is ξ=ξO−(cos(wt) −cosQcx)+si
n (wt) −sin (kx) )・・・・・・
Equation (3) can be rewritten as (3), where the traveling wave is composed of waves cos(wt) and 5in (wt) whose phase is shifted by π/2 in time, and cos(wt) whose phase is shifted by π/2 in position. kx) and s
It shows that it can be obtained by the sum of the respective products with in (kx). From the above explanation, the piezoelectric body 2 is a group of electrodes whose phase is shifted from each other by π/2 (=λ/4).

Bを持っているので、前記成極群のそれぞれにπ/2だ
け位相のずれた電圧を印加すれば、駆動体3に曲げ振動
の進行波を作れる。
B, a traveling wave of bending vibration can be created in the driving body 3 by applying voltages with a phase shift of π/2 to each of the polarization groups.

第6図は、@動体3の表口入点が進行波の励起により、
長軸2W、短軸2uの楕円運動をしている様子を示し、
駆動体3上に置かれた動体6が楕円のm点で接触するこ
とにより、波の進行方向とは逆方向にv=w−u の速
度で運動する様子を示している。即ち、動体6は任意の
静圧で駆動体3に押し付けられて1、鳴動体3の表面に
接触し、動体6と駆動体3との摩擦力で波の進行方向と
逆方向に速度Vで駆動される。両者の間に滑りがある時
には、速度は上記のVよりも小さくなる。
Figure 6 shows that the front entry point of moving body 3 is caused by the excitation of traveling waves.
It shows an elliptical motion with a long axis 2W and a short axis 2u,
It shows how the moving body 6 placed on the driving body 3 comes into contact with the ellipse at point m and moves at a speed of v=w−u in the opposite direction to the direction of wave propagation. That is, the moving body 6 is pressed against the driving body 3 with an arbitrary static pressure, contacts the surface of the sounding body 3, and is moved at a speed V in the direction opposite to the direction of wave propagation due to the frictional force between the moving body 6 and the driving body 3. Driven. When there is slippage between the two, the velocity will be smaller than the above V.

発明が解決しようとする問題点 以上説明した従来の超音波モータは、第7図に示すよう
に、円周方向には3次以上、径方向には1次の曲げ振動
モードを使っている。第7図・は円周方向には9次、径
方向には1次の曲げ振動モードを示している。
Problems to be Solved by the Invention The conventional ultrasonic motor described above, as shown in FIG. 7, uses a bending vibration mode of third or higher order in the circumferential direction and first order in the radial direction. FIG. 7 shows a bending vibration mode of ninth order in the circumferential direction and first order in the radial direction.

このように径方向[1次の曲げ振動モードでは、外周部
が振幅ξGが最大になる。動体6の速度Vは V = W−u cc W−ξo−h      −・
−・(4)で表せるから、動体6の速度Vは外周部と接
触して配置した時最大となる。しかし、このような振動
モードは、外周部が自由端の時のモードであるから、負
荷である動体6を接触して配置した時には振動モードが
変ってしまうので設計しにくい。
In this way, in the radial direction [first-order bending vibration mode], the amplitude ξG is maximum at the outer circumference. The speed V of the moving object 6 is V = W-u cc W-ξo-h −・
- Since it can be expressed as (4), the velocity V of the moving body 6 is maximum when it is placed in contact with the outer circumference. However, since such a vibration mode is a mode when the outer peripheral portion is a free end, it is difficult to design because the vibration mode changes when the moving body 6, which is a load, is placed in contact with it.

また、このモードは駆動体3の幅が小さい程、効率良く
駆動することができるが、駆動体3の幅を小さくすると
、駆動体3の質量が減り蓄えられるエネルギーが減る。
Further, in this mode, the smaller the width of the driving body 3, the more efficiently the driving can be performed, but when the width of the driving body 3 is made smaller, the mass of the driving body 3 decreases, and the energy that can be stored decreases.

従って、外部に対して大きな出力を得ることができない
Therefore, it is not possible to obtain a large output to the outside.

本発明はかかる点に鑑みてなされたもので、簡単な構成
で設計のしやすい、機械的出力の大きな超音波モータを
提供することを目的とする。
The present invention has been made in view of these points, and an object of the present invention is to provide an ultrasonic motor with a simple configuration, easy to design, and a large mechanical output.

問題点を尊決するための手段 小動体に中心部に穴を有する穴あき円板か穴を有さない
円板を採用し、該、駆動体に振動モードが円周方向に3
次以上、径方向に2次以上の曲げ振動モードの進行波を
励起して、駆動体上に接触して設置された動体を移動す
る。
Means for resolving the problem A circular disk with a hole in the center or a disk without a hole is adopted as the small moving body, and the driving body has three vibration modes in the circumferential direction.
A moving body placed in contact with a driving body is moved by exciting a traveling wave in a bending vibration mode of second or higher order in the radial direction.

作用 111体に励起された円周方向3次以上、径方向に2次
以上の曲げ振動の進行波の、外周近辺以外の振幅極太点
を用いることにより、また、駆動体として穴あきあるい
は穴なし円板を用いることにより同体積で重量を大きく
して、駆動体に蓄えられるエネルギーを太きくし、負荷
に強く、しかも高機械出力にする○ 実施例 以下、(9)に従って本発明の1実施例について説明す
る。第1図は本発明の1実施例の超音波モータの切欠き
斜視図である。同図において、了は弾性体であり圧電体
8と接着されて、駆動体9を構成する01oは回転軸で
あり、回転運動の中心となる。11は耐摩耗性材のスラ
イダであり、弾性体12に貼付けられて動体13を構成
する。動体13はスライダ11を介して、駆動体9に接
触して設置される。圧電体8vC鳴動体9の共振近傍の
交番電圧が印加されると、駆動体3に曲げ振動モードの
進行波が励起され、スライダ11に横方向の速度が与え
られ、動体13が図中の矢印の方向に回転移動する。
By using a point other than near the outer periphery with the thickest amplitude of the traveling wave of 3rd order or higher order bending vibration in the circumferential direction and 2nd order or higher order in the radial direction excited in the action 111 body, it is also possible to use a driving body with or without a hole. By using a disc, the weight can be increased with the same volume, the energy stored in the drive body can be increased, and the drive body can be resistant to loads and has a high mechanical output. I will explain about it. FIG. 1 is a cutaway perspective view of an ultrasonic motor according to an embodiment of the present invention. In the figure, 01o, which is an elastic body and is bonded to the piezoelectric body 8 and constitutes the driving body 9, is a rotation axis and becomes the center of rotational movement. Reference numeral 11 denotes a slider made of a wear-resistant material, which is attached to the elastic body 12 to constitute a moving body 13. The moving body 13 is installed in contact with the driving body 9 via the slider 11. When an alternating voltage near the resonance of the piezoelectric 8vC sounding body 9 is applied, a traveling wave in a bending vibration mode is excited in the driving body 3, giving a lateral velocity to the slider 11, and the moving body 13 moves in the direction of the arrow in the figure. Rotate and move in the direction of.

第2図は第1図の実施例の超音波モータの、駆動体3の
変位分布図であり、四南では円周方向に3次、径方向に
2次の振動モードが使用されている。
FIG. 2 is a displacement distribution diagram of the driving body 3 of the ultrasonic motor of the embodiment shown in FIG. 1, in which a third-order vibration mode in the circumferential direction and a second-order vibration mode in the radial direction are used in the four south.

同図より、振幅最大の点は半径rQO所に在り、第1図
では動体13の回転速度を最大にするために、この点に
スライダ11を接触させて機械出力を取り出している。
From the figure, the point of maximum amplitude is located at the radius rQO, and in FIG. 1, in order to maximize the rotational speed of the moving object 13, the slider 11 is brought into contact with this point to extract the mechanical output.

第8図は第1図の実施例の圧電体9の電極構造を示して
いる。電極群A、  Bは2分の1彼長の周方向長さを
もち、互いに逆方向に厚み方向に分極されている2つの
電極から成り、使用時にはそれぞれ短絡される。電極C
,Dはそれぞれ周方向に4分の1彼長、4分の3彼長の
長さを持つ電極で、電極群人とBを位置的に4分の1波
長(π/2)だけずらせるために設けている。電極群人
、Bにそれぞれsin波、COS波の電圧を印加すれば
、曲げ振動の進行波を励起できる。
FIG. 8 shows the electrode structure of the piezoelectric body 9 of the embodiment shown in FIG. Electrode groups A and B consist of two electrodes having a circumferential length of half the length, polarized in opposite directions in the thickness direction, and are short-circuited when in use. Electrode C
, D are electrodes with a length of 1/4 length and 3/4 length in the circumferential direction, respectively, and the electrode group and B are shifted by 1/4 wavelength (π/2) in position. It is set up for the purpose. By applying sine wave and COS wave voltages to electrode groups B and B, respectively, a traveling wave of bending vibration can be excited.

ただし、この電極構造では周方向3次、径方向1次の振
動モードも励起できる。しかし、径方向1次のモードで
は中心部に行くに従い、振幅が急速に小さくなるので、
駆動体内の蓄積エネルギが小さくなる。(このことは径
方向1次の撮動モードでは内部は外周部に対して負荷と
して働らいていることを意味する。)径方向2次の振動
モードでは、第2図に示すように内部の振幅を大きくで
きるので、駆動体中の蓄積エネルギを大きくとれる。従
って必ず外部駆動周波数は周方向3次、径方向2次の曲
げ振動の共振周波数近傍に設定しなければならない。つ
まり、高次モードの選択は外部駆動周波数の選択によっ
て行なう。
However, with this electrode structure, third-order vibration modes in the circumferential direction and first-order vibration modes in the radial direction can also be excited. However, in the first-order mode in the radial direction, the amplitude decreases rapidly toward the center, so
The stored energy within the drive body is reduced. (This means that in the first-order radial imaging mode, the inside acts as a load on the outer circumference.) In the second-order radial vibration mode, the inside Since the amplitude can be increased, the energy stored in the driving body can be increased. Therefore, the external drive frequency must be set close to the resonance frequency of third-order bending vibration in the circumferential direction and second-order bending vibration in the radial direction. In other words, the higher-order mode is selected by selecting the external drive frequency.

周方向の3次以上、径方向2次以上の曲げ振動モードも
同様にして励起できる。以上述べたような振動モードで
は振幅の最大点が外周部の自由端でなくなり、従って、
振幅の最大点付近から機械的出力を取り出せば、負荷の
、駆動体への影響を小さくできる。また、同一の空間内
で、円環形より体積、質量を大きくできるので、駆動体
内に大きな弾性エネルギーが溶精でき、機械出力を大き
くできる。
Bending vibration modes of 3rd order or higher in the circumferential direction and 2nd or higher order in the radial direction can also be excited in the same manner. In the vibration mode described above, the maximum point of amplitude is no longer at the free end of the outer periphery, and therefore,
By extracting the mechanical output near the maximum amplitude point, the influence of the load on the driving body can be reduced. In addition, since the volume and mass can be made larger than the annular shape within the same space, a large amount of elastic energy can be fused into the driving body, and the mechanical output can be increased.

なお、用いる円板は、中上・部に穴がおいていてもおい
ていなくても、径方向2次以上のモードで駆動可能な範
囲のものであれば良い。
It should be noted that the disk to be used may have a hole in the upper middle portion or not, as long as it can be driven in a mode of second order or higher in the radial direction.

発明の効果 本発明によれば、簡単な構成で、負荷の影響の小さいし
かも機械的出力の大きな超音波モータを提供できる。
Effects of the Invention According to the present invention, it is possible to provide an ultrasonic motor that has a simple configuration, is less affected by load, and has a large mechanical output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例の超音波モータの切欠き斜視
図、第2図は第1図の実施例の、駆動体の変位分布図、
第3図は従来の円環形超音波モータの切欠き斜視図、第
4図は第3図の超音波モータに使用されている圧電体の
電極構造を示す平面図、第6図は超音波モータの駆動体
の振動状態を示すモデル図、第6図は超音波モータの原
理説明図、f、7図は円環形超音波モータの振動分布図
、第8図は第1図の1実施例の超音波モータに用いた圧
電体の電極構造を示す平面図である。 7・・・・・・弾性体、8・・・・・・圧電体、9・・
・・・駆動体、10・・・・・・回転11Ql+、11
・・・・・・スライダ、12・・・・・・弾性体、13
・・・・・・動体。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 第2区 第3図 第4図 ハ 第5図 湾6図
FIG. 1 is a cutaway perspective view of an ultrasonic motor according to an embodiment of the present invention, FIG. 2 is a displacement distribution diagram of a driving body in the embodiment of FIG.
Fig. 3 is a cutaway perspective view of a conventional annular ultrasonic motor, Fig. 4 is a plan view showing the piezoelectric electrode structure used in the ultrasonic motor of Fig. 3, and Fig. 6 is an ultrasonic motor. Fig. 6 is a diagram explaining the principle of the ultrasonic motor, Figs. FIG. 3 is a plan view showing an electrode structure of a piezoelectric body used in an ultrasonic motor. 7...Elastic body, 8...Piezoelectric body, 9...
...Driver, 10...Rotation 11Ql+, 11
...Slider, 12...Elastic body, 13
...Moving body. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 2 Section Figure 3 Figure 4 C Figure 5 Bay Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)弾性体と圧電体とから成る駆動体に弾性進行波を
励起することにより、上記駆動体上に接触して設置され
た動体を移動させる超音波モータにおいて、前記駆動体
の形状が円板状であり、前記弾性進行波の振動モードが
円周方向に3次以上であり、径方向に2次以上の曲げ振
動モードであることを特徴とする超音波モータ。
(1) In an ultrasonic motor that moves a moving body placed in contact with the driving body by exciting elastic traveling waves in the driving body made of an elastic body and a piezoelectric body, the shape of the driving body is circular. An ultrasonic motor having a plate shape, wherein the vibration mode of the elastic traveling wave is a third-order or higher-order vibration mode in the circumferential direction, and a second-order or higher-order bending vibration mode in the radial direction.
JP61035955A 1986-02-20 1986-02-20 Ultrasonic motor Pending JPS62193574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61035955A JPS62193574A (en) 1986-02-20 1986-02-20 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61035955A JPS62193574A (en) 1986-02-20 1986-02-20 Ultrasonic motor

Publications (1)

Publication Number Publication Date
JPS62193574A true JPS62193574A (en) 1987-08-25

Family

ID=12456398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61035955A Pending JPS62193574A (en) 1986-02-20 1986-02-20 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JPS62193574A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183982A (en) * 1984-03-01 1985-09-19 Matsushita Electric Ind Co Ltd Piezoelectric motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183982A (en) * 1984-03-01 1985-09-19 Matsushita Electric Ind Co Ltd Piezoelectric motor

Similar Documents

Publication Publication Date Title
JPS62193574A (en) Ultrasonic motor
JP2769151B2 (en) Ultrasonic motor
JP2574284B2 (en) Ultrasonic motor
JPH0270277A (en) Ultrasonic motor
JPS62193576A (en) Ultrasonic motor
JP2523634B2 (en) Ultrasonic motor
JPS62196080A (en) Ultrasonic motor
JP2689425B2 (en) Ultrasonic motor
JP3089750B2 (en) Ultrasonic motor
JP2537874B2 (en) Ultrasonic motor
JPS62196085A (en) Ultrasonic motor
JP2558661B2 (en) Ultrasonic motor
JPS62196081A (en) Ultrasonic motor
JPS6118370A (en) Piezoelectric motor
JP2543144B2 (en) Ultrasonic motor
JP2885802B2 (en) Ultrasonic motor
JP2864479B2 (en) Annular ultrasonic motor
JP2537848B2 (en) Ultrasonic motor
JPH0223074A (en) Ultrasonic motor
JPS6118369A (en) Piezoelectric motor
JPH0479238B2 (en)
JP2506859B2 (en) Ultrasonic motor
JPH0636674B2 (en) Ultrasonic motor
JPS6323573A (en) Ultrasonic motor
JPS62196077A (en) Ultrasonic motor