JPS6292782A - Ultrasonic motor device - Google Patents

Ultrasonic motor device

Info

Publication number
JPS6292782A
JPS6292782A JP60233650A JP23365085A JPS6292782A JP S6292782 A JPS6292782 A JP S6292782A JP 60233650 A JP60233650 A JP 60233650A JP 23365085 A JP23365085 A JP 23365085A JP S6292782 A JPS6292782 A JP S6292782A
Authority
JP
Japan
Prior art keywords
frequency
ultrasonic motor
vco7
piezoelectric
vco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60233650A
Other languages
Japanese (ja)
Inventor
Osamu Kawasaki
修 川崎
Ritsuo Inaba
律夫 稲葉
Akira Tokushima
晃 徳島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60233650A priority Critical patent/JPS6292782A/en
Publication of JPS6292782A publication Critical patent/JPS6292782A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Abstract

PURPOSE:To stabilize low-speed revolution operation by simple circuit constitution by applying a periodic voltage waveform to a control terminal for a VCO, periodically changing the output frequency of the VCO and applying it to a piezoelectric body. CONSTITUTION:An output from a VCO7 is divided into two, one is phase-shifted at 90 deg. by a 90 deg. phase shifter 8, and the other are directly inputted to power amplifiers 9, 9', and amplified up to predetermined levels and applied to a piezoelectric ceramic 3. A control voltage generator 10 transmits a signal, a voltage value thereof periodically changes, over a control terminal for the VCO7. The VCO7 and the control voltage generator 10 are set previously so that there is the resonance frequency of a driver altering by the changes of a temperature and load in the frequency variation region of the VCO7.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は圧電体を用いて駆動力を発生する超音波モータ
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic motor device that generates driving force using a piezoelectric body.

従来の技術 近年圧電セラミック等の圧電体を用いて超音波振動を励
振することによシ、回転あるいは直線又は曲線運動をす
る超音波モータが発表され、構造が簡単、小型・軽量な
どの特徴から注目されている。
Background of the Invention In recent years, ultrasonic motors have been announced that use piezoelectric materials such as piezoelectric ceramics to excite ultrasonic vibrations to generate rotational, linear, or curved motion. Attention has been paid.

以下、図面を参照しながら超音波モータの従来技術につ
いて説明を行う。
Hereinafter, the conventional technology of an ultrasonic motor will be explained with reference to the drawings.

第3図は超音波モータの一例であり、円環形の弾性体1
の円環面の一方に圧電体として円環形圧電セラミック2
を貼合せて圧電駆動体3を構成している。4は耐磨耗性
材料のスライダで、5は弾性体であり、互いに貼合せら
れて動体6を構成している。動体6はスライダ4を介し
て駆動体3と接触している。圧電体2に電界を印加する
と駆動体3の周方向に曲げ振動が励起され、これが進行
波となることにより、動体6が回転する。
Figure 3 shows an example of an ultrasonic motor, with an annular elastic body 1
An annular piezoelectric ceramic 2 is placed as a piezoelectric body on one of the annular surfaces of the
The piezoelectric drive body 3 is configured by laminating the two. 4 is a slider made of a wear-resistant material, and 5 is an elastic body, which are pasted together to form a moving body 6. The moving body 6 is in contact with the driving body 3 via the slider 4. When an electric field is applied to the piezoelectric body 2, bending vibration is excited in the circumferential direction of the driving body 3, and this becomes a traveling wave, thereby causing the moving body 6 to rotate.

第4図は第3図の超音波モータに使用した圧電セラミッ
ク2の電極構造の一例を示している。同図では円周方向
に曲げ振動が9波長のるようにしである。同図において
、人、Bはそれぞれ2分の1波長相当の小領域から成る
電極群で、Cは4分の3波長、Dは4分の1e長の長さ
の電極である。
FIG. 4 shows an example of the electrode structure of the piezoelectric ceramic 2 used in the ultrasonic motor of FIG. In the figure, the bending vibration has nine wavelengths in the circumferential direction. In the same figure, people and B are electrode groups each consisting of a small area corresponding to a half wavelength, C is an electrode group having a length of three-quarters of a wavelength, and D is an electrode with a length of one-quarter of an e.

従って、人の電極群とBの電極群とは位置的に4分の1
波長(290度)の位相ずれがある。電極群A、B内の
隣合う小電極部は互いに反対に厚み方向に分極されてい
る。圧電セラミック・2の弾性体1との接着面は第4図
にしめされた面と反体の面であり、電極はベタ電極であ
る。使用時には電極群A、Bは第4図に斜線で示された
ように、それぞれ短絡して用いられる。
Therefore, the position of the electrode group of the person and the electrode group of B is one quarter.
There is a phase shift of wavelength (290 degrees). Adjacent small electrode portions in electrode groups A and B are polarized oppositely to each other in the thickness direction. The adhesive surface of the piezoelectric ceramic 2 with the elastic body 1 is the opposite surface to the surface shown in FIG. 4, and the electrode is a solid electrode. When in use, electrode groups A and B are short-circuited, as indicated by diagonal lines in FIG. 4.

以上のように構成された超音波モータについて、その動
作を以下に説明する0前記圧電体2の電極群AにV。−
地(ωt)で表される電圧を印加すると(ただしV。は
電圧の瞬時値、ωは角周波数、tは時間)、駆動体3は
円周方向に曲げ振動をする0 第6図は第3図の超音波モータの一部分の斜視図であり
、同図(alは圧電体2に電圧を印加していない時であ
り、同図は圧電体2に電圧を印加した時の様子を示す。
The operation of the ultrasonic motor configured as described above will be described below. −
When a voltage expressed as ground (ωt) is applied (where V is the instantaneous value of the voltage, ω is the angular frequency, and t is the time), the driving body 3 bends and vibrates in the circumferential direction. 3 is a perspective view of a part of the ultrasonic motor of FIG. 3, and FIG. 3 shows the state when no voltage is applied to the piezoelectric body 2;

第6図は動体6と駆動体3の接触状況を拡大して描いた
ものである。前記圧電体2の電極群ムにvo−5In(
ωt)−他の電極群BにTo −as (ωt )O互
いに位相がπ/2だけずれた電圧を印加すれば、駆動体
3の円周方向に曲げ撮動の進行波を作ることができる。
FIG. 6 is an enlarged depiction of the contact situation between the moving body 6 and the driving body 3. Vo-5In (
ωt) - By applying voltages To -as (ωt )O whose phases are shifted from each other by π/2 to the other electrode group B, a traveling wave for bending imaging can be created in the circumferential direction of the driving body 3. .

一般に進行波は振をξとすればξ=ξ。・cDs(ωt
−kx)    ・・・・・・・・・ (1)ただしξ
。二波の大きさの瞬時値 k :波数 (=2π/λ) λ :波長 X :位置 で表せる。(1)式は ξ=ξ。・(邸(ωt)・cQg(kx)+5石(ωt
)・sin (kg ) )=−=  (2)と書き直
せ、(2)式は進行波が時間的にπ/2だけ位相のずれ
た板部(ωt)と癲(ωt)、および位置的にπ/2だ
け位相のずれたctls(kX)とsm(kx)とのそ
れぞれの積の和で得られることを示している。前述の説
明より、圧電体2は互いに位置的にπ/2(=λ/4)
だけ位相のずれた電極群A。
Generally speaking, if the amplitude of a traveling wave is ξ, then ξ=ξ.・cDs(ωt
-kx) ・・・・・・・・・ (1) However, ξ
. Instantaneous value of the magnitude of two waves k: Wave number (=2π/λ) λ: Wavelength X: Can be expressed as position. Equation (1) is ξ=ξ.・(House(ωt)・cQg(kx)+5 koku(ωt)
)・sin (kg) )=-= (2) can be rewritten as Equation (2), where the traveling wave has a plate part (ωt) and a coil (ωt) whose phase is shifted by π/2 in time, and positionally. It is shown that it is obtained by the sum of the products of ctls(kX) and sm(kx), which are out of phase by π/2. From the above explanation, the piezoelectric bodies 2 are located at π/2 (=λ/4) relative to each other.
Electrode group A with a phase shift of .

Bを持っているので、駆動体3の共振周波数に等しい周
波数出力を持つ発振器の出力から、それぞれに時間的に
位相のπ/2だけずれた交流電圧を作り、前記電極群に
印加すれば駆動体3に曲げ振動の進行波を作れる。
B, from the output of an oscillator with a frequency output equal to the resonant frequency of the driver 3, create an AC voltage with a phase difference of π/2 in time for each, and apply it to the electrode group to drive. A traveling wave of bending vibration can be created in body 3.

第6図は駆動体のA点が進行波によって、長軸2W、短
軸2uの楕円運動をしている様子を示し駆動体3上に置
かれた動体6が楕円の頂点で接触することにより、波の
進行方向とは逆方向にV=ωUの速度で運動する様子を
示している。即ち動体6は任意の静圧で駆動体3に押し
付けられて、駆動体3の表面に接触し、動体6と駆動体
3との摩擦力で波の進行方向と逆方向に速度Vで駆動さ
れる。両者の間にすべりがある時は、速度が上記のVよ
りも小さくなる。また、上記に示した超音波モータの速
度Vは、 ■=ωuccωξ。       ・・・・・・・・・
 (3)で表せ、駆動体3の曲げ振動の振幅瞬時値ξ。
Figure 6 shows that point A of the driving body is moving in an ellipse with a major axis 2W and a minor axis 2u due to traveling waves. , it shows how the wave moves at a speed of V=ωU in the opposite direction to the direction of travel of the wave. That is, the moving body 6 is pressed against the driving body 3 with an arbitrary static pressure, contacts the surface of the driving body 3, and is driven at a speed V in the direction opposite to the direction of wave propagation due to the frictional force between the moving body 6 and the driving body 3. Ru. When there is slippage between the two, the velocity becomes smaller than the above V. Further, the speed V of the ultrasonic motor shown above is: (1)=ωuccωξ.・・・・・・・・・
(3), which is the instantaneous amplitude value ξ of the bending vibration of the driving body 3.

に比例する。そのため小さな電圧で大きな電流が流れる
駆動体3の共振周波数で駆動すれば大きな速度が得られ
る。第7図に駆動周波数とモータの回転数との関係を示
す。
is proportional to. Therefore, a large speed can be obtained by driving at the resonant frequency of the driving body 3 through which a large current flows with a small voltage. FIG. 7 shows the relationship between drive frequency and motor rotation speed.

発明が解決しようとする問題点 しかし、超音波モータの始動時と動作中では、第8図に
示すように駆動体3のインピーダンスの周波数特性が異
なる。これは始動時では駆動体3は動体6と面と面で接
触しているが、動作中には第6図に示したように線状に
接触しているからである。第8図において、aは静止時
、および始動時の、そしてbは動作中の駆動体3−のイ
ンピーダンスの周波数特性である。また同図において、
fr+は動作時での共振周波数であり、fr2は始動時
での共振周波数である。つまり、始動時と動作時では最
適駆動周波数である共振周波数が変動する。故に従来の
ように、始動時と動作中で同周波数で超音波モータを駆
動したのでは、常に効率の良い駆動はできない。
Problems to be Solved by the Invention However, as shown in FIG. 8, the frequency characteristics of the impedance of the driving body 3 differ between when the ultrasonic motor is started and when it is in operation. This is because the driving body 3 is in surface-to-plane contact with the moving body 6 at the time of starting, but during operation, the driving body 3 is in linear contact as shown in FIG. 6. In FIG. 8, a is the frequency characteristic of the impedance of the driving body 3- when it is at rest and when it is started, and b is the frequency characteristic of the impedance of the driving body 3- when it is in operation. Also, in the same figure,
fr+ is the resonant frequency at the time of operation, and fr2 is the resonant frequency at the time of starting. In other words, the resonant frequency, which is the optimum drive frequency, varies between startup and operation. Therefore, if the ultrasonic motor is driven at the same frequency during startup and operation as in the past, efficient driving cannot be achieved at all times.

そのため始動時でも動作中でも常に駆動体3の共振周波
数で駆動しなければならない。また共振周波数は負荷の
変動と共に温度によっても変化するので、この変化に対
しても対応しなければならない0 また超音波モータの速度Vは振幅の瞬時値ξ。
Therefore, it is necessary to always drive at the resonant frequency of the driver 3, both during startup and during operation. Furthermore, since the resonant frequency changes not only due to load fluctuations but also due to temperature, it is necessary to respond to these changes.0 Also, the speed V of the ultrasonic motor is the instantaneous amplitude value ξ.

に比例し、瞬時値ξ。は駆動体に流れる電流iに比例す
るので、電流iと速度Vは比例関係にある。
is proportional to the instantaneous value ξ. is proportional to the current i flowing through the driving body, so the current i and the speed V are in a proportional relationship.

従って低速回転をさせようとすれば電流iを小さくすれ
ばよい。しかし第9図に示すように、電流iが駆動体3
と動体6の接触面の微細な凹凸が無視できなくなるよう
な振幅値ξ。を与える10近傍では動作は不安定になり
、超音波モータはやがて止まってしまう。
Therefore, if you want to rotate at a low speed, you only need to reduce the current i. However, as shown in FIG.
and the amplitude value ξ such that minute irregularities on the contact surface of the moving object 6 cannot be ignored. In the vicinity of 10, the operation becomes unstable and the ultrasonic motor eventually stops.

本発明はかかる点に鑑みてなされたもので、簡単な回路
構成で、安定な低速回転動作が可能な超音波モータ装置
を提供することを目的としている。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an ultrasonic motor device that has a simple circuit configuration and is capable of stable low-speed rotational operation.

問題点を解決するだめの手段 可変範囲内に駆動体の共振周波数が存在するようにした
VCO(電圧制御発振器)の制御端子に、周期的な電圧
波形を加えて、VCOの出力周波数を周期に変えて、そ
の一方はそのまま、他方は90移相した後増幅して、圧
電体に印加する。
The only way to solve the problem is to add a periodic voltage waveform to the control terminal of the VCO (voltage controlled oscillator) so that the resonant frequency of the driver exists within the variable range, and change the output frequency of the VCO to a period. One of them is changed as is, and the other is amplified after being phase-shifted by 90 and applied to the piezoelectric material.

作用 駆動周波数が周期的に変化し、その変化範囲内に必ず駆
動体の共振波数があるので、温度・負荷の変化によって
も安定な低速回転が得られる。
Since the operating drive frequency changes periodically and the resonant wave number of the driving body is always within the range of change, stable low-speed rotation can be obtained even with changes in temperature and load.

実施例 以下図に従って、本発明の1実施例について説明をする
。第1図は本発明の1実施例の超音波モータ装置の機能
ブロック図である。同図において、7は第3図に示した
ような圧電駆動体3を駆動する交流信号を発生するVG
O(電圧制御発振器)であり、VCO了の出力は2分割
され、一方は9o移相器8で90 移相された後、他方
は直接に、それぞれ電力増幅器9.9′に入力される。
EXAMPLE An example of the present invention will be described below with reference to the drawings. FIG. 1 is a functional block diagram of an ultrasonic motor device according to an embodiment of the present invention. In the same figure, 7 is a VG that generates an AC signal to drive the piezoelectric driver 3 as shown in FIG.
It is a voltage controlled oscillator (voltage controlled oscillator), and the output of the VCO is divided into two parts, one of which is phase-shifted by 90 degrees by a 90 phase shifter 8, and the other is directly input to power amplifiers 9 and 9', respectively.

電力増幅器9.9′は上記交流信号を、超音波モータが
安定に動作するレベルにまで増幅する。増幅後の2つの
900 だけ位相の異なる2信号は、圧電駆動体3を構
成する圧電セラミック2の電極群人。
The power amplifier 9.9' amplifies the AC signal to a level at which the ultrasonic motor operates stably. The two amplified signals having a phase difference of 900° are the electrodes of the piezoelectric ceramic 2 that constitute the piezoelectric driver 3.

Bにそれぞれ印加される。B, respectively.

10は制御電圧発生器で周期的に電圧値が変化するよう
な信号を発生する。制御電圧発生器10の出力はVCO
rの制御端子に入力され、VCO7は制御電圧発生器1
0の出力電圧に応じて、周期的に周波数を変化させる。
A control voltage generator 10 generates a signal whose voltage value changes periodically. The output of the control voltage generator 10 is the VCO
The VCO7 is input to the control terminal of the control voltage generator 1.
The frequency is changed periodically according to the output voltage of 0.

この周波数変化領域の中に、温度・負荷の変化によって
変化する駆動体3の共振周波数が存在するように、VC
O7および制御電圧発生器1oを設定しておけば、VC
O7の発振周波数が駆動体3の共振周波数を必ず通過す
る。この周波数近傍で超音波モータは速く回り、それ以
外の周波数では遅く回るので、平均速度は遅くなる。つ
まり安定な低速回転が得られる。
In this frequency change region, the VC
If O7 and control voltage generator 1o are set, VC
The oscillation frequency of O7 always passes through the resonant frequency of the driver 3. The ultrasonic motor rotates quickly near this frequency and slowly at other frequencies, resulting in a slow average speed. In other words, stable low-speed rotation can be obtained.

回転速度の制御はVC:07の周波数可変範囲を大きく
すれば、回転速度は小さくなり、可変範囲を小さくすれ
ば回転速度は大きくなる。また駆動電圧を大きくすれば
速度は犬になシ、駆動電圧を小さくすれば速度は小さく
なる。
To control the rotational speed, if the frequency variable range of VC:07 is increased, the rotational speed will be decreased, and if the variable range is decreased, the rotational speed will be increased. Also, if the driving voltage is increased, the speed will be reduced, and if the driving voltage is decreased, the speed will be reduced.

第2図は第1図の本発明の1実施例の説明図である。同
図すに示すように、制御電圧発生器10の出力は三角波
を用いており、それに応じてVCO7の出力周波数は変
化する。この周波数範囲の内に駆動体3の共振周波数量
。が在るように設定している。同図のaにモータの動作
を示しており、VCO7の出力周波数が駆動体3の共振
周波数f。
FIG. 2 is an explanatory diagram of one embodiment of the present invention shown in FIG. As shown in the figure, the output of the control voltage generator 10 uses a triangular wave, and the output frequency of the VCO 7 changes accordingly. The amount of resonance frequency of the driving body 3 is within this frequency range. is set so that it exists. The operation of the motor is shown in a of the same figure, and the output frequency of the VCO 7 is the resonance frequency f of the driver 3.

を通過する時に、モータは大きな速度で回り、それ以外
では停止するが低速で回ってbる。故に平均速度は図示
したように低速になる。
The motor rotates at a high speed when it passes through , and at other times it stops but rotates at a low speed. Therefore, the average speed becomes low as shown in the figure.

発明の効果 本発明によれば、極めて簡単な構成で、温度。Effect of the invention According to the present invention, temperature can be controlled with an extremely simple configuration.

負荷などの変化に対しても、安定な低速回転が得られる
超音波モータ装置を提供できる。
It is possible to provide an ultrasonic motor device that can provide stable low-speed rotation even when the load changes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例の超音波モータ装置のブロッ
ク図、第2図は第1図の実施例の説明図、第3図は超音
波モータの断面図、第4図は第1図に用いられている圧
電体の形状と電極構造を示す平面図、第6図は超音波モ
ータの駆動体部の振動状態を示すモデル図、第6図は超
音波モータの原理の説明図、第7図は駆動周波数対モー
タ回転数7・・・・・・VCO(電圧制御発振器)、8
・・・・・・9o0移相器、9,9′・・・・・・電力
増幅器、10・・・・・・制御電圧発生器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 吟 開 第3図 乙 1ど 第4図      3 第5図    1 第6図 1.7        3 繋勅粛浪軟  fO9共技間浪軟 第8図 間うL数2 第9図 宅武i
FIG. 1 is a block diagram of an ultrasonic motor device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the embodiment of FIG. 1, FIG. 3 is a sectional view of the ultrasonic motor, and FIG. Figure 6 is a plan view showing the shape and electrode structure of the piezoelectric body used in the figure, Figure 6 is a model diagram showing the vibration state of the driver section of the ultrasonic motor, Figure 6 is an explanatory diagram of the principle of the ultrasonic motor, Figure 7 shows drive frequency vs. motor rotation speed 7...VCO (voltage controlled oscillator), 8
...9o0 phase shifter, 9,9'...power amplifier, 10...control voltage generator. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Gin Open Figure 3 Otsu 1 Do Figure 4 3 Figure 5 1 Figure 6 1.7 3 Connecting Choku Sakuranosoft fO9 Co-technical Training Figure 8 Number of L between 2 Figure 9 House Takei

Claims (1)

【特許請求の範囲】[Claims] 圧電体を駆動源として弾性進行波を作ることにより、物
体を移動させる超音波モータにおいて、上記圧電体に印
加する交流を発生し、上記圧電体が構成する駆動体の共
振周波数がその周波数可変範囲内にある可変発振器と、
上記可変発振器の出力周波数が必ず上記共振周波数を通
過するように周期的に制御をする制御回路とを有するこ
とを特徴とする超音波モータ装置。
In an ultrasonic motor that moves an object by creating an elastic traveling wave using a piezoelectric body as a driving source, an alternating current is applied to the piezoelectric body, and the resonant frequency of the driving body constituted by the piezoelectric body is within its frequency variable range. A variable oscillator inside the
An ultrasonic motor device comprising: a control circuit that periodically controls the output frequency of the variable oscillator so that it always passes through the resonance frequency.
JP60233650A 1985-10-18 1985-10-18 Ultrasonic motor device Pending JPS6292782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60233650A JPS6292782A (en) 1985-10-18 1985-10-18 Ultrasonic motor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60233650A JPS6292782A (en) 1985-10-18 1985-10-18 Ultrasonic motor device

Publications (1)

Publication Number Publication Date
JPS6292782A true JPS6292782A (en) 1987-04-28

Family

ID=16958367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60233650A Pending JPS6292782A (en) 1985-10-18 1985-10-18 Ultrasonic motor device

Country Status (1)

Country Link
JP (1) JPS6292782A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174576A (en) * 1988-12-26 1990-07-05 Canon Inc Vibratory wave motor driving device
JPH02276481A (en) * 1989-04-18 1990-11-13 Alps Electric Co Ltd Drive circuit for ultrasonic linear actuator
JP2012077839A (en) * 2010-10-01 2012-04-19 Nikkeikin Aluminium Core Technology Co Ltd Shape joining structure
CN111133332A (en) * 2017-09-29 2020-05-08 传感器技术有限公司 Ultrasonic sensor drive device for improving temperature reliability

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174576A (en) * 1988-12-26 1990-07-05 Canon Inc Vibratory wave motor driving device
JPH02276481A (en) * 1989-04-18 1990-11-13 Alps Electric Co Ltd Drive circuit for ultrasonic linear actuator
JP2012077839A (en) * 2010-10-01 2012-04-19 Nikkeikin Aluminium Core Technology Co Ltd Shape joining structure
CN111133332A (en) * 2017-09-29 2020-05-08 传感器技术有限公司 Ultrasonic sensor drive device for improving temperature reliability
CN111133332B (en) * 2017-09-29 2024-03-12 传感器技术有限公司 Ultrasonic sensor driving device for improving temperature reliability

Similar Documents

Publication Publication Date Title
JPS6356178A (en) Driving of ultrasonic motor
JPS622869A (en) Supersonic motor drive device
JPS6292782A (en) Ultrasonic motor device
JP2636280B2 (en) Driving method of ultrasonic motor
JPS63299788A (en) Ultrasonic motor driving device
JP2574293B2 (en) Ultrasonic motor driving method
JP2506895B2 (en) Ultrasonic motor controller
JPS62193571A (en) Ultrasonic motor
JP2583904B2 (en) Ultrasonic motor driving method
JPS6292781A (en) Ultrasonic motor device
JPH07123750A (en) Drive circuit of ultrasonic motor
JP2699299B2 (en) Ultrasonic motor drive circuit
JPS63249477A (en) Ultrasonic motor driver
JP2563351B2 (en) Ultrasonic motor driving method
JPS62196085A (en) Ultrasonic motor
JPS627379A (en) Ultrasonic wave motor apparatus
JPS62196084A (en) Ultrasonic motor
JPS61124274A (en) Supersonic wave motor apparatus
JPS63117672A (en) Method for driving ultrasonic motor
JP2604731B2 (en) Ultrasonic motor drive
JPS6356179A (en) Driving of ultrasonic motor
JPS6323573A (en) Ultrasonic motor
JP2817992B2 (en) Starting the vibration wave motor
JPS6356177A (en) Driving of ultrasonic motor
JPS6323574A (en) Ultrosonic motor