JPS6323574A - Ultrosonic motor - Google Patents

Ultrosonic motor

Info

Publication number
JPS6323574A
JPS6323574A JP61165849A JP16584986A JPS6323574A JP S6323574 A JPS6323574 A JP S6323574A JP 61165849 A JP61165849 A JP 61165849A JP 16584986 A JP16584986 A JP 16584986A JP S6323574 A JPS6323574 A JP S6323574A
Authority
JP
Japan
Prior art keywords
driving
ultrasonic motor
driver
driving body
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61165849A
Other languages
Japanese (ja)
Inventor
Osamu Kawasaki
修 川崎
Ritsuo Inaba
律夫 稲葉
Katsu Takeda
克 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61165849A priority Critical patent/JPS6323574A/en
Publication of JPS6323574A publication Critical patent/JPS6323574A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Abstract

PURPOSE:To stabilize working against the variation of a load, by permitting a mover to come in pressure contact with the position of less influence to the amplitude of the oscillation of a driver due to the variation of resonance frequency, or only near the position. CONSTITUTION:On the rear surface of an elastic unit 7, a piezoelectric unit 8 is put together to compose a driver 9. At the position P of less influence due to the resonance frequency of the driver 9, a projection 13 for taking out mechanical output is set. A mover 12 consisting of an elastic unit 11 and a slider 10 is pressure-set to come in contact with the projection 13. When the piezoelectric unit 8 is driven by two AC electric-fields different in timing from each other in phase by 90 deg., then the progressive wave of bending vibration is passed onto the driver 9, and the mover 12 is rotated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は圧電体を用いて駆動力を発生する超音波モータ
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic motor that generates driving force using a piezoelectric material.

従来の技術 近年圧電セラミック等の圧電体を用いた駆動体に弾性振
動を励振し、これを駆動力とした超音波モータが注目さ
れている。
2. Description of the Related Art In recent years, ultrasonic motors have attracted attention, in which elastic vibrations are excited in a drive body using a piezoelectric body such as a piezoelectric ceramic, and the vibrations are used as a driving force.

以下、図面を参照しながら超音波モータの従来技術につ
いて説明を行う。
Hereinafter, the conventional technology of an ultrasonic motor will be explained with reference to the drawings.

第4図は従来の超音波モータの斜視図であり、円環形の
弾性体1の円環面の一方に圧電体として円環形圧電セラ
ミック2を貼合せて圧電駆動体3を構成している。4は
耐磨耗性材料のスライダ、5は弾性体であり、互いに貼
合せられて移動体6を構成している。移動体6はスライ
ダ4を介して駆動体3と接触している。圧電体2に電界
を印加すると駆動体3の周方向に曲げ振動の進行波が励
起され、移動体6を駆動する。尚、同図中の矢印は移動
体6の回転方向を示す。
FIG. 4 is a perspective view of a conventional ultrasonic motor, in which a piezoelectric driving body 3 is constructed by bonding a circular piezoelectric ceramic 2 as a piezoelectric body to one of the circular surfaces of a circular elastic body 1. 4 is a slider made of a wear-resistant material, and 5 is an elastic body, which are pasted together to form a moving body 6. The moving body 6 is in contact with the driving body 3 via the slider 4. When an electric field is applied to the piezoelectric body 2, a traveling wave of bending vibration is excited in the circumferential direction of the driving body 3, thereby driving the movable body 6. Note that the arrow in the figure indicates the rotation direction of the moving body 6.

第5図は第4図の超音波モータに使用した圧電セラミッ
ク2の電極構造の一例を示している。同図では円周方向
に9波長の弾性波がのるようにしである。同図において
、AlBはそれぞれ2分の1波長相当の小領域から成る
電極で、Cは4分の3波長、Dは4分の1波長の長さの
電極である。
FIG. 5 shows an example of the electrode structure of the piezoelectric ceramic 2 used in the ultrasonic motor shown in FIG. In the figure, nine wavelengths of elastic waves are placed in the circumferential direction. In the figure, AlB is an electrode consisting of a small region each corresponding to a half wavelength, C is an electrode with a length of three-quarters of a wavelength, and D is an electrode with a length of a quarter of a wavelength.

従って、Aの電極とBの電極とは位置的に4分の]波長
(−90度)の位相ずれがある。電極A1B内の隣り合
う小電極部は互いに反対に厚み方向に分極されている。
Therefore, there is a phase shift between the electrode A and the electrode B by a quarter of a wavelength (-90 degrees). Adjacent small electrode portions in electrode A1B are polarized oppositely to each other in the thickness direction.

圧電セラミック2の弾性体1との接着面は第5図に示さ
れた面と反対の面であり、電極はベタ電極である。使用
時には電極群A、Bは第5図に斜線で示されたように、
それぞれ短絡して用いられる。
The bonding surface of the piezoelectric ceramic 2 with the elastic body 1 is the surface opposite to the surface shown in FIG. 5, and the electrodes are solid electrodes. When in use, electrode groups A and B are shown with diagonal lines in FIG.
They are used by shorting each other.

以上のように構成された超音波モータについて、その動
作を以下に説明する。前記圧電体2の電極Aに ?V1 xsin(ωt)         −m−(
1)で表される電圧を印加するとくただしvlは電圧の
瞬時値、ω・は角周波数、tは時間)、駆動体3は円周
方向に曲げ振動をする。
The operation of the ultrasonic motor configured as above will be described below. To the electrode A of the piezoelectric body 2? V1 xsin(ωt) −m−(
When the voltage represented by 1) is applied (where vl is the instantaneous value of the voltage, ω is the angular frequency, and t is the time), the driving body 3 bends and vibrates in the circumferential direction.

第6図は第4図の超音波モータの駆動体をMM近似した
時の斜視図であり、同図(a)は圧電体2に電圧を印加
していない時、同図(b)は圧電体2に電圧を印加した
時の様子を示す。
FIG. 6 is a perspective view of the driving body of the ultrasonic motor shown in FIG. 4 when approximated by MM. FIG. The state when a voltage is applied to the body 2 is shown.

第7図は移動体6と駆動体3の接触状況を拡大して描い
たものである。前記圧電体2の電極AにV1×5in(
ωt)、他の電極BにVl xcos(ωt)の互いに
時間的に位相がπ/2だけすれた電圧を印加すれば、駆
動体3の円周方向に曲げ振動の進行波を作ることができ
る。一般に進行波は振幅をξとすれば ξ−ξ1 xcos(cc>t−kx)       
−−−(2)ただし ξ18波の大きさの瞬時値 k :波数(2π/λ) λ:波長 X :位置 で表せる。(2)式は ξ−ξ1x(cos(ωt)xcos(kx)+5in
(ωt)xsin(kx))   −−−(3)と書き
直すことができる。(3)式は進行波が、時間的にπ/
2だけ位相のずれた波、cos(ωt)と5in(ωt
)、および位置的にπ/2だけ位相のずれた、cos(
kx)と5in(kx)との、それぞれの積の和で得ら
れることを示している。前述の説明より、圧電体2は互
いに位置的にπ/2(−λ/4)だけ位相のずれた電極
群A、Bを持っているので、駆動体3の共振周波数に等
しい周波数出力を持つ発振器の出力から、それぞれに時
間的に位相のπ/2だけずれた交流電圧を作り、前記電
極群に印加すれば駆動体3に曲げ振動の進行波を作れる
FIG. 7 shows an enlarged view of the contact situation between the moving body 6 and the driving body 3. V1×5 inches (
ωt), and by applying voltages of Vl xcos(ωt) whose phases are temporally shifted by π/2 from each other to the other electrode B, a traveling wave of bending vibration can be created in the circumferential direction of the driving body 3. . Generally speaking, if the amplitude of a traveling wave is ξ, then ξ−ξ1 xcos(cc>t−kx)
---(2) However, it can be expressed as the instantaneous value of the magnitude of ξ18 wave k: wave number (2π/λ) λ: wavelength X: position. Equation (2) is ξ−ξ1x(cos(ωt)xcos(kx)+5in
(ωt)xsin(kx)) ---(3) can be rewritten. Equation (3) shows that the traveling wave is π/
Waves out of phase by 2, cos(ωt) and 5in(ωt
), and cos(
This shows that it can be obtained by the sum of the products of 5in(kx) and 5in(kx). From the above explanation, since the piezoelectric body 2 has the electrode groups A and B whose phase is shifted from each other by π/2 (-λ/4), it has a frequency output equal to the resonant frequency of the driving body 3. A traveling wave of bending vibration can be created in the driving body 3 by creating alternating current voltages temporally shifted by a phase of π/2 from the outputs of the oscillators and applying them to the electrode group.

第7図は駆動体のA点が進行波の励起によって、駆動体
の表面の質点が長軸2 W 、短軸2uの楕円運動をし
ている様子を示し、駆動体3上に置かれた移動体6が楕
円の頂点で接触することにより、波の進行方向とは逆方
向にV−ω×uの速度で運動する様子を示している。即
ち移動体6は任意の静圧で駆動体3に押し付けられて、
駆動体3の表面に接触し、移動体6と駆動体3との摩擦
力で波の進行方向と逆方向に速度Vで駆動される。両者
の間にすべりがある時は、速度が上記のりよりも小さく
なる。
Figure 7 shows that the mass point on the surface of the driving body is moving in an ellipse with the major axis 2 W and the minor axis 2 u due to the excitation of the traveling wave at point A of the driving body, which is placed on the driving body 3. The figure shows how the moving body 6 makes contact with the ellipse at the apex and moves at a speed of V-ω×u in the direction opposite to the direction of wave propagation. That is, the moving body 6 is pressed against the driving body 3 with an arbitrary static pressure,
It contacts the surface of the driving body 3 and is driven at a speed V in a direction opposite to the direction of wave propagation due to the frictional force between the moving body 6 and the driving body 3. When there is slippage between the two, the speed will be smaller than the above slip.

第8図は円環形振動体の変位分布である。上記の短軸U
は進行波の振幅ξに比例するので、振幅最大の位N(外
周部)から機械出力を取り出せば最大速度が得られるの
で、従来は駆動体の外周部から機械出力を取り出してい
る。
FIG. 8 shows the displacement distribution of the annular vibrator. Short axis U above
Since is proportional to the amplitude ξ of the traveling wave, the maximum speed can be obtained by taking the mechanical output from the position N (outer periphery) where the amplitude is maximum. Conventionally, the mechanical output is taken from the outer periphery of the driving body.

発明が解決しようとする問題点 以上説明した様に超音波モータは、移動体の速度を大き
くするために、従来は円環形部動体の外周部近傍から出
力を取り出している。駆動体の外周部の振幅は、負荷の
変動や温度の変化による共振周波数の変化によって大き
く変化する。従って、移動体の回転速度が不安定である
という欠点がある。
Problems to be Solved by the Invention As explained above, in order to increase the speed of the moving body, an ultrasonic motor conventionally extracts its output from near the outer periphery of the annular moving body. The amplitude of the outer periphery of the driving body changes greatly due to changes in the resonant frequency due to changes in load or changes in temperature. Therefore, there is a drawback that the rotational speed of the moving body is unstable.

本発明はかかる点に鑑みてなされたもので、負荷や温度
の変化に対して安定な動作ができる超音波モータを提供
することを目的としている。
The present invention has been made in view of these points, and an object of the present invention is to provide an ultrasonic motor that can operate stably against changes in load and temperature.

問題点を解決するための手段 共振周波数の変化による、駆動体の振動の振幅への影響
の少ない位置もしくはその近傍にのみ、移動体を加圧接
触して設置する。
Means for Solving the Problems The movable body is installed in pressurized contact only at or near a position where the amplitude of vibration of the driving body is less affected by changes in resonance frequency.

作  用 共振周波数の変化に対する、駆動体の振動の振幅への影
響の少ない位置では、表面の質点の楕円軌跡の構成分U
も安定であり、従って移動体の速度も安定になる。
At a position where the amplitude of the vibration of the driving body is less affected by changes in the working resonance frequency, the component U of the elliptical locus of the mass point on the surface
is also stable, and therefore the speed of the moving object is also stable.

実施例 以下、図面に従って本発明の一実施例について詳細な説
明を行う。
EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の1実施例の超音波モータの断面図であ
る。同図において、7は弾性体であり裏面に圧電体8が
貼り合わせられて、駆動体9を構成している。駆動体9
の共振周波数による影響の少ない位置Pには、機械出力
取り出し用の突起13が設置されている。突起13に接
触するように、弾性体11とスライダ10から成る移動
体12が、加圧して設置されている。圧電体8を時間的
に90度位相の異なる2つの交流電界で駆動すれば、駆
動体9に曲げ振動の進行波が励振され、移動体12が回
転する。
FIG. 1 is a sectional view of an ultrasonic motor according to an embodiment of the present invention. In the figure, reference numeral 7 denotes an elastic body, and a piezoelectric body 8 is bonded to the back surface of the elastic body to constitute a driving body 9. Drive body 9
A protrusion 13 for extracting mechanical output is installed at a position P that is less affected by the resonance frequency. A moving body 12 consisting of an elastic body 11 and a slider 10 is placed under pressure so as to contact the protrusion 13 . When the piezoelectric body 8 is driven by two alternating current electric fields having temporally different phases by 90 degrees, a traveling wave of bending vibration is excited in the driving body 9, and the movable body 12 rotates.

第2図は本発明の別の実施例の超音波モータの断面図で
ある。同図において、駆動体9の共振周波数による影響
の少ない位置に対応するように、スライダ10が弾性体
11の1部に貼り付けられている。従って、本実施例に
おいても、第1図の実施例と同様に、位置Pから機械出
力が取り出される。
FIG. 2 is a sectional view of an ultrasonic motor according to another embodiment of the present invention. In the figure, a slider 10 is attached to a portion of an elastic body 11 so as to correspond to a position that is less affected by the resonance frequency of the driving body 9. Therefore, in this embodiment as well, mechanical output is taken out from position P, similar to the embodiment shown in FIG.

第3図は円環形部動体の径方向の変位分布の共振周波数
による変化を示している。同図において、横軸は外径に
よって規準化された半径であり、縦軸は外周部の最大変
位によって規準化された曲げ振動の振幅を示している。
FIG. 3 shows changes in the radial displacement distribution of the annular moving body depending on the resonance frequency. In the figure, the horizontal axis is the radius normalized by the outer diameter, and the vertical axis is the amplitude of bending vibration normalized by the maximum displacement of the outer circumference.

同図は、駆動周波数は一定で、負荷や温度が変化して共
振周波数が変化したときの変位分布の変化である。図よ
り、駆動周波数と駆動体の共振周波数の関係が変化して
も、その影響が少ないのが図中に示したQ点である。従
って、このQ点近傍から機械出力を取り出せば、負荷や
温度の変動の影響の少ない、安定した動作の超音波モー
タが実現できる。第1図の実施例では、Q点近傍に突起
13を設置することにより、第2図の実施例では、Q点
近傍にスライダ10を設置することにより、これを実現
している。
This figure shows changes in the displacement distribution when the driving frequency is constant and the resonance frequency changes due to changes in load and temperature. From the figure, even if the relationship between the driving frequency and the resonant frequency of the driving body changes, the influence is small at point Q shown in the figure. Therefore, by extracting the mechanical output from the vicinity of this Q point, it is possible to realize an ultrasonic motor that operates stably and is less affected by fluctuations in load and temperature. In the embodiment shown in FIG. 1, this is achieved by installing the protrusion 13 near the Q point, and in the embodiment shown in FIG. 2, this is achieved by installing the slider 10 near the Q point.

発明の効果 本発明によれば、簡単な構造で、負荷変動や温度変化に
対して安定な動作をする超音波モータを提供できる。
Effects of the Invention According to the present invention, it is possible to provide an ultrasonic motor that has a simple structure and operates stably against load fluctuations and temperature changes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の超音波モータの断面図、第
2図は本発明の別の実施例の超音波モータの断面図、第
3図は駆動体の駆動周波数による変位分布を示した図、
第4図は従来の超音波モータの斜視図、第5図は第4図
に用いられている圧電体の形状と電極構造を示す平面図
、第6図は超音波モータの駆動体部の振動状態を示すモ
デル図、第7図は超音波モータの原理の説明図、第8図
は駆動体の振動状態を示した斜視図と径方向の変位分布
図である。 7・・・・・・弾性体、8・・・・・・圧電体、9・・
・・・・駆動体10・・・・・・スライダ、11・・・
・・・弾性体、12・・・・・・移動体、13・・・・
・・突起。 代理人の氏名 弁理士 中尾敏男 ほか1名第1図 ビ            ビ 第3図 千 掻 第6図 (OJ) 第7図 第8図
Fig. 1 is a sectional view of an ultrasonic motor according to an embodiment of the present invention, Fig. 2 is a sectional view of an ultrasonic motor according to another embodiment of the invention, and Fig. 3 shows a displacement distribution according to the driving frequency of the driving body. The diagram shown,
Fig. 4 is a perspective view of a conventional ultrasonic motor, Fig. 5 is a plan view showing the shape and electrode structure of the piezoelectric body used in Fig. 4, and Fig. 6 is a vibration of the driving body of the ultrasonic motor. FIG. 7 is an explanatory diagram of the principle of the ultrasonic motor, and FIG. 8 is a perspective view and a radial displacement distribution diagram showing the vibration state of the driving body. 7...Elastic body, 8...Piezoelectric body, 9...
...Driver 10...Slider, 11...
...Elastic body, 12...Moving body, 13...
··protrusion. Name of agent: Patent attorney Toshio Nakao and one other person Figure 1 Bivi Figure 3 Chika Figure 6 (OJ) Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims]  弾性体と圧電体とから成る駆動体に弾性進行波を励振
することにより、上記駆動体上に接触して設置された移
動体を移動させる超音波モータにおいて、上記駆動体の
振動の振幅の、共振周波数の変化による影響の少ない位
置もしくはその近傍に、上記移動体を加圧接触するよう
に設置することを特徴とする超音波モータ。
In an ultrasonic motor that moves a movable body placed in contact with the driving body by exciting an elastic traveling wave in a driving body made of an elastic body and a piezoelectric body, the amplitude of the vibration of the driving body is An ultrasonic motor characterized in that the movable body is installed in pressurized contact with a position that is less affected by changes in resonance frequency or in the vicinity thereof.
JP61165849A 1986-07-15 1986-07-15 Ultrosonic motor Pending JPS6323574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61165849A JPS6323574A (en) 1986-07-15 1986-07-15 Ultrosonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61165849A JPS6323574A (en) 1986-07-15 1986-07-15 Ultrosonic motor

Publications (1)

Publication Number Publication Date
JPS6323574A true JPS6323574A (en) 1988-01-30

Family

ID=15820165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61165849A Pending JPS6323574A (en) 1986-07-15 1986-07-15 Ultrosonic motor

Country Status (1)

Country Link
JP (1) JPS6323574A (en)

Similar Documents

Publication Publication Date Title
JPS6356178A (en) Driving of ultrasonic motor
JPH01129782A (en) Ultrasonic motor
JPS6323574A (en) Ultrosonic motor
JP2568707B2 (en) Ultrasonic motor
JP2636280B2 (en) Driving method of ultrasonic motor
JPS6292782A (en) Ultrasonic motor device
JPS62193571A (en) Ultrasonic motor
JPH0519393B2 (en)
JP2769151B2 (en) Ultrasonic motor
JPS6323573A (en) Ultrasonic motor
JP2507083B2 (en) Ultrasonic motor
JPS63181676A (en) Ultrasonic rotary vibrator
JP2746578B2 (en) Ultrasonic motor
JP2558661B2 (en) Ultrasonic motor
JPS63299788A (en) Ultrasonic motor driving device
JPS63240382A (en) Ultrasonic motor
JP2537874B2 (en) Ultrasonic motor
JPS62196084A (en) Ultrasonic motor
JPS62196085A (en) Ultrasonic motor
JPS6323575A (en) Ultrasonic motor
JPS6292781A (en) Ultrasonic motor device
JP2523634B2 (en) Ultrasonic motor
JPS63117672A (en) Method for driving ultrasonic motor
JPH0744855B2 (en) Ultrasonic motor
JPS6356177A (en) Driving of ultrasonic motor