JPH0519393B2 - - Google Patents

Info

Publication number
JPH0519393B2
JPH0519393B2 JP61034624A JP3462486A JPH0519393B2 JP H0519393 B2 JPH0519393 B2 JP H0519393B2 JP 61034624 A JP61034624 A JP 61034624A JP 3462486 A JP3462486 A JP 3462486A JP H0519393 B2 JPH0519393 B2 JP H0519393B2
Authority
JP
Japan
Prior art keywords
elastic
driving body
ultrasonic motor
moving
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61034624A
Other languages
Japanese (ja)
Other versions
JPS62193569A (en
Inventor
Osamu Kawasaki
Ritsuo Inaba
Akira Tokushima
Katsu Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61034624A priority Critical patent/JPS62193569A/en
Priority to EP87901637A priority patent/EP0258449B1/en
Priority to DE8787901637T priority patent/DE3782301T2/en
Priority to US07/126,105 priority patent/US4829209A/en
Priority to PCT/JP1987/000102 priority patent/WO1987005166A1/en
Publication of JPS62193569A publication Critical patent/JPS62193569A/en
Publication of JPH0519393B2 publication Critical patent/JPH0519393B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は圧電体を用いて駆動力を発生する超音
波モータに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an ultrasonic motor that generates driving force using a piezoelectric body.

従来の技術 近年、圧電セラミツク等の圧電体を用いた駆動
体に弾性振動を励起し、これを駆動力とした超音
波モータが注目されている。
BACKGROUND OF THE INVENTION In recent years, ultrasonic motors have attracted attention in which elastic vibrations are excited in a drive body using a piezoelectric material such as piezoelectric ceramic, and the vibrations are used as driving force.

以下、図面を参照しながら超音波モータの原理
について説明を行う。
The principle of the ultrasonic motor will be explained below with reference to the drawings.

第3図は超音波モータの1例であり、円環形の
弾性体1の円環面の一方に円環形圧電セラミツク
2を貼合せて、圧電駆動体3を構成している。4
は耐磨耗性材料のスライダ、5は弾性体であり、
互いに貼合せられて動体6を構成している。動体
6はスライダ4を介して駆動体3と接触してい
る。圧電セラミツク2に電界を印加すると、駆動
体3の周方向にい曲げ振動の進行波が励起され
て、動体6を駆動する。尚、同図中の矢印は動体
6の回転方向を示す。
FIG. 3 shows an example of an ultrasonic motor, in which a piezoelectric driving body 3 is constructed by bonding a circular piezoelectric ceramic 2 to one of the circular surfaces of a circular elastic body 1. 4
is a slider made of wear-resistant material, 5 is an elastic body,
They are pasted together to form a moving body 6. The moving body 6 is in contact with the driving body 3 via the slider 4. When an electric field is applied to the piezoelectric ceramic 2, a traveling wave of bending vibration is excited in the circumferential direction of the driving body 3, thereby driving the moving body 6. Note that the arrow in the figure indicates the direction of rotation of the moving body 6.

第4図は第3図の超音波モータに使用した圧電
セラミツク2の電極構造の1例を示している。同
図では円周方向に曲げ振動が9波のるようにして
ある。同図において、A,Bはそれぞれ2分の1
波長相当の小領域から成る電極群で、C,Dはそ
れぞれ4分の3波長、4分の1波長の長さの電極
である。従つて、Aの電極群とBの電極群とは周
方向に4分の1波長(=90度)の位相ずれがあ
る。電極群A,B内の隣合う小電極部は互いに反
対方向に厚み方向に分極されている。圧電セラミ
ツク2の弾性体1との接着面は第4図に示された
面と反対の面であり、電極はベタ電極である。使
用時には電極群A,Bは第4図に斜線で示された
ように、それぞれ短絡して用いられ、ベタ電極が
共通電極として用いられる。
FIG. 4 shows an example of the electrode structure of the piezoelectric ceramic 2 used in the ultrasonic motor of FIG. In the figure, nine waves of bending vibration are applied in the circumferential direction. In the same figure, A and B are each 1/2
This is an electrode group consisting of a small area corresponding to a wavelength, and C and D are electrodes with a length of three-quarter wavelength and one-quarter wavelength, respectively. Therefore, there is a phase shift of a quarter wavelength (=90 degrees) between the electrode group A and the electrode group B in the circumferential direction. Adjacent small electrode portions in electrode groups A and B are polarized in mutually opposite directions in the thickness direction. The adhesive surface of the piezoelectric ceramic 2 with the elastic body 1 is the opposite surface to the surface shown in FIG. 4, and the electrodes are solid electrodes. During use, the electrode groups A and B are short-circuited as shown by diagonal lines in FIG. 4, and the solid electrode is used as a common electrode.

以上のように構成された超音波モータについ
て、その動作を以下に説明する。前記圧電体2の
電極群Aに電圧 V=Vo・sin(ωt) ……(1) (V:電圧、Vo:電圧の瞬時値 ω:角周波数、t:時間) を印加すると、駆動体3は円周方向に曲げ振動を
する。第5図は第3図の超音波モータの駆動体を
直線で近似した時の斜視図であり、同図aは圧電
体2に電圧を印加していない時、同図bは圧電体
2に電圧を印加した時の様子を示す。
The operation of the ultrasonic motor configured as above will be described below. When a voltage V=Vo・sin(ωt) (1) (V: voltage, Vo: instantaneous value of voltage ω: angular frequency, t: time) is applied to the electrode group A of the piezoelectric body 2, the driving body 3 causes bending vibration in the circumferential direction. FIG. 5 is a perspective view of the driving body of the ultrasonic motor shown in FIG. 3 when it is approximated by a straight line. FIG. This shows what happens when voltage is applied.

第6図は動体6と駆動体3の接触状況を拡大し
て描いたものである。前記圧電体2の電極群Aに
Vo・sin(ωt)、電極群BにVo・cos(ωt)の互い
に位相がπ/2だけずれた電圧を印加すれば、駆
動体3の円周方向に曲げ振動の進行波を作ること
ができる。一般に進行方向波は振幅をξとすれば ξ=ξo・cos(ωt−kx) ……(2) (ξo:振幅の瞬時値、k:波数 λ:波長、x:位置) で表せる。(2)式は ξ=ξo・(cos(ωt)・cos(kt) +sin(ωt)・sin(kx) ……(3) と書き直せ、(3)式は進行波が時間的にπ/2だけ
位相のずれた波cos(ωt)とsin(ωt)、および位置
的にπ/2だけ位相のずれたcos(kx)とsin(kx)
との、それぞれの積の和で得られることを示して
いる。前述の説明より、圧電体2は互いに位置的
にπ/2(=λ/4)だけ位相のずれた電極群A,
Bを持つているので、前記電極群のそれぞれに
π/2だけ位相のずれた電圧を印加すれば、駆動
体3に曲げ振動の進行波を作れる。
FIG. 6 is an enlarged depiction of the contact situation between the moving body 6 and the driving body 3. In the electrode group A of the piezoelectric body 2
By applying voltages Vo・sin(ωt) and Vo・cos(ωt) whose phases are shifted by π/2 to the electrode group B, a traveling wave of bending vibration can be created in the circumferential direction of the driving body 3. can. In general, if the amplitude of a traveling wave is ξ, it can be expressed as ξ=ξo・cos(ωt−kx) (2) (ξo: instantaneous value of amplitude, k: wave number, λ: wavelength, x: position). Equation (2) can be rewritten as ξ=ξo・(cos(ωt)・cos(kt) +sin(ωt)・sin(kx)...(3), and equation (3) shows that the traveling wave is π/2 in time. waves cos(ωt) and sin(ωt) that are out of phase by π/2, and cos(kx) and sin(kx) that are positionally out of phase by π/2.
It shows that it can be obtained by the sum of the products of each. From the above explanation, the piezoelectric body 2 has electrode groups A, which are positioned out of phase by π/2 (=λ/4),
B, a traveling wave of bending vibration can be created in the driving body 3 by applying voltages with a phase difference of π/2 to each of the electrode groups.

第6図は駆動体3の表面A点が進行波の励起に
より、長軸2w、短軸2uの楕円運動をしている
様子を示し、駆動体3上に置かれた動体6が楕円
の頂点で接触することにより、波の進行方向とは
逆方向にv=ω・uの速度で運動する様子を示し
ている。即ち、動体6は任意の静圧で駆動体3に
押し付けられて、駆動体3の表面に接触し、動体
6と駆動体3との摩擦力で波の進行方向と逆方向
に速度vで駆動される。両者の間に滑りがある時
には、速度は上記のvよりも小さくなる。
Figure 6 shows that point A on the surface of the driving body 3 is moving in an ellipse with the long axis 2w and the short axis 2u due to the excitation of the traveling wave, and the moving body 6 placed on the driving body 3 is at the apex of the ellipse. The figure shows how the waves move at a speed of v=ω·u in the opposite direction to the direction of wave travel. That is, the moving body 6 is pressed against the driving body 3 with an arbitrary static pressure, contacts the surface of the driving body 3, and is driven at a speed v in the opposite direction to the direction of wave propagation due to the frictional force between the moving body 6 and the driving body 3. be done. When there is slippage between the two, the velocity will be smaller than v above.

発明が解決しようとする問題点 動体6の速度vは、 v=ωu∝ωξoh ……(4) (ξo:曲げ振動の振幅値 h:駆動体3の中性面と接触表面までの距離) で表わせ、駆動体3の振幅値ξoと距離hに比例
する。振幅値ξoは圧電セラミツクの許容歪限界
値により最大値が決まり、距離hは駆動体3を構
成する圧電体2と弾性体1の材料と厚みが決まれ
ば決定されるので、動体6の最大速度は決まり、
それ以上大きな値を得ることは困難である。
Problem to be solved by the invention The speed v of the moving body 6 is v=ωu∝ωξoh...(4) (ξo: amplitude value of bending vibration h: distance between the neutral surface of the driving body 3 and the contact surface). It is proportional to the amplitude value ξo of the driving body 3 and the distance h. The maximum value of the amplitude value ξo is determined by the allowable strain limit value of the piezoelectric ceramic, and the distance h is determined once the materials and thicknesses of the piezoelectric body 2 and elastic body 1 that constitute the driving body 3 are determined, so that the maximum speed of the moving body 6 is decided,
It is difficult to obtain a larger value than that.

本発明はかかる点に鑑みてなされたもので、簡
単な構成で動体6の速度が大きい超音波モータを
提供することを目的としている。
The present invention has been made in view of these points, and an object of the present invention is to provide an ultrasonic motor that has a simple configuration and can move a moving object 6 at a high speed.

問題点を解決するための手段 駆動体に励起される弾性進行波を構成する2つ
の弾性定在の腹の位置を避けて、該弾性進行波の
1波長あたりに4の整数倍個の突起体を、該駆動
体3を構成する弾性体の動体との接触面側に配置
し、該突起体の先端部に接触するように該動体を
加圧して設ける。
Means for solving the problem Avoiding the positions of the two elastic stationary antinodes that constitute the elastic traveling wave excited by the driving body, the number of protrusions that are an integer multiple of 4 per wavelength of the elastic traveling wave is is placed on the contact surface side of the elastic body constituting the drive body 3 with the moving body, and the moving body is pressurized so as to come into contact with the tip of the protrusion.

作 用 駆動体に励起される弾性進行波を構成する2つ
の定在波の励起をさまたげることなく、中性面と
接触表面との距離を大きくすることにより、動体
の速度を大きくすることができる。
Effect The speed of the moving object can be increased by increasing the distance between the neutral surface and the contact surface without interfering with the excitation of the two standing waves that make up the elastic traveling wave excited by the moving object. .

実施例 以下、図に従つて本発明の1実施例について説
明する。第1図は本発明の1実施例の超音波モー
タの切欠き斜視図である。同図において、7は駆
動体3を構成する弾性体1の動体6との接触面側
に設けられた突起体であり、突起体7の先端に動
体6がスライダ4を介して加圧接触して配置され
る。圧電セラミツク2に駆動体3の共周波数近傍
の交番電界が印加されると、駆動体3に曲げ振動
の進行波が励起され、突起体7により動体6を移
動する。
Embodiment Hereinafter, one embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cutaway perspective view of an ultrasonic motor according to an embodiment of the present invention. In the figure, 7 is a protrusion provided on the contact surface side of the elastic body 1 constituting the drive body 3 with the movable body 6, and the movable body 6 comes into pressure contact with the tip of the protrusion 7 via the slider 4. will be placed. When an alternating electric field near the resonant frequency of the driving body 3 is applied to the piezoelectric ceramic 2, a traveling wave of bending vibration is excited in the driving body 3, and the moving body 6 is moved by the protrusion 7.

第2図は第1図における駆動体3を説明のため
に直線化した時の断面図である。同図中の電極群
Aにはsin波の電圧が印加され、電極群Bにはcos
波の電圧が印加され、駆動体3に曲げ振動の定在
波である同図中のA′,B′をそれぞれ作る。この
2つの定在波A′,B′は重畳して進行波を作る。
FIG. 2 is a cross-sectional view of the driving body 3 in FIG. 1 when it is straightened for explanation. In the figure, a sine wave voltage is applied to electrode group A, and a cosine wave voltage is applied to electrode group B.
A wave voltage is applied to the driving body 3, creating standing waves of bending vibrations A' and B' in the figure, respectively. These two standing waves A' and B' are superimposed to form a traveling wave.

突起物7がない時の中性面は図中のLで示され
る位置にあり、中性面Lと動体6との接触面まで
の距離はhとなる。弾性体1の表面に突起体7を
設けた場合、中性面の位置の変化は接触面までの
距離の変化に比べて小さい。突起体7設置後の中
性面の位置をL′で示し、中性面から接触面までの
距離をh′で示している。つまり圧電セラミツク2
の中性面さらの距離が遠くなつて、圧電セラミツ
ク2の許容限界内の歪率での振幅ξoが小さくな
るよりも、距離hの大きくなる効果が大きいの
で、(4)式より大きな速度が得られることがわか
る。
The neutral surface when there is no protrusion 7 is located at the position indicated by L in the figure, and the distance between the neutral surface L and the contact surface with the moving object 6 is h. When the projections 7 are provided on the surface of the elastic body 1, the change in the position of the neutral surface is smaller than the change in the distance to the contact surface. The position of the neutral surface after the protrusion 7 is installed is indicated by L', and the distance from the neutral surface to the contact surface is indicated by h'. In other words, piezoelectric ceramic 2
Since the effect of increasing the distance h is greater than the fact that the amplitude ξo at a strain rate within the allowable limit of the piezoelectric ceramic 2 becomes smaller as the distance from the neutral surface becomes longer, a larger speed is obtained from equation (4). You can see what you can get.

突起物7の所での曲げ剛性は大きく、突起体7
のない所での曲げ剛性は小さい。従つて、もし曲
げ振動の進行波を作る2つの定在波A′,B′の腹
の位置に突起体7がくれば、この位置は実際には
曲がりにくいので、定在波の腹の位置が曲がりや
すい所に変わり、電極位置から見た最適の定在波
位置と異なり効率的な駆動ができなくなる。故
に、第2図に示したように、定在波A′,B′の腹
の位置に突起体7がこないように設置すれば効率
の良い駆動ができる。この条件を満たすには、1
波長あたり1または2個の突起体を作ることも考
えられるが、この場合には駆動体3の曲げ振動の
進行波の横方向成分が動体6に定常的に伝えられ
なくなり、動体6の移動速度はかえつて減少す
る。
The bending rigidity at the protrusion 7 is large;
The bending stiffness is small where there is no . Therefore, if the protrusion 7 comes to the position of the antinode of the two standing waves A' and B' that create the traveling wave of bending vibration, this position is actually difficult to bend, so the position of the antinode of the standing wave changes to a place where it is easy to bend, and it becomes impossible to drive efficiently, which is different from the optimal standing wave position as seen from the electrode position. Therefore, as shown in FIG. 2, efficient driving can be achieved if the protrusion 7 is installed so as not to be located at the antinodes of the standing waves A' and B'. To satisfy this condition, 1
It is also possible to create one or two protrusions per wavelength, but in this case, the lateral component of the traveling wave of the bending vibration of the driving body 3 will not be transmitted steadily to the moving body 6, and the moving speed of the moving body 6 will decrease. On the contrary, it decreases.

尚、本実施例では円環形の超音波モータを例に
とつて説明したが、弾性進行波を使つたものなら
他の超音波モータにも同様の効果が得られる。
Although this embodiment has been described using an annular ultrasonic motor as an example, similar effects can be obtained with other ultrasonic motors that use elastic traveling waves.

発明の効果 本発明によれば、簡単な構成で、大きな速度を
得ることができる超音波モータを提供できる。
Effects of the Invention According to the present invention, it is possible to provide an ultrasonic motor that can obtain a high speed with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の超音波モータの切
欠き斜視図、第2図は第1図の実施例における駆
動体の直線化モデル図、第3図は従来の円環形超
音波モータの切欠き斜視図、第4図は第3図の超
音波モータに用いられている圧電体の電極構造を
示す平面図、第5図は超音波モータの駆動体の振
動状態を示すモデル図、第6図は超音波モータの
原理説明図である。 1……弾性体、2……圧電体、3……駆動体、
4……スライダ、5……弾性体、6……動体、7
……突起体。
Fig. 1 is a cutaway perspective view of an ultrasonic motor according to an embodiment of the present invention, Fig. 2 is a linear model diagram of a driving body in the embodiment of Fig. 1, and Fig. 3 is a conventional annular ultrasonic motor. 4 is a plan view showing the electrode structure of the piezoelectric body used in the ultrasonic motor of FIG. 3, and FIG. 5 is a model diagram showing the vibration state of the driving body of the ultrasonic motor. FIG. 6 is a diagram explaining the principle of an ultrasonic motor. 1... Elastic body, 2... Piezoelectric body, 3... Drive body,
4...Slider, 5...Elastic body, 6...Moving body, 7
...Protrusion.

Claims (1)

【特許請求の範囲】[Claims] 1 動体との接触面側に突起体を設けた弾性体と
圧電体とから成る駆動体に弾性進行波を励振する
ことにより、上記駆動体の上記突起体上に加圧接
触して設置された上記動体を移動させる超音波モ
ータにおいて、上記突起体の数が上記進行波の1
波長当りに対して4の整数倍であり、上記弾性進
行波を構成する2つの弾性定在波の腹の位置を外
れた位置に上記突起体を配置したことを特徴とす
る超音波モータ。
1. By exciting an elastic traveling wave in a driving body consisting of an elastic body and a piezoelectric body, which have a projection on the side of the contact surface with the moving body, the driving body is placed in pressure contact on the projection of the driving body. In the ultrasonic motor for moving the moving object, the number of the protrusions is 1 of the traveling waves.
An ultrasonic motor characterized in that the protrusion is arranged at a position that is an integer multiple of 4 per wavelength and is outside the antinode of two elastic standing waves constituting the elastic traveling wave.
JP61034624A 1986-02-18 1986-02-18 Ultrasonic motor Granted JPS62193569A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61034624A JPS62193569A (en) 1986-02-18 1986-02-18 Ultrasonic motor
EP87901637A EP0258449B1 (en) 1986-02-18 1987-02-17 Ultrasonic motor
DE8787901637T DE3782301T2 (en) 1986-02-18 1987-02-17 ULTRASONIC MOTOR.
US07/126,105 US4829209A (en) 1986-02-18 1987-02-17 Ultrasonic motor with stator projections and at least two concentric rings of electrodes
PCT/JP1987/000102 WO1987005166A1 (en) 1986-02-18 1987-02-17 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61034624A JPS62193569A (en) 1986-02-18 1986-02-18 Ultrasonic motor

Publications (2)

Publication Number Publication Date
JPS62193569A JPS62193569A (en) 1987-08-25
JPH0519393B2 true JPH0519393B2 (en) 1993-03-16

Family

ID=12419544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61034624A Granted JPS62193569A (en) 1986-02-18 1986-02-18 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JPS62193569A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477482A (en) * 1987-09-18 1989-03-23 Nec Corp Ultrasonic motor
JP2698414B2 (en) * 1989-02-17 1998-01-19 キヤノン株式会社 Vibration wave device
JP2698412B2 (en) * 1989-02-14 1998-01-19 キヤノン株式会社 Vibration wave device
JPH07115782A (en) * 1993-10-13 1995-05-02 Canon Inc Vibration wave driver
JP2010093939A (en) * 2008-10-07 2010-04-22 Mitsuba Corp Electric motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125052A (en) * 1979-03-19 1980-09-26 Toshio Sashita Motor equipment utilizing ultrasonic vibration
JPS59201685A (en) * 1983-04-30 1984-11-15 Canon Inc Vibration wave motor
JPS6096183A (en) * 1983-10-26 1985-05-29 Canon Inc Surface wave motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125052A (en) * 1979-03-19 1980-09-26 Toshio Sashita Motor equipment utilizing ultrasonic vibration
JPS59201685A (en) * 1983-04-30 1984-11-15 Canon Inc Vibration wave motor
JPS6096183A (en) * 1983-10-26 1985-05-29 Canon Inc Surface wave motor

Also Published As

Publication number Publication date
JPS62193569A (en) 1987-08-25

Similar Documents

Publication Publication Date Title
JPH0528072B2 (en)
JPH0519393B2 (en)
JPS61224880A (en) Vibration wave motor
JPS62193571A (en) Ultrasonic motor
JP2568707B2 (en) Ultrasonic motor
JP2574284B2 (en) Ultrasonic motor
JP2864479B2 (en) Annular ultrasonic motor
JPS62196085A (en) Ultrasonic motor
JP2558661B2 (en) Ultrasonic motor
JP2636280B2 (en) Driving method of ultrasonic motor
JPS6323575A (en) Ultrasonic motor
JPH0744855B2 (en) Ultrasonic motor
JPS6118370A (en) Piezoelectric motor
JPS63268476A (en) Oscillatory wave motor
JPH0479238B2 (en)
JP2582176B2 (en) Ultrasonic motor
JPS62196080A (en) Ultrasonic motor
JPH0789748B2 (en) Ultrasonic motor drive method
JP2537848B2 (en) Ultrasonic motor
JP2543160B2 (en) Toroidal ultrasonic motor
JPS63117674A (en) Ultrasonic motor
JPS627379A (en) Ultrasonic wave motor apparatus
JPS62193570A (en) Ultrasonic motor
JPH0724956Y2 (en) Ultrasonic linear motor
JPH067750B2 (en) Ultrasonic motor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term