JPS63268476A - Oscillatory wave motor - Google Patents

Oscillatory wave motor

Info

Publication number
JPS63268476A
JPS63268476A JP62103496A JP10349687A JPS63268476A JP S63268476 A JPS63268476 A JP S63268476A JP 62103496 A JP62103496 A JP 62103496A JP 10349687 A JP10349687 A JP 10349687A JP S63268476 A JPS63268476 A JP S63268476A
Authority
JP
Japan
Prior art keywords
phase
ring
vibrating body
vibrator
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62103496A
Other languages
Japanese (ja)
Inventor
Koji Kitani
耕治 木谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62103496A priority Critical patent/JPS63268476A/en
Publication of JPS63268476A publication Critical patent/JPS63268476A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To improve efficiency by bringing the wave number of oscillatory waves excited on the circumference of a ring-shaped vibrator and the number of grooves to specific relationship in the ring-shaped vibrator having a large number of the grooves in the radial direction. CONSTITUTION:A ring-shaped piezoelectric body 1 and a ring-shaped vibrator 2, to the whole circumference of which grooves 3 in the radial direction are notched and which consists of an elastic body, are joined with adhesives, etc., thus constituting an oscillatory wave motor together with a ring-shaped moving body. The piezoelectric body 1 has a large number of electrodes 1a partitioned by cut lines 1b, and each electrode 1a has length of lambda/2 (lambda represents a wavelength) and is formed in two groups (A and B phase) displaced in lambda/4. When AC voltage, phase of which is displaced at 90 deg. mutually, is applied to the electrodes in two groups of the A phase and B phase, bending oscillatory waves in a wavelength lambda proceeding in the circumferential direction of the vibrator 2 are generated in the vibrator 2. Accordingly, the ring-shaped moving body brought into contact with the vibrator 2 is friction-driven.

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は、振動体に発生させた進行性振動波により移動
体を摩擦駆動するいわゆる振動波モータに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a so-called vibration wave motor that frictionally drives a moving body using progressive vibration waves generated in a vibrating body.

[発明の背景] 振動波モータは、弾性材製の振動体に、群内では172
波長のピッチで交互に逆極性に、かつ、群間には174
波長のずれがあるように配列された電気−機械エネルギ
ー変換素子(例えば圧電素子または電歪素子、磁歪素子
など。以下、圧電素子で代表する)の二群を接合固着し
、これら圧電素子の二群(以下A相、B相という)に約
90°の時間的位相差を有する交流電圧を印加して上記
振動体に進行性振動波を発生させ、これにより、該振動
体に加圧接触している移動体を摩擦駆動するように構成
されたものである。
[Background of the invention] A vibration wave motor has a vibrating body made of an elastic material.
Alternately opposite polarity at wavelength pitch, and 174 between groups.
Two groups of electro-mechanical energy conversion elements (for example, piezoelectric elements, electrostrictive elements, magnetostrictive elements, etc., hereinafter referred to as piezoelectric elements) arranged so that there is a wavelength shift are bonded and fixed. AC voltage having a temporal phase difference of about 90° is applied to the groups (hereinafter referred to as A phase and B phase) to generate a progressive vibration wave in the vibrating body, thereby bringing the vibrating body into pressure contact. It is configured to frictionally drive a moving body that is moving.

この振動波モータにおいては、上記の圧電素子群に上記
交流電圧を印加し、振動体を共振させると、移動体に接
する振動体面の各質点は回転楕円運動をし、この回転楕
円運動により移動体は摩擦駆動されるのである。この回
転楕円運動の振動体周方向の回転半径は振動体の中立面
(曲げ応力のかからない面)から前記振動体表面の質点
までの距離に比例する。この距離が大きいほど同一振幅
での駆動速度は大きい。従って、同一振幅で駆動速度を
上げ効率を稼ぐために、振動体の移動体側表面に振動波
の進行方向と直角の溝を刻むことにより、振動体の中立
面から移動体側表面までの距離を拡大した、いわゆる溝
入り振動波モータが知られている。
In this vibration wave motor, when the AC voltage is applied to the piezoelectric element group to cause the vibrating body to resonate, each mass point on the vibrating body surface that is in contact with the moving body undergoes spheroidal motion, and this spheroidal motion causes the moving body to resonate. is friction driven. The radius of rotation of this spheroidal motion in the circumferential direction of the vibrating body is proportional to the distance from the neutral plane of the vibrating body (a surface to which no bending stress is applied) to the mass point on the vibrating body surface. The larger the distance, the greater the driving speed with the same amplitude. Therefore, in order to increase the driving speed with the same amplitude and increase efficiency, by carving grooves perpendicular to the traveling direction of the vibration waves on the surface of the vibrating body on the moving body side, the distance from the neutral plane of the vibrating body to the surface on the moving body side can be reduced. Enlarged, so-called grooved vibration wave motors are known.

しかし、この溝の数と位置が不適当だと、A相、B相で
夫々励起する振動の振幅に差ができて、騒音の原因とな
ったり、−相の励起した振動の腹の位置と他相の励起し
た振動の節の位置とがずれて、移動体の駆動方向により
特性が変わったり、A相とB相の共振周波数がずれて、
効率のよい駆動が出来ない等の問題があった。
However, if the number and position of these grooves are inappropriate, there will be a difference in the amplitude of the vibrations excited in the A phase and B phase, causing noise, or the position of the antinode of the excited vibration in the - phase may differ. The position of the excited vibration node of the other phase may shift, the characteristics may change depending on the driving direction of the moving object, or the resonance frequencies of the A phase and B phase may shift.
There were problems such as inability to drive efficiently.

[発明の目的コ 本発明は溝入り振動波モータの上記欠点を除き、より高
効率で且つ駆動方向による特性変化の少ない振動波モー
タを得ることを目的とするものである。
[Object of the Invention] The object of the present invention is to eliminate the above-mentioned drawbacks of the grooved vibration wave motor, and to obtain a vibration wave motor which is more efficient and whose characteristics change less depending on the driving direction.

[発明の概要] 本発明は電気−機械エネルギ変換振動素子を片面に接合
され且つ他面に周方向に等間隔に設けられた半径方向の
多数の溝を有するリング状の振動体に、該電気−機械エ
ネルギ変換振動素子への交流電圧印加により、周方向に
進行する曲げ振動波を生ゼしぬ、該振動体の該他面と加
圧接触状態にあるリング状の移動体を摩擦回転駆動する
ように構成された振動波モータにおいて、該振動体の周
上に励起される振動波の波数にと該振動体の上記溝の数
Nとの間にN=4mk(mは自然数)の関係を持たせた
ことを特徴とする。
[Summary of the Invention] The present invention provides an electric-mechanical energy converting vibration element that is attached to a ring-shaped vibrating body that is bonded on one side and has a large number of radial grooves provided at equal intervals in the circumferential direction on the other side. - By applying an alternating current voltage to the mechanical energy conversion vibrating element, a ring-shaped moving body that is in pressurized contact with the other surface of the vibrating body is frictionally rotated without producing a bending vibration wave that advances in the circumferential direction. In a vibration wave motor configured to It is characterized by having the following.

[発明の実施例] 第1図において、1はリング状の圧電体、2は全周に半
径方向の溝3が刻まれた弾性体よりなるリング状据動体
であり、両者は接着剤などで接合されている。圧電体は
下面で見て第2図に示すように切れ目1bで区画された
多数の電極1aを有し、各電極1aはλ/2(λは波長
)の長さを有する。これら電極1aは図示の如く二群(
A相、B相)をなし、これらA相。
[Embodiments of the Invention] In Fig. 1, 1 is a ring-shaped piezoelectric body, 2 is a ring-shaped stationary body made of an elastic body with radial grooves 3 carved on the entire circumference, and both are bonded with adhesive or the like. It is joined. The piezoelectric body has a large number of electrodes 1a separated by cuts 1b as shown in FIG. 2 when viewed from the bottom, and each electrode 1a has a length of λ/2 (λ is the wavelength). These electrodes 1a are arranged in two groups (
A phase and B phase), and these A phase.

B相の間にはλ/4のずれがある。各電極区画において
圧電体1は図示の+、−で示す分極方向に分極処理され
ている。A相、B相の二群の電極に互いに位相が90°
ずれた交流電圧を印加すると、振動体2にはその周方向
に進む波長λの曲げ振動波が生ずる。これにより、振動
体2に接触されたリング状の移動体(不図示)が摩擦駆
動される。振動体2の周長は波長λの整数倍(k倍)に
なっており、第2図の場合、k=5である。kを振動波
モータの波数という。
There is a shift of λ/4 between the B phases. In each electrode section, the piezoelectric body 1 is polarized in the polarization directions shown by + and - in the figure. Two groups of electrodes, A phase and B phase, have a phase of 90° to each other.
When a shifted AC voltage is applied, a bending vibration wave of wavelength λ is generated in the vibrating body 2, which travels in the circumferential direction of the vibrating body 2. As a result, a ring-shaped moving body (not shown) that is in contact with the vibrating body 2 is frictionally driven. The circumference of the vibrating body 2 is an integral multiple (k times) of the wavelength λ, and in the case of FIG. 2, k=5. k is called the wave number of the vibration wave motor.

第3図(a)および(b)は夫々N=6におよびN=8
 kの関係にある振動体2の1波長分の側面部分図であ
る(Nは溝3の数、kは波数)。
Figures 3(a) and (b) are for N=6 and N=8 respectively.
FIG. 3 is a partial side view of one wavelength of the vibrating body 2 having a relationship of k (N is the number of grooves 3, k is the wave number).

振動体2は溝3の部分では断面二次モーメントが小さく
、剛性も低い。従って溝3と電極1aの位相関係によっ
て、振動の特性が変わることは充分予想できる。
The vibrating body 2 has a small moment of inertia and low rigidity at the groove 3 portion. Therefore, it can be fully predicted that the vibration characteristics will change depending on the phase relationship between the groove 3 and the electrode 1a.

第3図(a)および(b)に図示されている電極1aが
A相のものであるとすると、A相で励起される振動の腹
においては、第3図(a)では振動体2の剛性が高く、
同図(b)では低い。またB相で励起される振動の腹は
A相と90°ずれているため、詰腹においては第3図(
a)、(b)ともに振動体の剛性が低い。
Assuming that the electrode 1a shown in FIGS. 3(a) and 3(b) is of phase A, in the antinode of the vibration excited in phase A, in FIG. High rigidity,
In the figure (b), it is low. Also, since the antinode of the vibration excited in the B phase is shifted by 90 degrees from the A phase, the antinode in Fig. 3 (
In both a) and (b), the rigidity of the vibrating body is low.

第3図(a)、(b)に示される2種の振動体について
、同電圧でA相駆動、B相駆動の夫々の振幅を地点Pか
ら地点Qまで測定したところ、第4図(a)、(b)の
ようになった。N=6にの振動体については、第4図(
a)のように、A相駆動での振幅x1がB相駆動での振
幅Xbの約70%であり、入力電力についても3割程差
があった。これに対し、N=8にの撮動体については、
第4図(b)のように、A相駆動での振幅X、とB相駆
動での振幅X、とに特に差はみられず、入力電力につい
てもほぼ同じであった。この効果はN=8 kに限らず
一般にN=4+nk(mは自然数)の場合にも期待でき
るものである。
For the two types of vibrators shown in Figures 3(a) and (b), the amplitudes of the A-phase drive and B-phase drive were measured from point P to point Q at the same voltage. ), (b). For the vibrator with N=6, see Figure 4 (
As shown in a), the amplitude x1 in the A-phase drive was about 70% of the amplitude Xb in the B-phase drive, and there was also a difference of about 30% in input power. On the other hand, for the object to be photographed with N=8,
As shown in FIG. 4(b), there was no particular difference between the amplitude X in the A-phase drive and the amplitude X in the B-phase drive, and the input power was also almost the same. This effect can be expected not only when N=8k but also when N=4+nk (m is a natural number).

以上は、溝3が矩形の溝である場合につき説明したが、
周方向剛性変化がよりなめらかな、半円形溝、三角溝な
どの場合でも同様の効果がある。
The above explanation is based on the case where the groove 3 is a rectangular groove, but
A similar effect can be obtained in the case of semicircular grooves, triangular grooves, etc., which have smoother circumferential rigidity changes.

上記のように、N=4mK(mは自然数)を満たす振動
体は、溝の位置がA相、B相いずれに対しても同位相で
あるので、A相、B相のいずれの駆動でも共振周波数及
び共振抵抗がほぼ等しく、効率のよい駆動ができる。さ
らに、電極の切れ目1bと溝3の位置を合わせると、節
の位置が移動しに<<、時計方向駆動、反時計方向駆動
のいずれでも特性のそろった振動波モータを得ることが
できる。特にmが1.2のときに有効である。
As mentioned above, a vibrating body that satisfies N = 4mK (m is a natural number) has resonance when driven in either A or B phase because the groove position is in the same phase for both A and B phases. The frequency and resonance resistance are almost equal, allowing efficient driving. Furthermore, by aligning the cut 1b of the electrode with the groove 3, the position of the node moves <<, and a vibration wave motor with uniform characteristics can be obtained for either clockwise or counterclockwise drive. This is particularly effective when m is 1.2.

[発明の効果] 本発明によれば、振動体の溝の位置がA、 B二相のい
ずれに対しても同位相であるため、A相、B相いずれの
駆動でも振動の振幅に差が生ぜず、A、B各相の励起し
た振動の腹の位置と節の位置とがずれず、共振周波数及
び共振抵抗がA相、B相いずれの駆動でもほぼ等しく、
効率のよい駆動が可能になる。また駆動方向に依る特性
変化を少くすることがでとる。
[Effects of the Invention] According to the present invention, since the position of the groove of the vibrating body is in the same phase with respect to both the A and B phases, there is no difference in the amplitude of vibration when driving either the A phase or the B phase. The antinode and node positions of the excited vibrations of each phase A and B do not deviate from each other, and the resonant frequency and resonant resistance are almost the same when driving either the A or B phase.
Efficient driving becomes possible. This can also be achieved by reducing changes in characteristics depending on the driving direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溝入り振動体の斜視図、第2図は圧電素子の電
極パターンを示す図、第3図(a)(b)は夫々N=6
に、N=8kを満たす溝入り振動体の1波長分の側面部
分図、第4図(a)、(b)はそれぞれN=6に、N=
8にの場合の振幅の測定結果のグラフである。 1・・・圧電素子、    1a・・・電極1b・・・
電極の切れ口 2・・・振動体。 第1図 第2図
Figure 1 is a perspective view of the grooved vibrator, Figure 2 is a diagram showing the electrode pattern of the piezoelectric element, and Figures 3 (a) and (b) are each N=6.
FIGS. 4(a) and 4(b) are partial side views for one wavelength of the grooved vibrator that satisfies N=8k, and N=6 and N=6, respectively.
8 is a graph of amplitude measurement results in case No. 8. 1... Piezoelectric element, 1a... Electrode 1b...
Cut end of electrode 2... Vibrating body. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1) 電気−機械エネルギ変換振動素子を片面に接合
され且つ他面に周方向に等間隔に設けられた半径方向の
多数の溝を有するリング状の振動体に、該電気−機械エ
ネルギ変換振動素子への交流電圧印加により、周方向に
進行する曲げ振動波を生ぜしめ、該振動体の該他面と加
圧接触状態にあるリング状の移動体を摩擦回転駆動する
ように構成された振動波モータにおいて、該振動体の周
上に励起される振動波の波数kと該振動体の上記溝の数
Nとの間にN:4mK(mは自然数)の関係を持たせた
ことを特徴とする振動波モータ。
(1) The electro-mechanical energy conversion vibration element is attached to a ring-shaped vibrating body having a plurality of radial grooves bonded on one side and provided at equal intervals in the circumferential direction on the other side. A vibration configured to generate a bending vibration wave traveling in the circumferential direction by applying an alternating current voltage to the element, and to frictionally rotate a ring-shaped moving body that is in pressurized contact with the other surface of the vibrating body. The wave motor is characterized by having a relationship of N: 4mK (m is a natural number) between the wave number k of the vibration wave excited on the circumference of the vibrating body and the number N of the grooves of the vibrating body. vibration wave motor.
(2) 振動体の上記溝の中心が電気−エネルギー変換
素子に設けられた電極の切れ目と一致することを特徴と
する特許請求の範囲(1)記載の振動波モータ。
(2) The vibration wave motor according to claim (1), wherein the center of the groove of the vibrating body coincides with a cut in an electrode provided on the electric-energy conversion element.
JP62103496A 1987-04-27 1987-04-27 Oscillatory wave motor Pending JPS63268476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62103496A JPS63268476A (en) 1987-04-27 1987-04-27 Oscillatory wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62103496A JPS63268476A (en) 1987-04-27 1987-04-27 Oscillatory wave motor

Publications (1)

Publication Number Publication Date
JPS63268476A true JPS63268476A (en) 1988-11-07

Family

ID=14355599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62103496A Pending JPS63268476A (en) 1987-04-27 1987-04-27 Oscillatory wave motor

Country Status (1)

Country Link
JP (1) JPS63268476A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314180A (en) * 1987-06-15 1988-12-22 Seiko Instr & Electronics Ltd Wave motor
JPH02214477A (en) * 1989-02-14 1990-08-27 Canon Inc Vibration wave device
JPH02219475A (en) * 1989-02-17 1990-09-03 Canon Inc Vibration wave device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314180A (en) * 1987-06-15 1988-12-22 Seiko Instr & Electronics Ltd Wave motor
JPH02214477A (en) * 1989-02-14 1990-08-27 Canon Inc Vibration wave device
JPH02219475A (en) * 1989-02-17 1990-09-03 Canon Inc Vibration wave device

Similar Documents

Publication Publication Date Title
JPH0477553B2 (en)
JPH05949B2 (en)
JPH0117354B2 (en)
JPS59201684A (en) Vibration wave motor
JPS6013481A (en) Vibration wave motor
JPS61224878A (en) Vibration wave motor
JPH07115782A (en) Vibration wave driver
EP0493941B1 (en) A supporting device for vibration wave driven motor
JPS61224880A (en) Vibration wave motor
JPS63268476A (en) Oscillatory wave motor
JP2574284B2 (en) Ultrasonic motor
JPS63110973A (en) Piezoelectric driver
JPH0552137B2 (en)
JPS6051477A (en) Piezoelectric motor
JPH0519393B2 (en)
JPH0515153B2 (en)
JPS60174078A (en) Piezoelectric motor
JP2506859B2 (en) Ultrasonic motor
JPH0681523B2 (en) Vibration wave motor
JPH05948B2 (en)
JPH0232771A (en) Traveling-wave motor
JP2625653B2 (en) Vibration wave motor
JP2537848B2 (en) Ultrasonic motor
JPH0479238B2 (en)
JPH0632570B2 (en) Vibration wave motor