JPH05948B2 - - Google Patents

Info

Publication number
JPH05948B2
JPH05948B2 JP59024021A JP2402184A JPH05948B2 JP H05948 B2 JPH05948 B2 JP H05948B2 JP 59024021 A JP59024021 A JP 59024021A JP 2402184 A JP2402184 A JP 2402184A JP H05948 B2 JPH05948 B2 JP H05948B2
Authority
JP
Japan
Prior art keywords
electrostrictive element
electrostrictive
vibration
vibration wave
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59024021A
Other languages
Japanese (ja)
Other versions
JPS60170471A (en
Inventor
Kazuhiro Izukawa
Ichiro Okumura
Takayuki Tsukimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59024021A priority Critical patent/JPS60170471A/en
Publication of JPS60170471A publication Critical patent/JPS60170471A/en
Publication of JPH05948B2 publication Critical patent/JPH05948B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 本発明は進行性振動波により駆動する振動波モ
ータの構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a vibration wave motor driven by progressive vibration waves.

最近実用化されつつある、進行性振動波によつ
て駆動する振動波モータの実施例の概略図が第1
図に示してある。同図で、1は電歪素子で例えば
PZT(チタン酸ジルコン酸鉛)で、2は振動体
で、電歪素子1よりもヤング率が大きい弾性物質
からなり、電歪素子1を接着してある。振動体2
は電歪素子1と共にステータを形成している。3
は移動体で振動体2に対し押圧接触してロータを
形成する。そして図示を省略した振動吸収体を介
して、ステータは基台に取付けられる。
The first is a schematic diagram of an embodiment of a vibration wave motor driven by progressive vibration waves, which has recently been put into practical use.
It is shown in the figure. In the same figure, 1 is an electrostrictive element, for example
A vibrating body 2 is made of PZT (lead zirconate titanate) and is made of an elastic material having a Young's modulus larger than that of the electrostrictive element 1, to which the electrostrictive element 1 is bonded. Vibrating body 2
forms a stator together with the electrostrictive element 1. 3
is a moving body that presses into contact with the vibrating body 2 to form a rotor. The stator is attached to the base via a vibration absorber (not shown).

第2図は電歪素子1と振動体2の関係を示す側
面図である。電歪素子1は複数個の素子1a1,1
a2,1a3…及び1b1,1b2,1b3…が接着されて
おり、そのうちの一群の電歪素子1a1,1a2,1
a3…に対し、他の群の電歪素子1b1,1b2,1b3
…は、振動波の波長λの1/4波長分だけずれて配
置される。一群内での各電歪素子1a1,1a2,1
a3…は1/2波長のピツチで、相隣り合うものの分
極極性が逆になるように配置されている。図中の
+・−は極性を示している。もう一方の群内での
各電歪素子1b1,1b2,1b3…も同じく1/2波長
のピツチで、相隣り合うものは逆極性である。こ
れら電歪素子が並べられた大きさだけの大きさが
ある一つの電歪素子にして、それを前記のピツチ
に分極処理してもよい。なお、電歪素子の分極両
面には電圧を印加するための電極が蒸着、書込等
により形成される。
FIG. 2 is a side view showing the relationship between the electrostrictive element 1 and the vibrating body 2. The electrostrictive element 1 includes a plurality of elements 1a 1 , 1
a 2 , 1a 3 ... and 1b 1 , 1b 2 , 1b 3 ... are bonded, and one group of electrostrictive elements 1a 1 , 1a 2 , 1
a 3 ..., electrostrictive elements 1b 1 , 1b 2 , 1b 3 of other groups
... are arranged shifted by 1/4 wavelength of the wavelength λ of the vibration wave. Each electrostrictive element 1a 1 , 1a 2 , 1 in one group
a 3 ... has a pitch of 1/2 wavelength, and is arranged so that the polarization of adjacent elements is opposite. + and - in the figure indicate polarity. The electrostrictive elements 1b 1 , 1b 2 , 1b 3 . . . in the other group also have a pitch of 1/2 wavelength, and adjacent ones have opposite polarities. A single electrostrictive element having a size equal to the size of these electrostrictive elements arranged side by side may be prepared and then polarized to the pitch described above. Note that electrodes for applying voltage are formed on both polarized surfaces of the electrostrictive element by vapor deposition, writing, or the like.

このような構成の振動波モータで、第3図・第
4図に示すように電歪素子1の厚さ方向(分極方
向)に交流電源9から電圧を印加する。第3図
で、電歪素子1a2に分極の方向に対して交流の駆
動電源9ら正(順方向HA)電圧が印加されると
電歪素子1a2は電界方向即ち厚み方向に伸び電界
と直角な方向には縮む(矢示A)。また隣の電歪
素子1a3には逆方向の電圧が印加されるから、電
歪素子1a3は電界方向に縮み電界と直角な方向に
は伸びる(矢示B)。このようにして各電歪素子
が伸縮する。そしてそれら電歪素子1には高ヤン
グ率の振動体2が一体的に接着されているから、
伸縮が伝えられて、第4図に示すように振動体2
は曲がる。同図aは電歪素子1a2に順方向、電歪
素子1a3に逆方向電圧が印加されているときの屈
曲状態を示す。同図bは電歪素子1a2に逆方向、
電歪素子1a3に順方向電圧が印加されているとき
である。
With the vibration wave motor having such a configuration, a voltage is applied from an AC power source 9 in the thickness direction (polarization direction) of the electrostrictive element 1, as shown in FIGS. 3 and 4. In FIG. 3, when a positive (forward direction H A ) voltage is applied to the electrostrictive element 1a 2 from the AC drive power supply 9 in the direction of polarization, the electrostrictive element 1a 2 expands in the direction of the electric field, that is, in the thickness direction. It contracts in the direction perpendicular to (arrow A). Further, since a voltage in the opposite direction is applied to the adjacent electrostrictive element 1a 3 , the electrostrictive element 1a 3 contracts in the direction of the electric field and expands in the direction perpendicular to the electric field (arrow B). In this way, each electrostrictive element expands and contracts. And since the vibrating body 2 with a high Young's modulus is integrally bonded to the electrostrictive elements 1,
The expansion and contraction is transmitted to the vibrating body 2 as shown in Figure 4.
bends. Figure a shows the bent state when a forward voltage is applied to the electrostrictive element 1a2 and a reverse voltage is applied to the electrostrictive element 1a3 . In the same figure b, the direction opposite to the electrostrictive element 1a 2 ,
This is when a forward voltage is applied to the electrostrictive element 1a3 .

電歪素子1のうち一つの群の電歪素子1a1,1
a2,1a3…にV0にSinωTの交流電圧を印加する。
もう一方の群の電歪素子1b1,1b2,1b3…に
V0CosωTの交流電圧を印加する。従つて各電歪
素子は相隣り合うものどうし分極方向に対し180°
位相がずれ、二つの群どうし90°位相のずれた交
流電圧が印加されて伸縮振動をする。この振動が
伝えられて振動体2は電歪素子1の配置ピツチに
従つて曲げ振動をする。振動体2が一つおきの電
歪素子の位置で出つ張ると、他の一つおきの電歪
素子の位置が引つ込む。一方、前記の如く電歪素
子の一群は他の一群に対し、1/4波長ずれた位置
にあり曲げ振動の位相が90°ずれているため振動
波が合成され進行する。交流電圧が印加されてい
る間、次々と振動が励起されて、進行性曲げ振動
波となつて振動体2を伝わつてゆく。
One group of electrostrictive elements 1a 1 , 1 of the electrostrictive elements 1
An AC voltage of SinωT is applied to V 0 to a 2 , 1a 3 . . .
In the other group of electrostrictive elements 1b 1 , 1b 2 , 1b 3 ...
Apply an AC voltage of V 0 CosωT. Therefore, each electrostrictive element is 180° with respect to the polarization direction of the adjacent ones.
The phases are shifted, and AC voltages with a 90° phase shift are applied between the two groups, causing stretching and contraction vibrations. This vibration is transmitted to the vibrating body 2, which bends and vibrates in accordance with the arrangement pitch of the electrostrictive element 1. When the vibrating body 2 protrudes at the position of every other electrostrictive element, the position of every other electrostrictive element retracts. On the other hand, as described above, one group of electrostrictive elements is at a position shifted by 1/4 wavelength from the other group, and the phase of the bending vibration is shifted by 90 degrees, so the vibration waves are synthesized and propagate. While the alternating current voltage is applied, vibrations are excited one after another and propagate through the vibrating body 2 as progressive bending vibration waves.

このときの波の進行状態が第5図a,b,c,
dに示してある。いま進行性曲げ振動波が矢示
X1方向に進むとする。0を静止状態に於ける振
動体の中心面とする振動状態では鎖線示の状態と
なり、この中立面6は曲げにより応力が拮抗して
いる。中立面6と直交する断面71についてみる
と、これら二面の交線51では応力がかからず上
下振動しているだけである。同時に断面71は交
線51を中心として左右の振り子振動している。
同図aに示す状態では断面71と振動体2の移動
体側1の表面との交線上の点P1は左右振動の右
死点となつており上下向運動だけしている。この
振り子振動は交線51,52,53が波の正側では
(中心面0の上側にあるとき)左方向(波の進行
方向X1と逆方向)の応力が加わり、波の負側
(同じく下側にあるとき)右方向の応力が加わる。
即ち同図aで交線52と断面72が前者のときの状
態で点P2には矢示方向の応力が加わる。交線53
と断面73が後者のときの状態で、点P3には矢示
方向の応力が加わる。波が進行し、bに示すよう
に波の正側に交線51がくると、点P1は左方向の
運動をすると同時に上方向の運動をする。cでは
点P1は上下振動の上死点で左方向の運動だけす
る。dでは点P1は左方向の運動と下方向運動を
する。さらに波が進行し、右方向と下方向の運
動、右方向と上方向の運動を経てaの状態に戻
る。この一連の運動を合成すると点P1は回転楕
円運動をしている。この回転楕円運動は同図cに
示すように点P1が移動体3と接する線では矢示
方向で、点P1の運動によつて移動体3がX2方向
に摩擦駆動される。振動体2上のすべての点が、
点P1と同じように、移動体3を順次摩擦駆動す
る。
The progress state of the waves at this time is shown in Figure 5 a, b, c,
It is shown in d. Progressive bending vibration waves are now pointing
Suppose it moves in the X 1 direction. In a vibrating state where 0 is the center plane of the vibrating body in a resting state, the state is shown by a chain line, and the stress on this neutral plane 6 is balanced due to bending. Looking at the cross section 7 1 perpendicular to the neutral plane 6, no stress is applied to the intersection line 5 1 of these two surfaces, and the cross section only vibrates vertically. At the same time, the cross section 7 1 is pendulum vibrating left and right about the intersection line 5 1 .
In the state shown in FIG. 5A, a point P1 on the intersection line between the cross section 71 and the surface of the movable body side 1 of the vibrating body 2 is the right dead center of left-right vibration, and is only moving vertically. This pendulum vibration is caused by stress in the left direction ( opposite to the wave traveling direction On the negative side (also on the lower side) stress is applied in the right direction.
That is, in the state where the intersection line 5 2 and the cross section 7 2 are in the former state as shown in figure a, stress is applied to the point P 2 in the direction of the arrow. Intersection line 5 3
When cross section 73 is in the latter state, stress is applied to point P3 in the direction of the arrow. As the wave progresses, as shown in b, when the intersection line 5 1 comes to the positive side of the wave, point P 1 moves to the left and at the same time moves upward. In c, point P1 moves only to the left at the top dead center of vertical vibration. At point P1, point P1 moves leftward and downward. The wave further advances, moving rightward and downward, moving rightward and upward, and then returning to state a. When this series of motions is combined, point P 1 moves in a spheroidal motion. This spheroidal motion is in the direction of the arrow in the line where point P1 touches the moving body 3, as shown in FIG . All points on the vibrating body 2 are
The movable body 3 is sequentially frictionally driven in the same way as point P1 .

このような駆動される振動波モータの出力を上
げるには、点P1の回転楕円運動の回転半径を大
きくすればできる。回転半径は、振動体2のヤン
グ率の関数となつている。ヤング率が大きいと、
振動波の振幅は小さいから、回転半径は小さくな
り、駆動効率も悪くなる。一方、電歪素子1の伸
縮で振動体が屈曲するには、ヤング率が大きい必
要がある。従つて、ヤング率を小さくして、回転
半径を大きくし、駆動効率を上げるには限界があ
る。
The output of such a driven vibration wave motor can be increased by increasing the radius of rotation of the spheroidal motion of point P1 . The radius of rotation is a function of the Young's modulus of the vibrating body 2. When Young's modulus is large,
Since the amplitude of the vibration wave is small, the radius of rotation becomes small and the driving efficiency deteriorates. On the other hand, in order for the vibrating body to bend due to the expansion and contraction of the electrostrictive element 1, the Young's modulus needs to be large. Therefore, there is a limit to how much the Young's modulus can be reduced, the radius of rotation can be increased, and the drive efficiency can be increased.

本発明は上記事態に鑑みなされたもので、駆動
効率が高い振動波モータを提供することを目的と
するものである。
The present invention was made in view of the above situation, and an object of the present invention is to provide a vibration wave motor with high drive efficiency.

以下、図面に示された本発明の実施例を詳細に
説明する。
Embodiments of the invention shown in the drawings will be described in detail below.

第6図は本発明を適用する振動波モータの実施
例の要部を現わす一部切欠き図である。
FIG. 6 is a partially cutaway view showing the main parts of an embodiment of a vibration wave motor to which the present invention is applied.

同図で、10はヤング率の大きい弾性板例えば
ステンレス板、12,13は電気−機械エネルギ
ー変換素子としての第一、第二の電歪素子、1
4,15はヤング率の小さい弾性板で例えば強化
プラスチツク板である。弾性板10と電歪素子1
2,13、電歪素子12と弾性板14、電歪素子
13と弾性板15は夫々固着されており、不図示
の基台に取付けられ、固定体(ステータ)を構成
する。16,17は金属などからなる移動体(ロ
ータ)で、夫々ステータの弾性板14,15に押
圧接触する。このような構成で本発明の振動波モ
ータは、いわゆるバイモルフ構造となつている。
In the figure, 10 is an elastic plate with a large Young's modulus, such as a stainless steel plate, 12 and 13 are first and second electrostrictive elements as electro-mechanical energy conversion elements, and 1
Numerals 4 and 15 are elastic plates having a small Young's modulus, such as reinforced plastic plates. Elastic plate 10 and electrostrictive element 1
2, 13, the electrostrictive element 12 and the elastic plate 14, and the electrostrictive element 13 and the elastic plate 15 are respectively fixed and attached to a base (not shown) to constitute a fixed body (stator). Reference numerals 16 and 17 denote movable bodies (rotors) made of metal or the like, which press into contact with the elastic plates 14 and 15 of the stator, respectively. With such a configuration, the vibration wave motor of the present invention has a so-called bimorph structure.

第7図は電歪素子12,13の分極状態を示す
ものである。分極のピツチは第2図に示すピツチ
と同じであるが、電歪素子12と13では分極方
向が逆向きになつている。なお図示を省略した
が、各ピツチ毎に電歪素子12の弾性板14側と
電歪素子13の弾性板15側とに夫々導通電極が
設けられ、交流電源9が接続される。
FIG. 7 shows the polarization states of the electrostrictive elements 12 and 13. The polarization pitch is the same as that shown in FIG. 2, but the polarization directions of the electrostrictive elements 12 and 13 are opposite. Although not shown, conductive electrodes are provided on the elastic plate 14 side of the electrostrictive element 12 and on the elastic plate 15 side of the electrostrictive element 13 for each pitch, and are connected to the AC power source 9.

この振動波モータ交流電源9から駆動電圧を印
加したときの屈曲状態を、第8図に示している。
夫々対応する電歪素子12a1,12a2,12a3
と13a1,13a2,13a3…とでは極性が逆向き
であるから、一方が伸びると対応するもう一方が
縮む。電歪素子12b1,12b2,12b3…と13
b1,13b2,13b3…とでも同じように動作す
る。従つて弾性板10を中心として、電歪素子1
2,13および弾性板14,15は屈曲振動す
る。その振動波は、前記のような位相差を持つて
いるので進行性になり、移動体16,17を共に
X2方向に駆動する。
FIG. 8 shows the bending state of this vibration wave motor when a driving voltage is applied from the AC power source 9.
The corresponding electrostrictive elements 12a 1 , 12a 2 , 12a 3 ...
and 13a 1 , 13a 2 , 13a 3 . . . have opposite polarities, so when one expands, the corresponding one contracts. Electrostrictive elements 12b 1 , 12b 2 , 12b 3 ... and 13
b 1 , 13b 2 , 13b 3 . . . operate in the same way. Therefore, the electrostrictive element 1 is centered around the elastic plate 10.
2 and 13 and elastic plates 14 and 15 bend and vibrate. Since the vibration waves have the above-mentioned phase difference, they become progressive, and move the moving bodies 16 and 17 together.
X Drive in two directions.

このとき屈曲の中立線は弾性板10の内側に位
置することになる。弾性板14,15の厚さを厚
くすると、質点の楕円運動半径を大きくできるか
ら、容易に高出力を得られる。
At this time, the neutral line of bending will be located inside the elastic plate 10. By increasing the thickness of the elastic plates 14 and 15, the radius of elliptical motion of the mass point can be increased, so that high output can be easily obtained.

従来の振動波モータであると、ステータの振動
で、ロータの反対側に伝わる振動(第5図で、下
側の振動)は吸収体に吸収され、その分エネルギ
ーを無駄にしていたが、本発明のモータでは両側
の振動を共に有効に利用している。従つて、一層
の高効率化が実現できる。
In conventional vibration wave motors, the vibrations transmitted to the opposite side of the rotor due to the vibration of the stator (lower vibration in Figure 5) are absorbed by the absorber, wasting energy. The motor of the invention effectively utilizes vibrations on both sides. Therefore, even higher efficiency can be achieved.

なお、電歪素子12,13の分極極性方向を各
ピツチ同じにして、駆動交流電圧の電界方向が各
ピツチで逆向きになるよに配線してもよい。
The electrostrictive elements 12 and 13 may be wired in such a manner that the polarization directions of the electrostrictive elements 12 and 13 are the same at each pitch, and the direction of the electric field of the driving AC voltage is reversed at each pitch.

また、本発明は実施例に示した回転型のモータ
に限らず、リニアモータにも適用できるものであ
る。
Further, the present invention is not limited to the rotary motor shown in the embodiment, but can also be applied to a linear motor.

以上説明したように、本発明の振動波モータ
は、バイモルフ構造にすることにより、駆動効率
が極めて高いものになる。尚、12,13,1
4,15が振動体を構成する。
As explained above, the vibration wave motor of the present invention has extremely high driving efficiency by having a bimorph structure. In addition, 12, 13, 1
4 and 15 constitute a vibrating body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の振動波モータの主要部の概略
図、第2図から第5図は振動波モータの駆動原理
を説明する図、第6図は本発明を適用する振動波
モータの主要部の概略図、第7図・第8図はその
駆動を説明する図である。 9は交流電源、10は弾性板、12,13は電
歪素子、16,17は移動体である。
Figure 1 is a schematic diagram of the main parts of a conventional vibration wave motor, Figures 2 to 5 are diagrams explaining the driving principle of the vibration wave motor, and Figure 6 is the main part of a vibration wave motor to which the present invention is applied. The schematic diagram of FIG. 7 and FIG. 8 are diagrams for explaining the driving. 9 is an AC power supply, 10 is an elastic plate, 12 and 13 are electrostrictive elements, and 16 and 17 are movable bodies.

Claims (1)

【特許請求の範囲】 1 振動体12,13,14,15を有する振動
波モータであつて、 振動体12,13,14,15は、第一、第二
の電気−機械エネルギー変換素子12,13と、
第一、第二の弾性体14,15とを有するもので
あり、 第一、第二の電気−機械エネルギー変換素子1
2,13は、分極極性方向または電圧印加方向が
互いに逆向き方向となるように積重され、 第一、第二の弾性体14,15は積重された第
一、第二の電気−機械エネルギー変換素子12,
13を挟むように配置されるものである 振動波モータ。
[Claims] 1. A vibration wave motor having vibrating bodies 12, 13, 14, 15, wherein the vibrating bodies 12, 13, 14, 15 are connected to first and second electro-mechanical energy conversion elements 12, 13 and
It has first and second elastic bodies 14 and 15, and first and second electric-mechanical energy conversion elements 1.
2 and 13 are stacked such that their polarization directions or voltage application directions are opposite to each other, and the first and second elastic bodies 14 and 15 are the stacked first and second electric-mechanical bodies. energy conversion element 12,
A vibration wave motor that is arranged to sandwich 13.
JP59024021A 1984-02-10 1984-02-10 Vibration wave motor Granted JPS60170471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59024021A JPS60170471A (en) 1984-02-10 1984-02-10 Vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59024021A JPS60170471A (en) 1984-02-10 1984-02-10 Vibration wave motor

Publications (2)

Publication Number Publication Date
JPS60170471A JPS60170471A (en) 1985-09-03
JPH05948B2 true JPH05948B2 (en) 1993-01-07

Family

ID=12126876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59024021A Granted JPS60170471A (en) 1984-02-10 1984-02-10 Vibration wave motor

Country Status (1)

Country Link
JP (1) JPS60170471A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3059031B2 (en) * 1993-09-22 2000-07-04 キヤノン株式会社 Vibration wave drive device and device provided with vibration wave drive device
AU2925097A (en) * 1996-04-17 1997-11-07 California Institute Of Technology High torque ultrasonic motor system
JP2005124263A (en) * 2003-10-14 2005-05-12 Nano Control:Kk Preloading mechanism and positioning device for multilayer piezoelectric actuator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122385A (en) * 1982-12-26 1984-07-14 Toshio Sashita Motor device utilizing supersonic vibration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122385A (en) * 1982-12-26 1984-07-14 Toshio Sashita Motor device utilizing supersonic vibration

Also Published As

Publication number Publication date
JPS60170471A (en) 1985-09-03

Similar Documents

Publication Publication Date Title
JPH05949B2 (en)
US4587452A (en) Vibration wave motor having a vibrator of non-uniform elastic modulus
US4788468A (en) Vibration wave motor
JPH04190684A (en) Device and method for driving ultrasonic wave
JPS60170474A (en) Vibration wave motor
JPH0241673A (en) Ultrasonic driving gear
JPS61224878A (en) Vibration wave motor
JPS62225181A (en) Oscillatory wave motor
JPH07115782A (en) Vibration wave driver
JPS61224880A (en) Vibration wave motor
JP4918122B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JPH05948B2 (en)
JPH0552138B2 (en)
JP2004304963A (en) Piezoelectric actuator
JPS6051477A (en) Piezoelectric motor
JPH0515153B2 (en)
JPH08149862A (en) Ultrasonic oscillator
JPS63268476A (en) Oscillatory wave motor
JP2667931B2 (en) Multi-degree-of-freedom actuator
JPH08172782A (en) Ultrasonic motor
JPH0773428B2 (en) Piezoelectric drive
JPS63110973A (en) Piezoelectric driver
JPS63314182A (en) Piezoelectric driving gear
JPS63136983A (en) Vibration wave motor
JPH0632570B2 (en) Vibration wave motor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term