JPH0515153B2 - - Google Patents

Info

Publication number
JPH0515153B2
JPH0515153B2 JP58154651A JP15465183A JPH0515153B2 JP H0515153 B2 JPH0515153 B2 JP H0515153B2 JP 58154651 A JP58154651 A JP 58154651A JP 15465183 A JP15465183 A JP 15465183A JP H0515153 B2 JPH0515153 B2 JP H0515153B2
Authority
JP
Japan
Prior art keywords
vibrating body
vibration
wave
electrostrictive
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58154651A
Other languages
Japanese (ja)
Other versions
JPS6046781A (en
Inventor
Takayuki Tsukimoto
Ichiro Okumura
Kazuhiro Izukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58154651A priority Critical patent/JPS6046781A/en
Publication of JPS6046781A publication Critical patent/JPS6046781A/en
Publication of JPH0515153B2 publication Critical patent/JPH0515153B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 本発明は進行性振動波により駆動する振動波モ
ータの振動波の波数に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the wave number of vibration waves of a vibration wave motor driven by progressive vibration waves.

振動波モータは例えば特開昭52−29192号公報
にも開示されているように、電歪素子に交流、脈
流等の周波電圧を印加したときに生ずる振動運動
を回転運動又は一次元運動に変換するものであ
る。従来の電磁モータに比べて巻線を必要としな
いため、構造が簡単で小型になり、低速回転時に
も高トルクが得られると共に慣性モーメントが少
ないという利点がある。そのため、最近注目され
ている。
As disclosed in, for example, Japanese Patent Laid-Open No. 52-29192, a vibration wave motor converts the vibration motion generated when a frequency voltage such as alternating current or pulsating current is applied to an electrostrictive element into rotational motion or one-dimensional motion. It is something that converts. Compared to conventional electromagnetic motors, this motor does not require windings, so it has a simpler and smaller structure, and has the advantage of providing high torque even when rotating at low speeds and having a small moment of inertia. Therefore, it has been attracting attention recently.

上記公報等で知られている振動波モータは振動
運動を回転運動等に変換するにあたり、振動体に
生じた定在振動波で、振動体と接触するロータ等
の移動体を一方向に摩擦駆動するもので、振動の
往運動時には振動体と移動体が摩擦接触し、復運
動時には離れるようになつている。そのため振動
体と移動体は微小範囲で接触する構造、即ち点も
しくは線接触に近い構造でなければならず、いき
おい摩擦駆動効率の悪いものとなつてしまう。
The vibration wave motor known from the above publications uses standing vibration waves generated in the vibrator to frictionally drive a moving body such as a rotor in one direction when it converts vibration motion into rotational motion. The vibrating body and the movable body come into frictional contact during the forward motion of vibration, and separate during the backward motion. Therefore, the vibrating body and the movable body must have a structure in which they contact each other in a minute range, that is, a structure close to point or line contact, which results in poor friction drive efficiency.

最近この点を改良した振動波モータで、振動体
に生ずる進行性振動波によつて移動体を摩擦駆動
するものがある。
Recently, there are vibration wave motors that have been improved in this respect and drive a moving body by friction using progressive vibration waves generated in a vibrating body.

第1図にはその要部の概略図が示してある。 FIG. 1 shows a schematic diagram of its main parts.

同図で1は電歪素子で例えばPZT(チタン酸ジ
ルコン酸鉛)、2は振動体で弾性物質からなり、
電歪素子1を接着してある。振動体2は電歪素子
1と共にステータ(不図示)側に保持されてい
る。3は移動体で振動体2に対し押圧接触されて
いてロータを形成する。
In the figure, 1 is an electrostrictive element, for example PZT (lead zirconate titanate), and 2 is a vibrating body made of an elastic material.
An electrostrictive element 1 is attached. The vibrating body 2 and the electrostrictive element 1 are held on the stator (not shown) side. Reference numeral 3 denotes a moving body which is pressed into contact with the vibrating body 2 and forms a rotor.

第2図は電歪素子1と振動体2の関係を示す側
面図である。電歪素子1は複数個の素子1a1,1
a2,1a3……及び1b1,1b2,1b3……が接着さ
れておりそのうちの一群の電歪素子1a1,1a2
1a3……に対し、他の群の電歪素子1b1,1b2
1b3……は振動波の波長λの1/4波長分だけずれ
て配置される。一群内での各電歪素子1a1,1
a2,1a3……は1/2波長のピツチで、相隣り合う
ものの分極極性が逆になるように配置されてい
る。図中の+・−は極性を示している。もう一方
の群内での各電歪素子1b1,1b2,1b3……も同
じく1/2波長のピツチで、相隣り合うものは逆極
性である。これら電歪素子が並べられた大きさだ
けの大きさがある一つの電歪素子にして、それを
前記のピツチに分極処理してもよい。電歪素子の
分極両面には電圧を印加するための電極が蒸着、
書込等により形成される。
FIG. 2 is a side view showing the relationship between the electrostrictive element 1 and the vibrating body 2. The electrostrictive element 1 includes a plurality of elements 1a 1 , 1
a 2 , 1a 3 ... and 1b 1 , 1b 2 , 1b 3 ... are bonded, and one group of electrostrictive elements 1a 1 , 1a 2 ,
1a 3 ..., the other groups of electrostrictive elements 1b 1 , 1b 2 ,
1b 3 ... are arranged shifted by 1/4 wavelength of the wavelength λ of the vibration wave. Each electrostrictive element 1a 1 , 1 in one group
a 2 , 1a 3 . . . are arranged at a pitch of 1/2 wavelength so that the polarization of adjacent ones is opposite. + and - in the figure indicate polarity. The electrostrictive elements 1b 1 , 1b 2 , 1b 3 . . . in the other group also have a pitch of 1/2 wavelength, and adjacent ones have opposite polarities. A single electrostrictive element having a size equal to the size of these electrostrictive elements arranged side by side may be prepared and then polarized to the pitch described above. Electrodes for applying voltage are deposited on both polarized surfaces of the electrostrictive element.
Formed by writing, etc.

このような構成の振動波モータで一つの群内の
電歪素子1a1,1a2,1a3,1a4……にはV0
Sinωtの交流電圧を印加する。もう一方の群の電
歪素子1b1,1b2,1b3,1b4……にはV0Cosωt
の交流電圧を印加する。従つて各電歪素子は相隣
り合うものどうし分極方向に対し180°位相がず
れ、二つの群どうし90°位相のずれた交流電圧が
印加されて伸縮振動をする。この振動が伝えられ
て振動体2は電歪素子1の配置ピツチに従つて曲
げ振動をする。振動体2が一つおきの電歪素子の
位置で出つ張ると、他の一つおきの電歪素子の位
置が引つ込む。一方、前記の如く電歪素子の一群
は他の一群に対し、1/4波長ずれた位置にあり曲
げ振動の位相が90°ずれているため振動波が合成
され進行する。交流電圧が印加されている間、
次々と振動が励起されて、進行性曲げ振動波とな
つて振動体2を伝わつてゆく。
In a vibration wave motor with such a configuration, the electrostrictive elements 1a 1 , 1a 2 , 1a 3 , 1a 4 . . . in one group have V 0
Apply an AC voltage of Sinωt. The other group of electrostrictive elements 1b 1 , 1b 2 , 1b 3 , 1b 4 ... has V 0 Cosωt
Apply an AC voltage of Therefore, each electrostrictive element has a phase shift of 180 degrees with respect to the polarization direction between adjacent elements, and alternating current voltages with a phase shift of 90 degrees between the two groups are applied, causing stretching vibration. This vibration is transmitted to the vibrating body 2, which bends and vibrates in accordance with the arrangement pitch of the electrostrictive element 1. When the vibrating body 2 protrudes at the position of every other electrostrictive element, the position of every other electrostrictive element retracts. On the other hand, as described above, one group of electrostrictive elements is at a position shifted by 1/4 wavelength from the other group, and the phase of the bending vibration is shifted by 90 degrees, so the vibration waves are synthesized and propagate. While the AC voltage is applied,
The vibrations are excited one after another and are transmitted through the vibrating body 2 as progressive bending vibration waves.

このときの波の進行状態が第3図a,b,c,
dに示してある。いま進行性曲げ振動波が矢示X
方向に進むとする。0は静止状態に於ける振動体
の中心面で、振動状態では鎖線6の状態となり、
この中立面6は曲げによる応力が拮抗している。
中立面6と直交する断面7についてみると、これ
ら二面の交線5では応力がかからず上下振動して
いるだけである。同時に断面7は交線5を中心と
して左右の振り子振動している。同図aに示す状
態では断面7と振動体2の移動体側1の表面との
交線上の点Pは左右振動の右死点となつており上
方向運動だけしている。振り子振動は交線5が波
の正側では(中心面0の上側にあるとき)左方向
(波の進行と逆方向)の応力が加わり、波の負側
(同じく下側にあるとき)右方向の応力が加わる。
即ち同図aで交線5′と断面7′が前者のときの状
態で点P′は応力F′が加わり交線5″と断面7″が後
者の状態で点P″は応力F″が加わる。波が進行し、
bに示すように波の正側に交線5がくると点Pは
左方向の運動をすると同時に上方向の運動をす
る。cで点Pは上下振動の上死点で左方向の運動
だけする。dでは左方向の運動と下方向運動をす
る。さらに波が進行し、右方向と下方向の運動、
右方向と上方向の運動を経てaの状態に戻る。こ
の一連の運動を合成すると点Pは回転楕円運動を
している。同図cに示すように点Pが移動体3と
接する線では点Pの運動によつて移動体3が
X′方向に摩擦駆動される。
The progress state of the waves at this time is shown in Figure 3 a, b, c,
It is shown in d. The progressive bending vibration wave is now pointing to arrow X.
Suppose you move in the direction. 0 is the center plane of the vibrating body in the resting state, and in the vibrating state it is in the state shown by the chain line 6,
The stress due to bending is balanced on this neutral plane 6.
Looking at the cross section 7 perpendicular to the neutral plane 6, no stress is applied to the intersection line 5 of these two surfaces, and the cross section only vibrates vertically. At the same time, the cross section 7 is pendulum vibrating left and right about the intersection line 5. In the state shown in FIG. 5A, a point P on the intersection line between the cross section 7 and the surface of the movable body side 1 of the vibrating body 2 is the right dead center of left-right vibration, and only upward movement occurs. In pendulum vibration, when the intersection line 5 is on the positive side of the wave (above the center plane 0), stress is applied to the left (in the direction opposite to the wave's progress), and when the intersection line 5 is on the negative side of the wave (also below), stress is applied to the right. directional stress is applied.
That is, in the figure a, when the intersection line 5' and the cross section 7' are in the former state, stress F' is applied to the point P', and when the intersection line 5'' and the cross section 7' are in the latter state, the stress F' is applied to the point P'. join. The waves progress,
As shown in b, when the intersection line 5 comes to the positive side of the wave, point P moves to the left and at the same time moves upward. At c, point P moves only to the left at the top dead center of vertical vibration. In d, there is a leftward movement and a downward movement. The wave further advances, moving to the right and downward,
After moving to the right and upward, it returns to state a. When this series of movements is combined, the point P is moving in a spheroid. As shown in Figure c, on the line where point P touches the moving body 3, the movement of the point P causes the moving body 3 to move.
Frictionally driven in the X′ direction.

このようにして駆動される振動波モータで、未
だ充分な駆動効率が得られるに至つていない。本
発明者らはその原因を探るため種々の実験をして
考察した。その結果、原因の一つとして、振動体
の波の頂点が移動体に多点で接触していることに
あることを解明した。従来の振動波モータでは、
振動体に対する電歪素子の配列ピツチは上記のよ
うになされているため、波長は所期のようにな
る。しかし、その波長の波数が振動体にいくつ生
ずるかは設定していない。多数の波が振動体に生
じ、その波の頂点が移動体に多点で接触すること
になる。ところが、電歪素子や振動体の材質の不
均一により、波の振幅も一定ではない。そのた
め、移動体と接触しない波の頂点があり、全波が
駆動に関与しない。従つて、効率が悪くなる。
Vibration wave motors driven in this manner have not yet achieved sufficient drive efficiency. The present inventors conducted various experiments and considered the cause of the problem. As a result, they discovered that one of the causes was that the peaks of the waves on the vibrating body were in contact with the moving body at multiple points. In conventional vibration wave motors,
Since the arrangement pitch of the electrostrictive element with respect to the vibrating body is set as described above, the wavelength becomes as expected. However, it is not set how many wave numbers of that wavelength occur in the vibrating body. Many waves are generated on the vibrating body, and the peaks of the waves come into contact with the moving body at multiple points. However, due to non-uniformity in the materials of the electrostrictive element and the vibrating body, the amplitude of the waves is also not constant. Therefore, there is a peak of the wave that does not come into contact with the moving object, and the entire wave does not participate in driving. Therefore, efficiency deteriorates.

全波を移動体に接触させるために移動体に振動
体を押しつけても、効率は向上しない。第4図に
示すように、波の頂点Aと若干ずれた点Bとで
は、回転楕円運動のX′方向成分の速度が異なる
からである。多くの波を移動体に均一に接触させ
るために電歪素子・振動体・移動体の精度を向上
させることは困難である。特に、波長が短かくて
振幅の小さい波のときは一層困難である。
Even if a vibrating body is pressed against the moving body in order to bring the full wave into contact with the moving body, efficiency does not improve. This is because, as shown in FIG. 4, the velocity of the X'-direction component of the spheroidal motion is different between the peak A of the wave and the slightly shifted point B. It is difficult to improve the accuracy of the electrostrictive element, vibrating body, and moving body in order to uniformly contact many waves with the moving body. This is especially difficult when the wavelength is short and the amplitude is small.

本発明は上記のような事実に鑑みなされたもの
で、振動体の構造を改良することにより、駆動効
率の高い振動波モータを提供することを目的とす
るものである。
The present invention was made in view of the above-mentioned facts, and an object of the present invention is to provide a vibration wave motor with high drive efficiency by improving the structure of the vibrator.

この目的を達成するため本発明は、電歪素子に
周波電圧を印加し、該電歪素子に接合した振動体
に生ずる進行性振動波によつて、該振動体と接合
する移動体を駆動する振動波モータに於て、前記
振動体に生ずる進行性振動波の波数が3であるこ
とを特徴とする振動波モータである。
In order to achieve this object, the present invention applies a frequency voltage to an electrostrictive element, and uses progressive vibration waves generated in a vibrating body connected to the electrostrictive element to drive a moving body connected to the vibrating body. The vibration wave motor is characterized in that a progressive vibration wave generated in the vibrating body has a wave number of 3.

以下図面に示された実施例を詳細に説明し上記
本発明の構成を明らかにする。
The embodiments shown in the drawings will be described in detail below to clarify the structure of the present invention.

第5図は本発明を適用した振動波モータの電歪
素子の配列の実施例を示したものである。円周の
振動体2(本図に於いて省略)に、電歪素子1a1
と1a2とが各々1/2波長巾で並べられる。電歪素
子1b1と1b2も各々1/2波長巾で並べられる。電
歪素子1a1,1a2と電歪素子1b1,1b2とは夫々
1/4波長分だけずれて配置される。従つて、振動
体2が電歪素子1a1,1a2及び電歪素子1b1,1
b2に接していない、一方の余地は1/4波長、もう
一方の余地は3/4波長となる。
FIG. 5 shows an embodiment of the arrangement of electrostrictive elements of a vibration wave motor to which the present invention is applied. An electrostrictive element 1a 1 is attached to the circumferential vibrating body 2 (omitted in this figure).
and 1a 2 are arranged with 1/2 wavelength width each. The electrostrictive elements 1b 1 and 1b 2 are also arranged with a 1/2 wavelength width. The electrostrictive elements 1a 1 and 1a 2 and the electrostrictive elements 1b 1 and 1b 2 are arranged to be shifted by 1/4 wavelength, respectively. Therefore, the vibrating body 2 includes the electrostrictive elements 1a 1 , 1a 2 and the electrostrictive elements 1b 1 , 1
b Not touching 2 , the margin on one side is 1/4 wavelength and the margin on the other is 3/4 wavelength.

このように配列された電歪素子に前述のように
交流電圧を印加すると、電歪素子1a1,1a2側に
は、 Y=Y0Sin2π(t/T) ・Sin2π(x/λ) 電歪素子1b1と1b2側には、 Y=Y0Sin{2π(t/T)−π/2} ・Sin{2π(x/λ−π/2} (Tは周期、tは時刻、λは波長、xは周上の
位置、Y0は振幅)なる定在波が発生する。この
二つの定在波が次々と発生し、合成されて進行波
になる。このとき、進行波の波数は振動体2の一
周に対し3になる。即ち、振動体2の波の頂点は
移動体3を3点で支持しながら駆動する。
When an AC voltage is applied to the electrostrictive elements arranged in this way as described above, an electric current of Y=Y 0 Sin2π(t/T) ・Sin2π(x/λ) is generated on the electrostrictive elements 1a 1 and 1a 2 side. On the strain elements 1b 1 and 1b 2 side, Y=Y 0 Sin{2π(t/T)−π/2} ・Sin{2π(x/λ−π/2}) (T is period, t is time, A standing wave is generated where λ is the wavelength, x is the position on the circumference, and Y 0 is the amplitude. These two standing waves are generated one after another and are combined to form a traveling wave. At this time, the traveling wave The number of waves is 3 per revolution of the vibrating body 2. That is, the peak of the wave of the vibrating body 2 drives the movable body 3 while supporting it at three points.

従つて、振動体2の波の頂点は移動体3との間
に隙間が空くことがなくなり、全ての波が移動体
3を駆動することになり、駆動効率が向上する。
Therefore, there is no gap between the peak of the wave of the vibrating body 2 and the movable body 3, and all the waves drive the movable body 3, improving driving efficiency.

波数が少ない(波長が長い)から、その分振幅
が大きくなる。そのため、電歪素子・振動体・移
動体の面精度を従来のものほど良くする必要がな
く、簡単に製作できる。振動波は振動体の周方向
だけでなく、巾方向にも起るものであり、巾方向
の振動波は移動体の駆動に悪影響を及ぼす。振動
体の巾方向の長さに比べ波長が長くなるから、幅
方向の振動は起りにくくなる。従つて、悪影響を
及ぼす振動波の発生を抑えることができる。
Since the wave number is small (the wavelength is long), the amplitude increases accordingly. Therefore, it is not necessary to improve the surface precision of the electrostrictive element, vibrating body, and moving body as much as in the conventional ones, and the manufacturing is easy. Vibration waves occur not only in the circumferential direction of the vibrating body but also in the width direction, and vibration waves in the width direction adversely affect the drive of the moving body. Since the wavelength is longer than the length of the vibrating body in the width direction, vibrations in the width direction are less likely to occur. Therefore, generation of vibration waves that have an adverse effect can be suppressed.

第6図は本発明を適用した振動波モータの別な
実施例の電歪素子の配列を示したものである。こ
の例では、2つの電歪素子1a1と1a2とが各々1/
2波長巾で並べられ、3つの電歪素子1b1と1b2
と1b3とが各々1/2波長巾で並べられる。電歪素
子1a1,1a2と電歪素子1b1,1b2,1b3とは
夫々1/4波長分だけずれて配置される。従つて振
動体2が電歪素子1a1,1a2及び電歪素子1b1
1b2,1b3に接していない一方の余地が1/4波長、
もう一方の余地も1/4波長となる。振動体に発生
する波の数は3となる。本発明では、振動体に発
生する振動波の数を3としたから、振動体の面精
度、電気−機械エネルギー変換素子としての電歪
素子の面精度、移動体の面精度を従来のものほど
高精度にする必要はなく、従つて振動波モータを
安価に製作できるものであり、また振動波の数が
3であるから、1波又は2波の場合に比べて対象
物としての移動体を安定に支持、駆動できるもの
である。尚2が振動体、3が対象物、1a1,1
a2,1b1,1b2,1b3の夫々が変換素子を構成す
る。
FIG. 6 shows an arrangement of electrostrictive elements in another embodiment of a vibration wave motor to which the present invention is applied. In this example, two electrostrictive elements 1a 1 and 1a 2 each have a ratio of 1/
Three electrostrictive elements 1b 1 and 1b 2 arranged with two wavelength width
and 1b 3 are arranged with a 1/2 wavelength width each. The electrostrictive elements 1a 1 , 1a 2 and the electrostrictive elements 1b 1 , 1b 2 , 1b 3 are arranged with a shift of 1/4 wavelength, respectively. Therefore, the vibrating body 2 includes the electrostrictive elements 1a 1 , 1a 2 and the electrostrictive elements 1b 1 ,
The margin on one side not touching 1b 2 and 1b 3 is 1/4 wavelength,
The other margin is also 1/4 wavelength. The number of waves generated in the vibrating body is three. In the present invention, since the number of vibration waves generated in the vibrating body is three, the surface accuracy of the vibrating body, the surface accuracy of the electrostrictive element as an electro-mechanical energy conversion element, and the surface accuracy of the moving body are as low as those of the conventional one. There is no need for high precision, and therefore the vibration wave motor can be manufactured at low cost.Also, since the number of vibration waves is 3, it is possible to control the moving object as an object compared to the case of 1 wave or 2 waves. It can be stably supported and driven. Note that 2 is the vibrating body, 3 is the object, 1a 1 , 1
Each of a 2 , 1b 1 , 1b 2 , and 1b 3 constitutes a conversion element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は振動波モータの主要部の概略図、第2
図から第4図は振動波モータの駆動原理を説明す
る図、第5図は本発明を適用した振動波モータの
電歪素子の配列の実施例を示した図、第6図は別
な実施例の同上図である。 2は振動体、3は移動体、1a1,1a2及び1
b1,1b2は電歪素子、λは波長である。
Figure 1 is a schematic diagram of the main parts of a vibration wave motor, Figure 2
4 is a diagram explaining the driving principle of a vibration wave motor, FIG. 5 is a diagram showing an example of an arrangement of electrostrictive elements of a vibration wave motor to which the present invention is applied, and FIG. 6 is a diagram showing another implementation. It is the same figure as an example. 2 is a vibrating body, 3 is a moving body, 1a 1 , 1a 2 and 1
b 1 and 1b 2 are electrostrictive elements, and λ is a wavelength.

Claims (1)

【特許請求の範囲】 1 振動体2と、振動体2と接触して振動体2に
より駆動される対象物3と、振動体2を励振する
電気−機械エネルギー変換素子1a1,1a2,1
b1,1b2,1b3とを有する振動波モータであつ
て、 変換素子1a1,1a2,1b1,1b2,1b3は振動
体2に3波の振動波を励振するように振動体2上
に配置される 振動波モータ。
[Claims] 1. A vibrating body 2, an object 3 in contact with the vibrating body 2 and driven by the vibrating body 2, and electro-mechanical energy conversion elements 1a 1 , 1a 2 , 1 that excite the vibrating body 2
b 1 , 1b 2 , 1b 3 , and the conversion elements 1a 1 , 1a 2 , 1b 1 , 1b 2 , 1b 3 vibrate so as to excite three vibration waves in the vibrating body 2. A vibration wave motor placed on the body 2.
JP58154651A 1983-08-24 1983-08-24 Vibration wave motor Granted JPS6046781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58154651A JPS6046781A (en) 1983-08-24 1983-08-24 Vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58154651A JPS6046781A (en) 1983-08-24 1983-08-24 Vibration wave motor

Publications (2)

Publication Number Publication Date
JPS6046781A JPS6046781A (en) 1985-03-13
JPH0515153B2 true JPH0515153B2 (en) 1993-02-26

Family

ID=15588889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58154651A Granted JPS6046781A (en) 1983-08-24 1983-08-24 Vibration wave motor

Country Status (1)

Country Link
JP (1) JPS6046781A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0294102B1 (en) * 1987-06-04 1994-10-12 Seiko Instruments Inc. Travelling-wave motor
JPH03183376A (en) * 1989-12-08 1991-08-09 Canon Inc Oscillation wave motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148682A (en) * 1982-02-25 1983-09-03 Toshio Sashita Motor device using supersonic vibration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148682A (en) * 1982-02-25 1983-09-03 Toshio Sashita Motor device using supersonic vibration

Also Published As

Publication number Publication date
JPS6046781A (en) 1985-03-13

Similar Documents

Publication Publication Date Title
JPH05949B2 (en)
US4587452A (en) Vibration wave motor having a vibrator of non-uniform elastic modulus
US4580073A (en) Vibration wave motor with plural projection vibrator
US4504760A (en) Piezoelectrically driven vibration wave motor
JPH0117354B2 (en)
JPS6013481A (en) Vibration wave motor
JPS61224878A (en) Vibration wave motor
JPS61224883A (en) Vibration wave motor
JPH0515153B2 (en)
US4399385A (en) Rotative motor using a triangular piezoelectric element
JPS6051477A (en) Piezoelectric motor
JPS60183981A (en) Supersonic wave motor
JPH05948B2 (en)
JPS63268476A (en) Oscillatory wave motor
JPS6185076A (en) Vibration wave ring motor
JPS60226781A (en) Supersonic wave motor
JPS60207466A (en) Supersonic motor
JPS63240382A (en) Ultrasonic motor
JPS63110973A (en) Piezoelectric driver
JP3155339B2 (en) Ultrasonic motor
JPS60207467A (en) Supersonic motor
JPH0681523B2 (en) Vibration wave motor
JPH0552137B2 (en)
JP2710803B2 (en) Piezo actuator
JPS60207468A (en) Supersonic motor