JPH0528072B2 - - Google Patents

Info

Publication number
JPH0528072B2
JPH0528072B2 JP61199633A JP19963386A JPH0528072B2 JP H0528072 B2 JPH0528072 B2 JP H0528072B2 JP 61199633 A JP61199633 A JP 61199633A JP 19963386 A JP19963386 A JP 19963386A JP H0528072 B2 JPH0528072 B2 JP H0528072B2
Authority
JP
Japan
Prior art keywords
driving
frequency
voltage
drive
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61199633A
Other languages
Japanese (ja)
Other versions
JPS6356178A (en
Inventor
Osamu Kawasaki
Katsu Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61199633A priority Critical patent/JPS6356178A/en
Priority to KR1019870009216A priority patent/KR900007413B1/en
Priority to US07/089,334 priority patent/US4853579A/en
Priority to DE3751767T priority patent/DE3751767T2/en
Priority to EP87307559A priority patent/EP0261810B1/en
Publication of JPS6356178A publication Critical patent/JPS6356178A/en
Publication of JPH0528072B2 publication Critical patent/JPH0528072B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Description

【発明の詳細な説明】 産業上の利用分野 本発明は圧電体を用いて駆動力を発生する超音
波モータの駆動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for driving an ultrasonic motor that generates driving force using a piezoelectric body.

従来の技術 近年圧電セラミツク等の圧電体を用いた駆動体
に弾性振動を励振し、これを駆動力とした超音波
モータが注目されている。
BACKGROUND OF THE INVENTION In recent years, ultrasonic motors have attracted attention in which elastic vibrations are excited in a drive body using a piezoelectric material such as piezoelectric ceramic, and this is used as a driving force.

以下、図面を参照しながら超音波モータの従来
技術について説明を行う。
Hereinafter, the conventional technology of an ultrasonic motor will be explained with reference to the drawings.

第4図は従来の超音波モータの斜視図であり、
円環形の弾性体1の円環面の一方に圧電体として
円環形圧電セラミツク2を貼合せて圧電駆動体3
を構成している。4は耐磨耗性材料のスライダ、
5は弾性体であり、互いに貼合せられて移動体6
を構成している。移動体6はスライダ4を介して
駆動体3と接触している。圧電体2に電界を印加
すると駆動体3の周方向に曲げ振動の進行波が励
起され、移動体6を駆動する。尚、同図中の矢印
は移動体6の回転方向を示す。
FIG. 4 is a perspective view of a conventional ultrasonic motor.
A piezoelectric driving body 3 is formed by pasting a circular piezoelectric ceramic 2 as a piezoelectric body on one of the circular surfaces of a circular elastic body 1.
It consists of 4 is a slider made of wear-resistant material;
5 is an elastic body, which is attached to each other to form a moving body 6.
It consists of The moving body 6 is in contact with the driving body 3 via the slider 4. When an electric field is applied to the piezoelectric body 2, a traveling wave of bending vibration is excited in the circumferential direction of the driving body 3, thereby driving the movable body 6. Note that the arrow in the figure indicates the rotation direction of the moving body 6.

第5図は第4図の超音波モータに使用した圧電
セラミツク2の電極構造の一例を示している。同
図では円周方向に9波長の弾性波がのるようにし
てある。同図において、A,Bはそれぞれ2分の
1波長相当の小領域から成る電極で、Cは4分の
3波長、Dは4分の1波長の長さの電極である。
従つて、Aの電極とBの電極とは位置的に4分の
1波長(=90度)の位相ずれがある。電極A,B
内の隣り合う小電極部は互いに反対に厚み方向に
分極されている。圧電セラミツク2の弾性体1と
の接着面は第5図に示めされた面と反対の面であ
り、電極はベタ電極である。使用時には電極群
A,Bは第5図に斜線で示されたように、それぞ
れ短絡して用いられる。
FIG. 5 shows an example of the electrode structure of the piezoelectric ceramic 2 used in the ultrasonic motor of FIG. In the figure, nine wavelengths of elastic waves are arranged in the circumferential direction. In the figure, A and B are electrodes each consisting of a small area corresponding to a half wavelength, C is an electrode with a length of three-quarters of a wavelength, and D is an electrode with a length of a quarter of a wavelength.
Therefore, there is a positional phase shift of a quarter wavelength (=90 degrees) between the electrode A and the electrode B. Electrodes A, B
Adjacent small electrode portions within the electrode are polarized in opposite directions in the thickness direction. The adhesive surface of the piezoelectric ceramic 2 with the elastic body 1 is the opposite surface to the surface shown in FIG. 5, and the electrodes are solid electrodes. When in use, electrode groups A and B are short-circuited, as indicated by diagonal lines in FIG.

以上のように構成された超音波モータについ
て、その動作を以下に説明する。前記圧電体2の
電極Aに V=V1×sin(ωt) ……(1) で表される電圧を印加すると(ただしV1は電圧
の瞬時値、ωは角周波数、tは時間)、駆動体3
は円周方向に曲げ振動をする。
The operation of the ultrasonic motor configured as above will be described below. When a voltage expressed as V = V 1 × sin (ωt) ... (1) is applied to the electrode A of the piezoelectric body 2 (where V 1 is the instantaneous value of the voltage, ω is the angular frequency, and t is the time), Drive body 3
causes bending vibration in the circumferential direction.

第6図は第4図の超音波モータの駆動体を直線
近似した時の斜視図であり、同図aは圧電体2に
電圧を印加していない時、同図bは圧電体2に電
圧を印加した時の様子を示す。
6 is a perspective view of the driving body of the ultrasonic motor shown in FIG. 4 when it is approximated by a straight line. FIG. This shows what happens when .

第7図は移動体6と駆動体3の接触状況を拡大
にして描いたものである。前記圧電体2の電極A
にV1×sin(ωt)、他の電極BにV1×cos(ωt)の互
いに位相がπ/2だけずれた電圧を印加すれば、駆
動体3の円周方向に曲げ振動の進行波を作ること
ができる。一般に進行波は振幅をξとすれば ξ=ξ1×cos(ωt−kx) ……(2) ただしξ1:波の大きさの瞬時値 k:波数(2π/λ) λ:波長 x:位置 で表せる。(2)式は ξ=ξ1×(cos(ωt)×cos(kx)+sin(ωt)×sin
(kx))……(3) と書き直せ、(3)式は進行波が時間的にπ/2だけ
位相のずれたcos(ωt)とsin(ωt)、および位置的
にπ/2だけ位相のずれたcos(kx)とsin(kx)
との、それぞれの積の和で得られることを示して
いる。前述の説明より、圧電体2は互いに位置的
にπ/2(=λ/4)だけ位相のずれた電極群A,
Bを持つているので、駆動体3の共振周波数に等
しい周波数出力を持つ発振器の出力から、それぞ
れに時間的に位相のπ/2だけずれた交流電圧を
作り、前記電極群に印加すれば駆動体3に曲げ振
動の進行波を作れる。
FIG. 7 is an enlarged depiction of the contact situation between the moving body 6 and the driving body 3. Electrode A of the piezoelectric body 2
If voltages of V 1 × sin (ωt) and V 1 × cos (ωt), which are shifted in phase by π/2 from each other, are applied to the other electrode B, a traveling wave of bending vibration is generated in the circumferential direction of the driving body 3. can be made. In general, if the amplitude of a traveling wave is ξ, then ξ=ξ 1 × cos (ωt−kx) ...(2) where ξ 1 : Instantaneous value of wave size k : Wave number (2π/λ) λ : Wavelength x : It can be expressed by position. Equation (2) is ξ=ξ 1 × (cos (ωt) × cos (kx) + sin (ωt) × sin
(kx))...(3), Equation (3) shows that the traveling wave has cos (ωt) and sin (ωt) whose phase is shifted by π/2 in time, and the phase is shifted by π/2 in position. Shifted cos(kx) and sin(kx)
It shows that it can be obtained by the sum of the products of each. From the above explanation, the piezoelectric body 2 has electrode groups A, which are positioned out of phase by π/2 (=λ/4),
Since the output of the oscillator has a frequency output equal to the resonant frequency of the driving body 3, AC voltages with a phase difference of π/2 in time are created and applied to the electrode group to drive the electrode group. A traveling wave of bending vibration can be created in body 3.

第7図は駆動体のA点が進行波の励起によつ
て、長軸2w、短軸2uの楕円運動をしている様
子を示し、駆動体3上に置かれた移動体6が楕円
の頂点で接触することにより、波の進行方向とは
逆方向にv=ω×uの速度え運動する様子を示し
ている。即ち移動体6は任意の静圧で駆動体3に
押し付けられて、駆動体3の表面に接触し、移動
体6と駆動体3との摩擦力で波の進行方向と逆方
向に速度vで駆動される。
Figure 7 shows that the point A of the driving body is moving in an ellipse with the major axis 2w and the minor axis 2u due to the excitation of the traveling wave, and the moving body 6 placed on the driving body 3 is moving in an ellipse. It shows how the waves move at a speed of v=ω×u in the opposite direction to the direction of wave travel due to contact at the apex. That is, the moving body 6 is pressed against the driving body 3 with an arbitrary static pressure, contacts the surface of the driving body 3, and is moved at a speed v in the direction opposite to the direction of wave propagation due to the frictional force between the moving body 6 and the driving body 3. Driven.

上記の楕円の短軸(進行方向)は、波の振幅に
比例しているので、速度を大きくするためには波
の振幅を大きくしなければならない。また、波の
振幅を低電圧で大きくするためには駆動体の共振
周波数近傍で駆動しなければならない。ところが
駆動体の共振周波数は温度や負荷の変動によつて
変化するので、従来のように一定周波数で駆動し
たのでは、駆動周波数と共振周波数の相対的関係
が変化してしまう超音波モータの特性が変化して
しまう。
The minor axis (progressing direction) of the ellipse mentioned above is proportional to the amplitude of the wave, so in order to increase the speed, the amplitude of the wave must be increased. Furthermore, in order to increase the amplitude of the wave with a low voltage, the drive must be driven near the resonance frequency of the drive body. However, the resonant frequency of the drive body changes with changes in temperature and load, so if the drive body is driven at a constant frequency as in the past, the relative relationship between the drive frequency and the resonant frequency will change due to the characteristics of ultrasonic motors. will change.

発明が解決しようとする問題点 以上、説明した様に従来の超音波モータは、時
間的に位相がπ/2だけ異なる一定周波数の2つ
の交流電圧を駆動信号として用いていた。そのた
め温度や負荷が変動して駆動体の共振周波数が変
化すると、共振周波数と駆動周波数の関係が変化
して、モータの特性が変わつてしまうという問題
点があつた。
Problems to be Solved by the Invention As described above, conventional ultrasonic motors use two alternating current voltages of constant frequency, which temporally differ in phase by π/2, as drive signals. Therefore, when the resonant frequency of the driving body changes due to changes in temperature or load, the relationship between the resonant frequency and the driving frequency changes, causing a problem in that the characteristics of the motor change.

本発明はかかる点に鑑みてなされたもので、温
度や負荷が変化しても、常に安定な動作をする超
音波モータを提供することを目的としている。
The present invention has been made in view of these points, and an object of the present invention is to provide an ultrasonic motor that always operates stably even when the temperature and load change.

問題点を解決するための手段 駆動体の駆動周波数がその範囲内に含まれるよ
うに設定された周波数可変範囲内を、交流駆動電
圧の周波数を高いほうから低いほうへ掃引して、
該駆動体の駆動電流、または駆動電流と電圧の位
相差、または前記移動体の速度が設定値になつた
時の周波数に、前記圧電体に印加する交流駆動電
圧の駆動用周波数を設定する。
Means for solving the problem: Sweep the frequency of the AC drive voltage from high to low within a variable frequency range that is set so that the drive frequency of the drive body is included within that range.
The driving frequency of the AC driving voltage applied to the piezoelectric body is set to the driving current of the driving body, the phase difference between the driving current and the voltage, or the frequency when the speed of the moving body reaches a set value.

作 用 周波数可変範囲内を、交流駆動電圧の周波数を
高いほうから低いほうへ掃引して、その時の超音
波モータの回転数、電流値または電流電圧の位相
差が、設定値になつた時の周波数に、圧電体に印
加する交流駆動電圧の周波数の設定をすることに
より、温度や負荷が変動して駆動体の共振周波数
が変化しても、その変化に対応して駆動周波数を
変えられるので、常に駆動体の共振周波数と一定
関係にある周波数範囲内に駆動周波数を設定する
ことができる。
Effect: Sweep the frequency of the AC drive voltage from high to low within the frequency variable range, and when the rotation speed, current value, or phase difference between current and voltage of the ultrasonic motor reaches the set value. By setting the frequency of the AC drive voltage applied to the piezoelectric body, even if the resonant frequency of the drive body changes due to changes in temperature or load, the drive frequency can be changed in response to the change. , the driving frequency can always be set within a frequency range that is in a constant relationship with the resonant frequency of the driving body.

実施例 以下、図面に従つて本発明の一実施例について
詳細な説明を行う。
Embodiment Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の超音波モータの駆動方法を実
現する具体回路のブロツク図である。この回路が
動作を開始すると、掃引制御器12が制御電圧発
生器13に電圧を掃引させる。この掃引電圧は、
電圧制御発振器7の制御端子Tに入力される。す
ると、電圧制御発振器7の出力周波数は掃引電圧
に従つて掃引される。電圧制御発振器7の出力は
2つに分けられ、一方は90度位相器8を通して電
力増幅器9に、他方はそのまま電力増幅器10に
それぞれ入力されて、駆動体3を駆動するのに必
要な値にまで増幅される。電力増幅器9,10の
出力は駆動体3にそれぞれ印加されて、駆動体3
を駆動する。
FIG. 1 is a block diagram of a specific circuit for realizing the ultrasonic motor driving method of the present invention. When the circuit starts operating, the sweep controller 12 causes the control voltage generator 13 to sweep the voltage. This sweep voltage is
It is input to the control terminal T of the voltage controlled oscillator 7. Then, the output frequency of the voltage controlled oscillator 7 is swept in accordance with the sweep voltage. The output of the voltage controlled oscillator 7 is divided into two parts, one of which is input to a power amplifier 9 through a 90-degree phase shifter 8, and the other is directly input to a power amplifier 10, where it is converted to the value necessary to drive the driver 3. is amplified to. The outputs of the power amplifiers 9 and 10 are applied to the driver 3, respectively.
to drive.

駆動体3の入力端子には抵抗11が接続されて
おり、駆動体3に流れる電流を抵抗11の両端電
圧により、電流検出器14で検出する。また、電
圧検出器15は駆動体3に印加される駆動電圧を
検出する。位相差検出器16は電流検出器14と
電圧検出器15の出力から、電流電圧の位相差に
比例した電圧を発生する。位相差検出器16の出
力は、位相比較器17の反転入力と位相範囲比較
器18の入力にそれぞれ入力される。位相比較器
17の非反転入力端子には設定電圧1が入力さ
れ、位相比較器17の出力は、電流電圧の位相差
が設定電圧1に相当する位相差に等しくなつた時
に論理的Hになり、掃引制御器12の掃引停止端
子Sにより電圧制御発振器7の出力周波数の掃引
を停止する。従つて、超音波モータの駆動体3は
設定した電流電圧の位相差で駆動される。
A resistor 11 is connected to the input terminal of the driver 3, and the current flowing through the driver 3 is detected by a current detector 14 based on the voltage across the resistor 11. Further, the voltage detector 15 detects the driving voltage applied to the driving body 3. The phase difference detector 16 generates a voltage proportional to the phase difference between current and voltage from the outputs of the current detector 14 and the voltage detector 15. The output of the phase difference detector 16 is input to the inverting input of the phase comparator 17 and the input of the phase range comparator 18, respectively. The set voltage 1 is input to the non-inverting input terminal of the phase comparator 17, and the output of the phase comparator 17 becomes a logical H when the phase difference between the current and voltage becomes equal to the phase difference corresponding to the set voltage 1. , the sweep of the output frequency of the voltage controlled oscillator 7 is stopped by the sweep stop terminal S of the sweep controller 12. Therefore, the driving body 3 of the ultrasonic motor is driven with the set current and voltage phase difference.

位相範囲比較器18の残りの2入力端子には、
上記設定電圧1と位相差の許容範囲に相当する設
定電圧2が入力され、位相差検出器16の出力が
設定電圧1からはずれ、設定電圧2の分だけ増減
すれば、つまり電流電圧の位相差が第1の設定さ
れた位相差からずれ、第2の設定された位相差の
分だけ増減した時、論理的Hを出力する。この出
力は掃引制御器12の制御端子Cに入力され、再
び駆動周波数の掃引を開始して、上記に述べた駆
動周波数を設定する。
The remaining two input terminals of the phase range comparator 18 are
If a set voltage 2 corresponding to the above-mentioned set voltage 1 and the allowable range of phase difference is input, and the output of the phase difference detector 16 deviates from the set voltage 1 and increases or decreases by the set voltage 2, that is, the phase difference between current and voltage. When the phase difference deviates from the first set phase difference and increases or decreases by the second set phase difference, a logical H is output. This output is input to the control terminal C of the sweep controller 12 to start sweeping the drive frequency again and set the drive frequency described above.

第2図は駆動体を一定電圧で駆動したときの電
流値、電圧電流の位相差および移動体の回転数の
周波数特性図である。また、第3図は駆動周波数
を下から掃引したとき、および上から掃引したと
きに示す駆動体の非線形性に起因するアドミツタ
ンスのヒステリシスである。
FIG. 2 is a frequency characteristic diagram of the current value, the phase difference between voltage and current, and the rotation speed of the moving body when the driving body is driven with a constant voltage. Further, FIG. 3 shows the admittance hysteresis caused by the nonlinearity of the driving body when the driving frequency is swept from below and from above.

第2図より、移動体の回転数は駆動体の共振周
波数f1近傍で大きくなるので、超音波モータはこ
の共振周波数近傍で駆動するのがよい。しかし、
第3図における駆動周波数を下から掃引したとき
の共振周波数f1と、上から掃引したときの共振周
波数f2の間の周波数領域、およびそれらの周波数
の極近傍では、動作が非常に不安定になるので、
駆動周波数はこの領域外でなければならない。こ
の領域より低い周波数では回転数が急に低下する
ので、駆動体の駆動周波数はこの領域より高い周
波数を使用する。また、同図より反共振周波数f5
以上では、回転数が小さくなるので反共振周波数
f5以下で使用する。
From FIG. 2, the rotational speed of the moving body increases near the resonance frequency f1 of the driving body, so it is preferable to drive the ultrasonic motor near this resonance frequency. but,
Operation is extremely unstable in the frequency region between the resonance frequency f 1 when the drive frequency is swept from the bottom in Figure 3 and the resonance frequency f 2 when it is swept from the top, and in the very vicinity of these frequencies. So,
The driving frequency must be outside this range. At frequencies lower than this range, the number of revolutions suddenly decreases, so the driving frequency of the driving body is higher than this range. Also, from the same figure, the antiresonant frequency f 5
Above, the rotation speed becomes small, so the anti-resonance frequency
Use at f5 or lower.

第2図の周波数f3からf4の範囲で、駆動周波数
を上から掃引し、電圧電流の位相差の設定値を同
図のP1にし、許容位相差範囲の設定値をP2にす
れば、移動体の回転数が同図中のN1の回転数に
なつたときの周波数に駆動周波数が設定される。
ここで電圧電流の位相差の設定値P1および許容
位相差範囲の設定値P2は設定後の駆動周波数が
駆動体の共振周波数f1より高いように決めてい
る。また、温度あるいは負荷が変動して、駆動体
の共振周波数が変化し、その結果、位相差が設定
値P1からずれて許容範囲P2から飛び出たら、再
び駆動周波数の掃引を開始する。従つて、移動体
の回転数は図中のN1を中心にN2の範囲に制御さ
れる。
Sweep the drive frequency from above in the frequency range f 3 to f 4 in Figure 2, set the voltage and current phase difference to P 1 in the diagram, and set the allowable phase difference range to P 2. For example, the driving frequency is set to the frequency when the rotational speed of the moving body reaches the rotational speed N1 in the figure.
Here, the set value P 1 of the phase difference between voltage and current and the set value P 2 of the allowable phase difference range are determined so that the set driving frequency is higher than the resonant frequency f 1 of the driving body. Furthermore, if the temperature or load fluctuates and the resonant frequency of the driving body changes, and as a result, the phase difference deviates from the set value P1 and jumps out of the tolerance range P2 , the driving frequency sweep is started again. Therefore, the rotation speed of the moving body is controlled within a range of N2 around N1 in the figure.

尚、本実施例では電圧電流の位相差の検知で制
御を行つているが、回転数N1およびN2に対応し
た電流値、または回転数自身を採用しても同様で
ある。しかし、回転数の採用時には、回転数を検
出するセンサが必要になる。
In this embodiment, control is performed by detecting the phase difference between voltage and current, but the same effect can be achieved by using current values corresponding to the rotational speeds N 1 and N 2 or the rotational speed itself. However, when the rotation speed is used, a sensor that detects the rotation speed is required.

本実施例の駆動回路によれば、温度や負荷が変
動しても常に超音波モータをあらかじめ設定した
範囲の回転数で安定に駆動できる。
According to the drive circuit of this embodiment, the ultrasonic motor can always be stably driven at a rotation speed within a preset range even if the temperature or load changes.

発明の効果 以上述べたように、本発明では温度や負荷が変
動しても、安定な動作をする超音波モータを提供
できる。
Effects of the Invention As described above, the present invention can provide an ultrasonic motor that operates stably even when the temperature and load vary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の超音波モータの駆動方法を実
現する具体回路のブロツク図、第2図は駆動体を
一定電圧で駆動した時の、駆動電流、電圧電流の
位相差および移動体の回転数の周波数特性図、第
3図は駆動体のアドミツタンスの非線形特性図、
第4図は従来の超音波モータの斜視図、第5図は
第4図に用いられている圧電体の形状と電極構造
を示す平面図、第6図は超音波モータの駆動体部
の振動状態を示すモデル図、第7図は超音波モー
タの原理の説明図である。 7……電圧制御発振器、8……90度位相器、
9,10……電力増幅器、11……抵抗、12…
…掃引制御器、13……制御電圧発生器、14…
…電流検出器、15……電圧検出器、16……位
相差検出器、17……位相比較器、18……位相
範囲比較器。
Figure 1 is a block diagram of a specific circuit that realizes the ultrasonic motor driving method of the present invention, and Figure 2 shows the drive current, the phase difference between voltage and current, and the rotation of the moving body when the driving body is driven with a constant voltage. Fig. 3 is a nonlinear characteristic diagram of the admittance of the driving body.
Fig. 4 is a perspective view of a conventional ultrasonic motor, Fig. 5 is a plan view showing the shape and electrode structure of the piezoelectric body used in Fig. 4, and Fig. 6 is a vibration of the driving body of the ultrasonic motor. A model diagram showing the state, FIG. 7 is an explanatory diagram of the principle of the ultrasonic motor. 7...Voltage controlled oscillator, 8...90 degree phase shifter,
9, 10...Power amplifier, 11...Resistor, 12...
...Sweep controller, 13... Control voltage generator, 14...
... Current detector, 15 ... Voltage detector, 16 ... Phase difference detector, 17 ... Phase comparator, 18 ... Phase range comparator.

Claims (1)

【特許請求の範囲】 1 圧電体を交流電圧で駆動して、該圧電体と弾
性体とから構成される駆動体に弾性進行波を励振
することにより、該駆動体上に接触して設置され
た移動体を移動させる超音波モータにおいて、少
なくても前期駆動体の駆動周波数がその範囲内に
含まれるように設定された周波数可変範囲内を、
前記交流駆動電圧の周波数を高いほうから低いほ
うへ掃引して、該駆動体の駆動電流、または駆動
電流と電圧の位相差、または前記移動体の速度が
あらかじめ設定した設定値になつた時の周波数
に、前記圧電体に印加する交流駆動電圧の駆動周
波数を設定することを特徴とする超音波モータ駆
動方法。 2 上記駆動周波数における上記駆動体の駆動電
流または、駆動電流と電圧の位相差、または前記
移動体の速度があらかじめ設定した範囲外になつ
た時、再び駆動周波数を高い方から掃引して、上
記駆動体の駆動周波数を決定することを特徴とす
る特許請求の範囲第1項記載の超音波モータ駆動
方法。 3 上記設定範囲に対応する駆動周波数が、駆動
体の共振周波数よりも高く、反共振周波数よりも
低くなるように、上記設定値と設定範囲を決定す
ることを特徴とする特許請求の範囲第1項記載の
超音波モータ駆動方法。
[Claims] 1. A piezoelectric body is driven with an alternating current voltage to excite an elastic traveling wave in a drive body composed of the piezoelectric body and an elastic body, so that the piezoelectric body is placed in contact with the drive body. In an ultrasonic motor that moves a moving body, the frequency variable range is set such that at least the driving frequency of the former driving body is included within that range.
When the frequency of the AC driving voltage is swept from high to low, and the driving current of the driving body, the phase difference between the driving current and the voltage, or the speed of the moving body reaches a preset value. An ultrasonic motor driving method characterized in that a driving frequency of an AC driving voltage applied to the piezoelectric body is set as a frequency. 2 When the drive current of the drive body at the drive frequency, the phase difference between the drive current and the voltage, or the speed of the movable body falls outside the preset range, sweep the drive frequency again from the higher side and 2. The ultrasonic motor driving method according to claim 1, further comprising determining a driving frequency of the driving body. 3. Claim 1, characterized in that the set value and the set range are determined such that the drive frequency corresponding to the set range is higher than the resonant frequency of the driving body and lower than the anti-resonant frequency. Ultrasonic motor driving method described in Section 1.
JP61199633A 1986-08-26 1986-08-26 Driving of ultrasonic motor Granted JPS6356178A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61199633A JPS6356178A (en) 1986-08-26 1986-08-26 Driving of ultrasonic motor
KR1019870009216A KR900007413B1 (en) 1986-08-26 1987-08-24 Drive method for ultrasonic motor
US07/089,334 US4853579A (en) 1986-08-26 1987-08-25 Drive method for ultrasonic motor providing enhanced stability of rotation
DE3751767T DE3751767T2 (en) 1986-08-26 1987-08-26 Drive method of an ultrasonic motor that leads to improved rotational stability
EP87307559A EP0261810B1 (en) 1986-08-26 1987-08-26 Drive method for ultrasonic motor providing enhanced stability of rotation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61199633A JPS6356178A (en) 1986-08-26 1986-08-26 Driving of ultrasonic motor

Publications (2)

Publication Number Publication Date
JPS6356178A JPS6356178A (en) 1988-03-10
JPH0528072B2 true JPH0528072B2 (en) 1993-04-23

Family

ID=16411093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61199633A Granted JPS6356178A (en) 1986-08-26 1986-08-26 Driving of ultrasonic motor

Country Status (1)

Country Link
JP (1) JPS6356178A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2586082B2 (en) * 1987-02-09 1997-02-26 株式会社ニコン Power frequency optimization device for ultrasonic motor
JP2582853B2 (en) * 1988-04-04 1997-02-19 和光電気株式会社 Power supply for oscillator
JP2597390B2 (en) * 1988-05-17 1997-04-02 オリンパス光学工業株式会社 Vibration wave motor drive circuit
JP2743404B2 (en) * 1988-10-19 1998-04-22 株式会社ニコン Ultrasonic motor drive controller
JPH02111274A (en) * 1988-10-19 1990-04-24 Nikon Corp Control circuit for drive of ultrasonic motor
JP2801229B2 (en) * 1988-12-26 1998-09-21 キヤノン株式会社 Vibration type motor device
JPH02214481A (en) * 1989-02-10 1990-08-27 Matsushita Electric Ind Co Ltd Apparatus for driving ultrasonic motor
JPH03164076A (en) * 1989-11-17 1991-07-16 Matsushita Electric Ind Co Ltd Driving method of ultrasonic motor
JPH0426382A (en) * 1990-05-16 1992-01-29 Matsushita Electric Ind Co Ltd Driving method for ultrasonic motor
JP2836189B2 (en) * 1990-05-25 1998-12-14 日産自動車株式会社 Ultrasonic motor drive circuit
JPH04190683A (en) * 1990-11-22 1992-07-09 Nissan Motor Co Ltd Driving device for ultrasonic motor
JPH08308267A (en) * 1996-06-17 1996-11-22 Nikon Corp Drive device for ultrasonic motor
JP2002112563A (en) * 2000-09-29 2002-04-12 Minolta Co Ltd Driving method and apparatus for actuator
JP4774827B2 (en) * 2005-06-23 2011-09-14 セイコーエプソン株式会社 Piezoelectric actuator drive control device, electronic apparatus, and piezoelectric actuator drive control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156168A (en) * 1983-02-23 1984-09-05 Canon Inc Controller for vibration wave motor
JPS59178982A (en) * 1983-03-25 1984-10-11 Canon Inc Controlling method of vibration wave motor
JPS59204477A (en) * 1983-05-04 1984-11-19 Nippon Kogaku Kk <Nikon> Surface wave motor utilizing supersonic wave vibration
JPS61124276A (en) * 1984-11-19 1986-06-12 Marcon Electronics Co Ltd Piezoelectric supersonic wave linear motor
JPS62203575A (en) * 1985-11-20 1987-09-08 Nippon Kogaku Kk <Nikon> Surface wave motor utilizing ultrasonic vibration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156168A (en) * 1983-02-23 1984-09-05 Canon Inc Controller for vibration wave motor
JPS59178982A (en) * 1983-03-25 1984-10-11 Canon Inc Controlling method of vibration wave motor
JPS59204477A (en) * 1983-05-04 1984-11-19 Nippon Kogaku Kk <Nikon> Surface wave motor utilizing supersonic wave vibration
JPS61124276A (en) * 1984-11-19 1986-06-12 Marcon Electronics Co Ltd Piezoelectric supersonic wave linear motor
JPS62203575A (en) * 1985-11-20 1987-09-08 Nippon Kogaku Kk <Nikon> Surface wave motor utilizing ultrasonic vibration

Also Published As

Publication number Publication date
JPS6356178A (en) 1988-03-10

Similar Documents

Publication Publication Date Title
KR900007413B1 (en) Drive method for ultrasonic motor
JPH0528072B2 (en)
JPS622869A (en) Supersonic motor drive device
JP2548248B2 (en) Ultrasonic motor controller
JP2558709B2 (en) Ultrasonic motor drive
JP2583904B2 (en) Ultrasonic motor driving method
JPH0710187B2 (en) Ultrasonic motor driving method
JP2506895B2 (en) Ultrasonic motor controller
JP2574293B2 (en) Ultrasonic motor driving method
JP2563351B2 (en) Ultrasonic motor driving method
JP2636280B2 (en) Driving method of ultrasonic motor
JPH07108103B2 (en) Ultrasonic motor device
JPH072022B2 (en) Ultrasonic motor driving method
JP2543106B2 (en) Ultrasonic motor drive
JPS6292782A (en) Ultrasonic motor device
JP2551412B2 (en) Ultrasonic motor driving method
JP2604731B2 (en) Ultrasonic motor drive
JP2538088B2 (en) Driving method for ultrasonic motor
JP3141525B2 (en) Ultrasonic motor drive control method
JPS63299788A (en) Ultrasonic motor driving device
JPH04322179A (en) Method of driving ultrasonic motor
JPH0746910B2 (en) Ultrasonic motor driving method
JP2577485B2 (en) Driving method of ultrasonic motor
JP2636366B2 (en) Ultrasonic actuator control device
JP2615848B2 (en) Ultrasonic actuator control device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term