JPS62193182A - Manufacture of photovoltaic device - Google Patents

Manufacture of photovoltaic device

Info

Publication number
JPS62193182A
JPS62193182A JP61034801A JP3480186A JPS62193182A JP S62193182 A JPS62193182 A JP S62193182A JP 61034801 A JP61034801 A JP 61034801A JP 3480186 A JP3480186 A JP 3480186A JP S62193182 A JPS62193182 A JP S62193182A
Authority
JP
Japan
Prior art keywords
semiconductor film
film
substrate
portions
electrode film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61034801A
Other languages
Japanese (ja)
Other versions
JPH0528912B2 (en
Inventor
Seiichi Kiyama
木山 精一
Keisho Yamamoto
山本 恵章
Hideki Imai
今井 秀記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61034801A priority Critical patent/JPS62193182A/en
Priority to US07/015,691 priority patent/US4755475A/en
Publication of JPS62193182A publication Critical patent/JPS62193182A/en
Publication of JPH0528912B2 publication Critical patent/JPH0528912B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Drying Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To prevent residual matters from being left on interfaces and and to prevent underlaying layers from being damaged thermally, by applying approximately uniform energy beam to a semiconductor film arranged to cover continuously all of a plurality of electrode films on a substrate for removing portions of the semiconductor film so as to separate the semiconductor film into a plurality of photoelectric conversion elements. CONSTITUTION:A transparent electrode film 11 of tin oxide is adhered on a substrate 10. Portions 11' of the film 11 are removed by applying laser beams thereto for separating and forming individual transparent electrode film sections 11a, 11b. these portions 11a, 11b... provide spaces between adjacent transparent electrode film sections. An amorphous semiconductor film 12 of amorphous silicon or the like is adhered over the substrate 10, and portions 12' are removed by applying laser beams for separating and forming semiconductor film sections 12a, 12b.... A back electrode film 13 of a single aluminium layer or of a bi-layer structure consisting of aluminium and titanium or the like is adhered all over the substrate 10 including the exposed portions. In the final step, portions 13a, 13b... are removed by applying laser beams. Though some low-resistance layer is left on the surface, it does not raise substantial problem if an illuminance is ordinary. Thus, the present method can prevent residual matters from being left on the removal interface and can prevent underlaying layers from being damaged thermally.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はレーザビームの如きエネルギビームを利用した
光起電力装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a method of manufacturing a photovoltaic device using an energy beam such as a laser beam.

(ロ) 従来の技術 第1図は米国特許第4.281.208号に開示されて
いると共に、既に実用化されている光起電力装置の基本
構造を示し、(1)はガラス、耐熱プラスチック等の絶
縁性且つ透光性を有する基板、(2a)(2b)(2c
)・・・は基板(1)上に一定間隔で被着された透明電
極膜、(3a)(3bH3c)・・・は各透明電極膜上
にII畳被着妨れた非晶質シリコン等の非晶質半導体膜
、(4a)(4b)(4c)・・・は各非晶質を導体膜
上に重畳被着され、かつ各右隣りの透明電極膜(2b)
(2c)・・・に部分的に重畳せる裏面電極膜で、断る
透明電極膜(2a)(2b)(2c)・・・乃至裏面電
極膜(4a)(4b)(4c)・・の各積層体により光
電変換素子(5a〉(5b)(5c)・・・が構成され
ている。
(b) Conventional technology Figure 1 is disclosed in U.S. Pat. No. 4,281,208 and shows the basic structure of a photovoltaic device that has already been put into practical use. Insulating and translucent substrates such as (2a) (2b) (2c
)... are transparent electrode films deposited at regular intervals on the substrate (1), (3a) (3bH3c)... are amorphous silicon etc. that have been poorly deposited on each transparent electrode film. The amorphous semiconductor films (4a), (4b), (4c), etc. are formed by superimposing each amorphous material on a conductor film, and each transparent electrode film (2b) on the right
(2c) Each of the transparent electrode films (2a), (2b), (2c), and back electrode films (4a), (4b), (4c), etc. that can be partially overlapped with... A photoelectric conversion element (5a>(5b)(5c)...) is constituted by the laminate.

各非晶質半導体膜(3a)(3b)(3c)・・・は、
その内部に例えば膜面に平行なPIN接合を含み、従っ
て透光性基板(1)及び透明電極膜(2a)(2b)(
2c)・・・を順次介して光入射があると、光起電力を
発生する。各非晶質半導体膜(3a)(3bH3c) 
 ・内で発生した光起電力は裏面N、電極膜4a)(4
bH4c)・・・での接続により直列的に相加される。
Each amorphous semiconductor film (3a) (3b) (3c)...
It contains, for example, a PIN junction parallel to the film surface, and therefore includes a transparent substrate (1) and a transparent electrode film (2a) (2b) (
2c) When light is incident sequentially through..., a photovoltaic force is generated. Each amorphous semiconductor film (3a) (3bH3c)
・The photovoltaic force generated inside the back surface N, the electrode film 4a) (4
bH4c)... are added in series by connection.

通常、断る構成の光起電力装置にあり又は細密加工性に
優れている写真蝕刻技術が用いられている。この技術に
よる場合、基板(1)上全面\の透明室極膜の被着工程
と、フォトレジスト及びエンチングによる各個別の透明
電極膜(2a)(2b)(2c)・の分離、即ち、各透
明電極膜(2a)(2b)(2c)  ・の隣接間隔部
分の除去工程と、これら各透明電極膜上を含む基板(1
)上全面への非晶質半導1$膜の被着工程と、フォトレ
ジスト及びエンチングによる各個別の非晶質半導体膜(
3a)(3b)(3c)・・の分離、即ち、各非晶質半
導体膜(3a)(3b)(3c)・・の隣接間隔部分の
除去1L程とを順次繰ることになる。
Usually, photolithographic techniques are used in photovoltaic devices having a similar structure or are excellent in precision processing. In the case of this technique, the process of depositing a transparent electrode film on the entire surface of the substrate (1) and the separation of each individual transparent electrode film (2a), (2b), and (2c) by photoresist and etching are performed. The step of removing the adjacent spaced parts of the transparent electrode films (2a), (2b, and 2c), and the step of removing the substrate (1
) A step of depositing an amorphous semiconductor film on the entire upper surface, and each individual amorphous semiconductor film by photoresist and etching (
The separation of the amorphous semiconductor films (3a), (3b), (3c), . . . , and the removal of adjacent spacing portions of the amorphous semiconductor films (3a, 3b, 3c), . . . are repeated in sequence.

然し乍ら、写真蝕刻技術は細密加工の上で優れてはいる
が、蝕刻パターンを規定するフォトレジストのピンホー
ルや周縁での剥れによる非晶質半導体膜に欠陥を生じさ
せやすい。
However, although photo-etching technology is excellent in fine processing, it tends to cause defects in the amorphous semiconductor film due to pinholes or peeling at the periphery of the photoresist that defines the etching pattern.

特開昭57−12568号公報に開示された先行技術は
、レーザビームの照射による膜の焼き切りで上記隣接間
隔を設けるものであり、写真蝕刻技術で必要なフォトレ
ジスト、即しウェットプロセスを一切使わず細密加工性
に富むその技法は上記の課題を解決する上で極めて有効
である。
The prior art disclosed in Japanese Unexamined Patent Publication No. 57-12568 provides the above-mentioned adjacent spacing by burning out the film by laser beam irradiation, and does not use the photoresist required in photolithography, or any wet process. This technique, which has excellent precision processing properties, is extremely effective in solving the above problems.

然し乍ら、上述の如くウェットプロセスを一切使わない
レーザ加工は細密加工性の点に於いて極めて有効である
反面、第2図(a)〜(c)に夫々要部を拡大して示す
如き問題点を含んでいる。即ち、既に各光電変換素子(
5a)(5b)・・・毎に分割配置きれた透明電極膜(
2a)(2b)・・・上に、非晶質半導体膜を連続的に
跨がって形成し、その半導体膜を各光電変検素そ毎に分
割すべくレーデビーム(LB>の照射により隣接間隔部
に位置する半導体膜を除去すると、第2図(a)の如く
、レーザビーム(LB)の周縁部が照射きれた半導体膜
部分は、該レーザビーム(LB)の周縁部が除去するに
足りる十分なエネルギを持たないためにアニーリングさ
れ微結晶化、或いは結晶化されてその結果、低抵抗Ji
l(6a)(6b)を形成したり、第2図(b)のよう
に除去部分界面に半導体膜の溶融物の残留物〈7)が残
存したりして予め定められたパターンに正確に除去する
ことができない。斯る除去部分界面に残存する残留物(
7)や低抵抗層(6a>(6b)の形成はレーザビーム
(LB)に於けるエネルギ密度の分布が正規分布、即ら
ガウス分布するために、除去すべき隣接間隔部の両側面
に照射きれる周縁部が中心部に較べ低エネルギ分布とな
り、その結果発生するものと考えられる。更に、照射せ
しめられるレーザビーム(LB)が上述の如き中心部に
較べ周縁部が低エネルギ分布となるガウス分布を呈する
と、除去される半導体膜は光電変換素子(5a)(5b
)・毎に半導体膜<3a)(3b)・・・を分割せしめ
るのみならずこれら隣接光電変換素子<5a)(5b)
  ・同士を電気的に直列接続すべく透明電極膜(2b
)・・・を露出せしめる働きもあり、断る露出長は直列
抵抗成分の増加を招かないために可及的に減少せしめる
ことができず、従って幅広なレーザビームを必要とし、
その結果中心部は極めて高エネルギ状態となり、第2図
(c)の如く熱的ダメージ(8)を与えてしまう。
However, as mentioned above, while laser processing that does not use any wet process is extremely effective in terms of precision processing, it does have problems as shown in enlarged views of the main parts in Figures 2 (a) to (c). Contains. That is, each photoelectric conversion element (
5a) (5b)... Transparent electrode film divided into parts (
2a) (2b)... An amorphous semiconductor film is formed continuously over the top, and the adjacent semiconductor film is irradiated with a Lede beam (LB>) in order to divide the semiconductor film into each photoelectric transformer. When the semiconductor film located in the gap is removed, as shown in FIG. 2(a), the portion of the semiconductor film that has been completely irradiated with the peripheral edge of the laser beam (LB) is removed by the peripheral edge of the laser beam (LB). Because it does not have enough energy, it is annealed and microcrystallized, or crystallized, resulting in a low resistance Ji.
1 (6a) (6b), or residues of the molten semiconductor film (7) remain at the interface of the removed portion as shown in Figure 2(b), resulting in the formation of a predetermined pattern accurately. cannot be removed. The residue remaining at the interface of the removed part (
7) and low resistance layer (6a>(6b)), since the energy density distribution in the laser beam (LB) is a normal distribution, that is, a Gaussian distribution, it is necessary to irradiate both sides of the adjacent gap to be removed. This is thought to occur as a result of a lower energy distribution at the periphery than at the center.Furthermore, the irradiated laser beam (LB) has a Gaussian distribution in which the periphery has a lower energy distribution than at the center as described above. When the semiconductor film is removed, the photoelectric conversion elements (5a) (5b)
)・Not only are semiconductor films <3a) (3b)... divided into adjacent photoelectric conversion elements <5a) (5b)
・Transparent electrode film (2b
)..., and the exposed length cannot be reduced as much as possible without causing an increase in the series resistance component, thus requiring a wide laser beam.
As a result, the center becomes extremely high in energy, causing thermal damage (8) as shown in FIG. 2(c).

特に、上記半導体膜の低抵抗層(6a><6b)の形成
は、レーザビーム(LB)の照射により半導体膜(3a
H3b)・を物理的に分離できたとし7ても、この低抵
抗層(6b)を介して同一光電変換素子(5b)・・ 
の透明電極膜(2b)・・・と裏面1#i膜(4b)・
 とを結合するために当該光電変換素子(5b)・・を
短絡せしめる原因となる。
In particular, the formation of the low resistance layer (6a><6b) of the semiconductor film is performed by irradiating the semiconductor film (3a><6b) with a laser beam (LB).
Even if H3b) can be physically separated, the same photoelectric conversion element (5b) can be separated through this low resistance layer (6b).
transparent electrode film (2b)... and back side 1#i film (4b)...
This causes the photoelectric conversion element (5b) to be short-circuited.

(ハ)発明が解決しようとする問題点 本発明は上述の如き短絡事故の原因となる半導体膜の除
去部分界面に於ける低抵抗層の形成を解決すると共に、
断る除去部分界面の残留物の残存や下層への熱的ダメー
ジを解決しようとするものである。
(c) Problems to be Solved by the Invention The present invention solves the formation of a low resistance layer at the interface of the removed portion of the semiconductor film, which causes the short circuit accident as described above, and
This is intended to solve the problem of residual residue remaining at the interface of the removed portion and thermal damage to the underlying layer.

(ニ) 問題点を解決するための手段 本発明は上記問題点を解決するために、複数の光電変換
素子を構成する複数の基板(II+電極膜−Hに連続的
に跨って配置きれた半導体膜に、エネルギ分布が照射領
域に対して略均一なエネルギビームを照射して当該照射
領域の半導体膜を除去し、該半導体膜を複数の光電変換
素子毎に分割したこと2特徴とする。
(d) Means for Solving the Problems In order to solve the above-mentioned problems, the present invention aims to solve the above-mentioned problems by using semiconductors arranged continuously over a plurality of substrates (II+electrode film-H) constituting a plurality of photoelectric conversion elements. Two characteristics are that the semiconductor film in the irradiated area is removed by irradiating the film with an energy beam whose energy distribution is substantially uniform over the irradiated area, and that the semiconductor film is divided into a plurality of photoelectric conversion elements.

(ホ)作用 上述の如く、エネルギ分布が照射領域に対して略均一な
エネルギビームを、基板側電極膜とに配置された半導体
膜の予定箇所に照射することによって、当該照射領域の
半導体膜部分のみを実質的に低抵抗層を形成することな
く除去すると共に、下層に位置する基板側T!L極膜へ
の熱的ダメーンを低減し得る。
(e) Effect As described above, by irradiating a predetermined location of the semiconductor film disposed on the substrate side electrode film with an energy beam whose energy distribution is substantially uniform over the irradiation area, the semiconductor film portion in the irradiation area is In addition, only the underlying substrate side T! is removed without substantially forming a low resistance layer. Thermal damage to the L electrode film can be reduced.

(へ)実施例 第3図乃至第8図は本発明方法の実施例を工程順に示し
ている。
(f) Example FIGS. 3 to 8 show examples of the method of the present invention in the order of steps.

第1図の工程では、厚さ1m〜3mm而積10c面XI
Qcm〜1 mX 1 m程度の透明なガラス等の基板
(10)上全面に、厚さ2000人〜5000人の酸化
錫(Sn02)からなる透明電極膜(11〉が被着許れ
る。
In the process shown in Figure 1, the thickness is 1m to 3mm and the surface is 10c.
A transparent electrode film (11) made of tin oxide (Sn02) with a thickness of 2,000 to 5,000 thick can be deposited on the entire surface of a substrate (10) of transparent glass or the like with a size of about Qcm to 1 m x 1 m.

第4図の工程では、隣接間隔部<11’)がレーザビー
ムの照射により除去されて、個別の各透明電極膜(ll
a)(llb>(llc)・・・が分離形成いれる。使
用されるレーザは基板(10)にほとんど吸収されるこ
とのない波長が適当であり、上記ガラスに対しては0.
35μm〜2.5μmの波長のパルス発振型が好ましい
、断る好適な実施例は、波長的1.06μm工不ルキ密
度13J/crr12、パルス周波数3KHzのNd:
 YAGレーザであり、隣接間隔部(11’)の間隔(
Ll)は約1100uに設定声れる。
In the process shown in FIG.
a) (llb>(llc)... is formed separately.The wavelength of the laser to be used is suitable so that it is hardly absorbed by the substrate (10), and the wavelength of the laser used is 0.
A preferred embodiment is a pulse oscillation type with a wavelength of 35 μm to 2.5 μm. A preferred embodiment is Nd with a wavelength of 1.06 μm, a metal density of 13 J/crr12, and a pulse frequency of 3 KHz:
It is a YAG laser, and the interval between adjacent interval parts (11') (
Ll) is set to approximately 1100u.

第5図の工程では、各透ot+i極膜(lla)(ll
b)(llc)  の表面を含んで基板(10)h全面
に光電変換に有効に寄与°する厚さ5000人〜700
0人の41晶質ンリコン(a−3i)等の非晶質半導体
膜(12)が被若きれる。断る半導体膜(12)はその
内部に膜面に平行なPIN接合を含み、従ってより具体
的には、まずP型の非晶質ンリコンカーノ<イドが被着
され、次いで1型及びN型の非晶質シリコンが順次積層
被着される。
In the process shown in FIG.
b) The entire surface of the substrate (10) including the surface of (llc) has a thickness of 5,000 to 700 mm, which effectively contributes to photoelectric conversion.
An amorphous semiconductor film (12) such as 41-crystalline silicon (a-3i) is rejuvenated. The semiconductor film (12) contains a PIN junction parallel to the film surface, and therefore, more specifically, a P-type amorphous silicon carbide is first deposited, and then a 1-type and an N-type non-conductor are deposited. Crystalline silicon is deposited in successive layers.

第6図の工程では、隣接間隔部<12’)がレーザビー
ムの照射により除去されて、個別の各非晶質半導体膜(
12aH12bH12c)・・・が分離形成される。
In the process shown in FIG. 6, adjacent spacing parts <12') are removed by laser beam irradiation, and each individual amorphous semiconductor film (
12aH12bH12c)... are separated and formed.

斯る工程での特徴点は使用きれるレーザビームのエネル
ギ分布が照射領域に対して略均一な分布を持っ1いるこ
とである。第9図は北記照射領域に対して略均一なエネ
ルギ分布を持ち照射領域の形状が半径40μmの円形状
レーザビームを照射したときの照射表面に於ける温度分
布を、上記円形状レーザビームの中心部を起点としその
半径方向について描いたものである。断る第9図から明
らかな如く、略均一なエネルギ分布を持つレーザビーム
の温度分布は、照射領域に対してはエネルギ分布に応し
た略一定の高温分布となり、照射領域の界面にあっては
僅かな被照射媒体の熱伝導による温度こう配は見られる
ものの非照射領域の室温にまで急峻に立下がり、全体と
しては略矩形状の分布を呈する。
A feature of this process is that the energy distribution of the usable laser beam has a substantially uniform distribution over the irradiation area. Figure 9 shows the temperature distribution on the irradiated surface when the irradiated area is irradiated with a circular laser beam with a substantially uniform energy distribution and the irradiated area has a radius of 40 μm. It is drawn in the radial direction starting from the center. As is clear from Fig. 9, the temperature distribution of a laser beam with an approximately uniform energy distribution results in an approximately constant high temperature distribution corresponding to the energy distribution for the irradiation area, and a slight temperature distribution at the interface of the irradiation area. Although a temperature gradient due to heat conduction of the irradiated medium is observed, the temperature drops sharply to the room temperature of the non-irradiated area, and the overall distribution is approximately rectangular.

−1、第10図は従来のガウス分布を持つレーザビーム
を使用したときの照射表面に於ける温度分布を、第9図
と同しく中心部を起点としてその半径方向について描い
である。そし工、中心部に於ける到達温度は第9図及び
第10図共に等しく、例えば斯るレーザビームの照射に
より被加工物である膜厚5000人の非晶質半導体を除
去することができると共に、下層の透明電極膜(lla
)(llbン(Ilc)への熱的ダメージを回避し得る
絶対温度約1400Kに設定されている。
-1, FIG. 10 depicts the temperature distribution on the irradiated surface when a conventional laser beam having a Gaussian distribution is used in the radial direction starting from the center, similar to FIG. 9. The temperature reached at the center of the process is the same in both Figures 9 and 10, and for example, by irradiating with such a laser beam, an amorphous semiconductor with a thickness of 5000 mm can be removed. , the lower transparent electrode film (lla
) (The absolute temperature is set at about 1400K to avoid thermal damage to the ILC).

第11図は、エネルギ分布が略均一分布を持ち照射表面
、即ち非晶質半導体膜(12)の表面に於ける温度分布
が第八図の略矩形状分布を星するときの深さく厚み)方
向の温度分布を100に毎の等温線を用いてシュミレー
ションしたものである。シュミレーションの対象となっ
た試料はガラス基板(10)上に膜厚1000人のSn
○2からなる透明電極膜(11)と、膜厚5000人の
非晶質シリコンの半導体膜〈12)を積層した構造を持
つ。斯るンユミし一ンヨンの結果、半導体膜(12)の
表面に約1400 Kの温度を与えたとさ、上記半導体
膜(12)の深き方向である厚み方向の等温分布幅は広
く、SnO2透明電極膜(11)との界面にあっても該
半導イ・ト膜(12)を除去し得る約1200に以Fの
温度状態にある。一方、半径方向、即ち表面方向の等温
分布幅は、照射表面に於ける界面温度こう配が急峻に立
下っているために極めて狭い。
Figure 11 shows the depth and thickness when the energy distribution is approximately uniform and the temperature distribution on the irradiated surface, that is, the surface of the amorphous semiconductor film (12), follows the approximately rectangular distribution shown in Figure 8. The directional temperature distribution is simulated using 100 isothermal lines. The sample targeted for simulation was a Sn film with a thickness of 1000 nm on a glass substrate (10).
It has a structure in which a transparent electrode film (11) consisting of ○2 and an amorphous silicon semiconductor film (12) with a film thickness of 5000 are laminated. As a result of this phenomenon, when a temperature of about 1400 K is applied to the surface of the semiconductor film (12), the isothermal distribution width in the thickness direction (the deep direction) of the semiconductor film (12) is wide, and the SnO2 transparent electrode Even at the interface with the film (11), the semiconductor film (12) is at a temperature of about 1200 F or below, which is sufficient to remove the semiconductor film (12). On the other hand, the isothermal distribution width in the radial direction, that is, in the surface direction, is extremely narrow because the interfacial temperature gradient at the irradiated surface falls steeply.

ところで、非晶質シリコンの半導体膜(12)を除去し
得る温度は該半導体膜り12)の形成方法や形成条件等
より多少変動するものの、概して(−述の如く約120
0に以上であり、一方アニーリングされ低抵抗層に変換
される温度は約1000Kから除去温度の約1200K
ま工・の間である。従って、上記第11図のンユミレー
ンヨ〉に於いて1200に以上の温度領域の半導体膜(
12)が除去され、l000I(〜120OKの温度領
域の半導体膜が低抵抗層に変換されろと仮定すると、半
導体膜(12)は中心から半径約38μmの領域が除去
されると共に、その除去界面に実質的に無視し得る程度
の低抵抗層を形成するに止まる。
Incidentally, although the temperature at which the amorphous silicon semiconductor film (12) can be removed varies somewhat depending on the method and conditions for forming the semiconductor film (12), it is generally about (-120°C as described above).
0, while the temperature at which it is annealed and converted into a low resistance layer ranges from about 1000K to the removal temperature of about 1200K.
It is between the machining and machining rooms. Therefore, in the temperature range above 1200°C, the semiconductor film (
12) is removed and the semiconductor film in the temperature range of 1000I (~120OK) is converted into a low resistance layer.Assuming that the semiconductor film (12) is removed in a region with a radius of about 38 μm from the center, and the removed interface is However, only a negligible low resistance layer is formed.

一方、従来のガウス分布を持つレーザビームを使用した
ときの照射表面に於ける温度分布は第1O図に示した通
りエネルギ分布と等価なガ+7ス分布を呈しており、こ
のガウシアンビームを用いたときの100に毎の等混線
を用いた深さ方向の温度分布をレユミレーションすると
第12図のようになる。即ち、照射領域の中心部に於げ
乙深さ方向のm度分布は第11図に示した均一分布と等
しいものの、半径方向の等温分布幅は照射表面に於ける
温度こう配がなだらかなために、1200に〜100O
Kのアニーリング温度範囲に於いて表面部分で約8μm
、SnO2透明電極膜との界面部分で約11々mの幅を
持つ。従って、従来のガウシアンレーリ′ビームを用い
た加工にあっては、1200KLIJ、上の温度領域の
半導体膜が除去されたとしても、半導体膜はその除去界
面から半径方向に約8μm〜11μmの広範囲に亘って
低抵抗層に変換されていたのである。更に、従来の加工
にあっては半導体膜の除去幅は半径にして10μm以下
と、第11図の加工の約38〃mに比して狭い。その結
果、隣接した光電変換素子同士を断る半導体膜の除去に
より露出した透明電極膜の露出部分を介して電気的に直
列接続するために、上記半導体膜の除去幅を広くしよう
とすれば、(a)  レーザビームの強度を高め中心部
を高温度状態にして1200に以−ヒの等温分布幅を拡
幅する方法と、(b)  レーザビームの強度を高める
代わりにレーザビームの走査回数を増加させる方法、の
2通りの方法が考えられる。
On the other hand, when using a conventional laser beam with a Gaussian distribution, the temperature distribution on the irradiated surface exhibits a Gauss+7 Gauss distribution equivalent to the energy distribution, as shown in Figure 1O. When the temperature distribution in the depth direction is simulated using equal crosstalk every 100 times, it becomes as shown in FIG. 12. That is, although the m degree distribution in the depth direction at the center of the irradiated area is equal to the uniform distribution shown in Figure 11, the isothermal distribution width in the radial direction is due to the gentle temperature gradient on the irradiated surface. , 1200 to 100O
Approximately 8 μm on the surface in the K annealing temperature range
, has a width of about 11 m at the interface with the SnO2 transparent electrode film. Therefore, in processing using a conventional Gaussian Lely' beam, even if a semiconductor film in the temperature range of 1200 KLIJ or above is removed, the semiconductor film will be removed over a wide range of approximately 8 μm to 11 μm in the radial direction from the removed interface. It had been converted into a low resistance layer. Furthermore, in the conventional processing, the width of removal of the semiconductor film is less than 10 μm in radius, which is narrower than about 38 m in the processing shown in FIG. As a result, if we try to widen the removal width of the semiconductor film in order to electrically connect in series through the exposed portion of the transparent electrode film exposed by removing the semiconductor film that disconnects adjacent photoelectric conversion elements, ( a) A method of increasing the intensity of the laser beam and bringing the center into a high temperature state to widen the isothermal distribution width below 1200℃, and (b) increasing the number of scans of the laser beam instead of increasing the intensity of the laser beam. There are two possible methods.

然し乍ら、この両者の方法にあっでも低抵抗層の形成は
免れず、また(a)の方法にあってはレーザビームの中
心部が極めて高エネルギ状態となり下層の透明電極膜部
分に熱的ダメージを与えたり、(b)の方法にあっては
走査回数が増加するために作業性が低下する。それに反
し、照射領域に対して略均一なエネルギ分布のレーザビ
ームを利用する本実施例にあっては実質的に低抵抗層を
形成することなく、下層の膜に熱的ダメージを与えず、
また加工幅を広げることができる。
However, in both of these methods, the formation of a low resistance layer cannot be avoided, and in method (a), the center of the laser beam is in an extremely high energy state, causing thermal damage to the underlying transparent electrode film. In the case of method (b), the number of scans increases, resulting in a decrease in work efficiency. On the other hand, in this embodiment, which uses a laser beam with a substantially uniform energy distribution over the irradiation area, there is no substantial formation of a low-resistance layer, and no thermal damage is caused to the underlying film.
Furthermore, the processing range can be expanded.

上述の如き照射領域に対して略均一なエネルギ分布を持
つレーデビームは、第15図に示す如く、エネルギ分布
がガウス分布する通常のレーザビーム<LBl)の光路
中に、上記レーザビーム(LBt)の中心部を起点に入
射径に対して約25%の開1」径を有する角穴或いは丸
穴(20)を持つアイリス(21)を配置し、そのアイ
リス(21)の丸穴(20)を通過したレーザビーム(
LB2)を集光l−レンズ22)に導き、該集光レンズ
(22〉により集光したレーザビーム(LBl)を下記
の条件に基づき破船−[表面に照射することにより得ら
れる。即ち、アイリス(21)かも集光レンズ(22)
の中心までの距離をa、集光レンズ(22)の中心から
被加工表面までの距離をb、集光レンズ(22)の焦点
距離をrとすると、−   十−−”    − a      b      f’ を満足するとさ、上記被加工表面に照射ごねるレーザビ
ーム(LBl)のエネルギ分布は略均一な分布となる。
As shown in FIG. 15, the laser beam (LBt) having a substantially uniform energy distribution over the irradiation area is placed in the optical path of a normal laser beam <LBl) having a Gaussian energy distribution. An iris (21) having a square or round hole (20) having an open diameter of approximately 25% of the incident diameter starting from the center is arranged, and the round hole (20) of the iris (21) is The laser beam that passed (
LB2) is guided to a condensing lens 22), and the laser beam (LB1) condensed by the condensing lens (22) is irradiated onto the shipwreck surface under the following conditions. (21) Condensing lens (22)
If the distance to the center of is a, the distance from the center of the condenser lens (22) to the surface to be processed is b, and the focal length of the condenser lens (22) is r, - 10-'' - a b f' When the following is satisfied, the energy distribution of the laser beam (LB1) irradiated onto the surface to be processed becomes a substantially uniform distribution.

第7図の工程では、上述の如くエネルギ分布が照1#領
域に対して略均一なレーザビームを非晶質半導体膜(1
2)の隣接間隔部に照射して、上記非晶質半導体膜(1
2)を各個別に分離した非晶質半導体膜(12a)(1
2b)(12C)−及び透明電極膜(lla>(llb
)(llc)・・・の各露出部分を含んで基板〈10)
上全面に約2000Å以上の厚さのアルミニウム単重構
造、或いは該アルミニウムにチタン又はチタン銀を積重
した二届構造、更には断る二府構造を二重に積み重ねた
裏面TL電極膜13)が被若される。
In the process shown in FIG.
2), the amorphous semiconductor film (1)
2) are individually separated into amorphous semiconductor films (12a) (1
2b) (12C)- and transparent electrode film (lla>(llb
) (llc)... including each exposed portion of the board <10)
On the upper surface, there is a single layer aluminum structure with a thickness of about 2000 Å or more, or a two-layer structure in which titanium or titanium-silver is stacked on the aluminum, or a back surface TL electrode film 13) in which a two-layer structure is stacked double. be made younger.

第8図の最終工程では、上記裏面電極膜<13>が各非
晶質半導体膜(12a)(12b)(12c)・・上の
端面近傍に於いて、第6図の非晶質半導体膜(12)の
分離工程と同じくエネルギ分布が照射領域に対して略均
一なレーザビームの照射により各個別の裏面電極膜(1
3a)(13b>(13c)・に分割きれる。その結果
、各個別に分割された透明電極膜(lla>(llb)
(llc)−・、非晶質半導体膜(12a)(12b)
(12c)  及び裏面電極膜(13a)(13b)(
13c)・の積層体からなる光電変摸索−T(14a)
<14b)(14c)・  は基板(10〉上に於いて
電気的に直列接続される。
In the final step in FIG. 8, the back electrode film <13> is attached to the amorphous semiconductor film in FIG. As in the separation step (12), each individual back electrode film (1
3a) (13b>(13c)). As a result, each individually divided transparent electrode film (lla>(llb)
(llc)-・, amorphous semiconductor film (12a) (12b)
(12c) and back electrode film (13a) (13b) (
13c) Photoelectric transformer cable-T (14a) consisting of a laminate of
<14b) (14c). are electrically connected in series on the substrate (10>).

第13図は、@9図に示した如き照射領域に対して略均
一なエネルギ分布を持ち照射領域の形状が円形状のレー
ザビームを照射したときの照射表面に於ける中心部を起
点とし、その半径方向の温度分布が略矩形状の分布を呈
するレーザビームを用いて裏面電極膜(13)を分割す
るときの深さく厚み)方向の温度分布を、200に毎の
等混線を用いてシュミレーションしたものである。シユ
ミレーシヨンの対象となった試料は先のシュミレーショ
ンに用いたガラス基板(10)上に膜厚1000AのS
n02 透明’!t[膜(11)、!:、膜厚5000
人の非晶質を導体膜(12)との積層体に、更に膜厚5
000人のアルミニウム単層構造の裏面電極膜(13〉
を重畳した。このンユミレーンヨ〉′の結果、アルミニ
ラ7・の融点は絶縁温度にして約930にでti)2、
この930に舅、上の温度分布の中心から半径的38a
mのアルミニウム、単層構造の裏面電極膜部分が除去い
れど、。一方、断るンユミレーシnンによると、100
OK以上の温度分布が上記裏面電極膜部分と当接する非
晶質シリコン半導体膜(12)側にも僅かに存在する。
Figure 13 shows a laser beam starting from the center of the irradiated surface when irradiating the irradiated area with a laser beam having a substantially uniform energy distribution and a circular irradiated area as shown in Figure @9. The temperature distribution in the depth and thickness direction when dividing the back electrode film (13) using a laser beam whose temperature distribution in the radial direction exhibits a substantially rectangular distribution was simulated using equimixture lines every 200. This is what I did. The sample to be simulated was a S film with a thickness of 1000A on the glass substrate (10) used in the previous simulation.
n02 Transparent'! t [membrane (11),! :, film thickness 5000
The human amorphous material is made into a laminate with a conductive film (12), and the film thickness is 5.
000 aluminum single layer back electrode film (13)
was superimposed. As a result of this, the melting point of Aluminum 7 is approximately 930 at the insulation temperature.
Radial 38a from the center of the temperature distribution on this 930
However, the back electrode film part of the aluminum single layer structure was removed. On the other hand, according to Nyumireshin who refuses, 100
A slight temperature distribution above OK also exists on the amorphous silicon semiconductor film (12) side that is in contact with the back electrode film portion.

上記1000に以」ユの温度分布は断る領域の非晶質シ
リコン半導体膜(12)が微結晶化或いは結晶化きれ低
抵抗層に変換されることを意味するものの、上記低抵抗
層の形成は表面から極めて浅い領域に止まるために、実
質的に無視し得る程度に過ぎない。
Although the temperature distribution above 1000°C means that the amorphous silicon semiconductor film (12) in the above region is microcrystallized or completely crystallized and converted into a low resistance layer, the formation of the low resistance layer is Since it remains in a very shallow region from the surface, it is of virtually negligible magnitude.

第14図は従来のガウス分布を持つレーザビームを使用
し、上記第13図のレーザ加工と略同し裏面電極膜り1
3)の除去幅を得ようとしたときの、200に毎の等混
線を用いた深さ方向の温度分布シュミレーションである
。断るシユミレーシヨンの結果、第13図のレーザ加工
と略同し裏面電極膜(13)の除去幅が得られるものの
、温度こう配がなだらかなために裏面電極膜(13)の
融点近傍の温度分布幅が広く裏面電極膜の除去界面に於
いて該電極膜形成材の溶融垂れが発生したり、また非晶
質シリコン半導体膜(12)の1200に以北の領域を
除去するのみならずその除去界面の1200K −1O
OQKの領域を低抵抗層に変換していたことが判る。
Figure 14 uses a conventional laser beam with a Gaussian distribution, and is almost the same as the laser processing shown in Figure 13 above.
This is a temperature distribution simulation in the depth direction using equimixture lines every 200 when trying to obtain the removal width of 3). As a result of the simulation, the removal width of the back electrode film (13) is approximately the same as that of the laser processing shown in FIG. 13, but because the temperature gradient is gentle, the temperature distribution width near the melting point of the back electrode film (13) is Melting and dripping of the electrode film forming material occurs widely at the removal interface of the back electrode film, and not only the region north of 1200 of the amorphous silicon semiconductor film (12) is removed, but also the removal interface 1200K-1O
It can be seen that the OQK region was converted into a low resistance layer.

従って、第8図の最終工程に於いて分割された裏面電極
膜(+3a)(13b)(13c)・・は物理的にも電
気的にも分離され、隣接光電変換素子(14a)(14
b)(14c)・・・を確実に直列接続せしめる。
Therefore, the back electrode films (+3a) (13b) (13c), which are divided in the final step of FIG. 8, are physically and electrically separated, and the adjacent photoelectric conversion elements (14a) (14
b) (14c)... are reliably connected in series.

尚、上記第8図の最終工程に於いて裏面電極膜(+3a
)(t3b)(13cm−は各非晶質半導体膜(12a
)(12bH12c)・・・上で略均一なエネルギ分布
のレーザビームの照射により除去きれているために、斯
る除去部分に於いて露出した非晶質半導体膜の表面部分
には北述の如き若干の低抵抗層が形成されるものの、こ
の低抵抗層は光起電力装置が太陽光の下で使用きれたと
きや室内光であっても通常(7)照度<400 L u
x以上)であれば¥質的に!A題はない。ただ約200
 L ux未満の低照度下では上記低抵抗層によるリー
ク等の悪影響が発生す゛る−ともある。このようなとき
は、上記低抵抗層を上記裏面チング〈プラズマエツチン
グ)を施してエッチ〉・り除去するか、第16図に示す
如く裏面電極膜(13)の除去工程に於いて該裏面1を
極膜のみを選択的に除去することなく下層の非晶質半導
体膜(12)も同時に除去すれば良い。
In addition, in the final step shown in FIG. 8 above, the back electrode film (+3a
) (t3b) (13cm- is each amorphous semiconductor film (12a
) (12bH12c)...Since the removal has been completed by irradiation with a laser beam with a substantially uniform energy distribution, the surface portion of the amorphous semiconductor film exposed in such a removed area has the above-mentioned appearance. Although some low-resistance layer is formed, this low-resistance layer is usually (7) illuminance <400 L u even when the photovoltaic device is used up under sunlight or indoor light.
x or more), then ¥qualitatively! There is no A title. Only about 200
It is also said that under low illuminance below Lux, adverse effects such as leakage due to the low resistance layer occur. In such a case, the low-resistance layer may be removed by performing the backside etching (plasma etching), or the backside electrode film (13) may be removed in the process of removing the backside electrode film (13) as shown in FIG. Instead of selectively removing only the pole film, the underlying amorphous semiconductor film (12) may also be removed at the same time.

更に、上述の実施例に於ける第8図の最終工程にあって
も、使用きれるレーザビーム、のエネルギ分布は第6図
の工程と同じく照射領域に対して略均一であったが、従
来と同じガウス分布を持つレーザビームを使用しても良
い。ただこの場合、下層の非晶質半導体膜部分に隣接充
電変換素子(14a)(14bH14c)・・・の短絡
原因となる低抵抗層を形成4−るので、該低抵抗層につ
いては分割されたングを施し、除去してやらなければな
らないために、若干の作業性の欠如は免れない。
Furthermore, even in the final step shown in FIG. 8 in the above-described embodiment, the energy distribution of the usable laser beam was approximately uniform over the irradiation area as in the step shown in FIG. Laser beams with the same Gaussian distribution may also be used. However, in this case, a low-resistance layer is formed in the lower amorphous semiconductor film portion, which may cause a short circuit between adjacent charge conversion elements (14a) (14bH14c), so the low-resistance layer is divided. Because it has to be removed and removed, a slight loss of workability is inevitable.

(ト) 全日月の効果 本発明製造方法は以上の説明から明らかな如く、エネル
ギ分布が照射領域に対して略均一なエネルギビームを、
基板側を極膜上に配置された半41本膜の予定箇所に照
射するので、5該照射領域の半導体膜部分のみを実質的
に低抵抗層を形成することなく除去することができ、隣
接した光電変換素子同士や当該一つの光電変換素子の短
絡事故を防止することができると共に、断る除去界面の
残留物の残存や下層への熱的ダメージの発生を回避し得
る。
(g) Effect of full sun and moon As is clear from the above explanation, the manufacturing method of the present invention produces an energy beam whose energy distribution is approximately uniform over the irradiation area.
Since the substrate side is irradiated to the predetermined location of the semi-41 film placed on the polar film, only the semiconductor film portion in the 5 irradiation area can be removed without substantially forming a low resistance layer, and the adjacent It is possible to prevent a short-circuit accident between the photoelectric conversion elements or one photoelectric conversion element, and also to avoid the occurrence of residual residue at the removed interface and thermal damage to the underlying layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光起電力装置の基本構造を示す断面図、第2図
(a)〜(c)は従来方法の欠点を説明するための要部
拡大断面図、第3図〜第8図は本発明方法を工程別に示
r断面図、第9図は本発明方法に用いられるレーザビー
ムのエネルギ分布を説明する温度分布特性図、第10図
は従来方法のエネルギ分布を説明する温度分布特性図、
第11図及び第12図は夫々第9図と第10図のエネル
ギ分布を持つレーザビームを非晶質シリコン半導体膜に
照射したときの等温分布特性図、第13図及び第14図
は夫々第9図と第10図のエネルギ分布を持つレーザビ
ームをアルミニウム裏面電極膜に照射したときの等温分
布特性図、第15図は本発明ノ5法に用いられるレーザ
ビームの作成方式を深理的に示す模式図、第16図は本
発明方法の最終工程の他の実施例を示す断面図、である
。 (10)−・基板、(11)(lla)(llb)(l
lc)・−・透81!電極膜、(12)り12a)(1
2b)(12c)・非晶質半4体膜、(13)(13a
)(13b)(13c)−・裏面電極膜、(14a)<
14b)(14c)・・光電変換素子、(21)・・ア
イリス、(22)・・集光レンズ。
Figure 1 is a cross-sectional view showing the basic structure of a photovoltaic device, Figures 2 (a) to (c) are enlarged cross-sectional views of important parts to explain the drawbacks of the conventional method, and Figures 3 to 8 are 9 is a temperature distribution characteristic diagram illustrating the energy distribution of the laser beam used in the method of the present invention, and FIG. 10 is a temperature distribution characteristic diagram illustrating the energy distribution of the conventional method. ,
11 and 12 are isothermal distribution characteristic diagrams when an amorphous silicon semiconductor film is irradiated with a laser beam having the energy distribution shown in FIGS. 9 and 10, respectively. Figures 9 and 10 show isothermal distribution characteristics when the laser beam with the energy distribution is irradiated onto the aluminum back electrode film, and Figure 15 shows the fundamental method for creating the laser beam used in Method No. 5 of the present invention. FIG. 16 is a cross-sectional view showing another embodiment of the final step of the method of the present invention. (10)--Substrate, (11) (lla) (llb) (l
lc) --- Toru 81! Electrode film, (12) 12a) (1
2b) (12c)・Amorphous semi-tetrabody membrane, (13) (13a
)(13b)(13c)--Back electrode film, (14a)<
14b) (14c)...Photoelectric conversion element, (21)...Iris, (22)...Condensing lens.

Claims (1)

【特許請求の範囲】[Claims] (1)複数の光電変換素子を基板の絶縁表面で電気的に
直列接続せしめた光起電力装置の製造方法であって、上
記複数の光電変換素子を構成する複数の基板側電極膜上
に連続的に跨って配置された半導体膜に、エネルギ分布
が照射領域に対して略均一なエネルギビームを照射して
当該照射領域の半導体膜を除去し、該半導体膜を複数の
光電変換素子毎に分割したことを特徴とする光起電力装
置の製造方法。
(1) A method for manufacturing a photovoltaic device in which a plurality of photoelectric conversion elements are electrically connected in series on an insulating surface of a substrate, wherein the photovoltaic devices are connected in series on a plurality of substrate-side electrode films constituting the plurality of photoelectric conversion elements. The semiconductor film arranged across the irradiation area is irradiated with an energy beam whose energy distribution is approximately uniform over the irradiation area, the semiconductor film in the irradiation area is removed, and the semiconductor film is divided into a plurality of photoelectric conversion elements. A method for manufacturing a photovoltaic device characterized by:
JP61034801A 1986-02-18 1986-02-18 Manufacture of photovoltaic device Granted JPS62193182A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61034801A JPS62193182A (en) 1986-02-18 1986-02-18 Manufacture of photovoltaic device
US07/015,691 US4755475A (en) 1986-02-18 1987-02-17 Method of manufacturing photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61034801A JPS62193182A (en) 1986-02-18 1986-02-18 Manufacture of photovoltaic device

Publications (2)

Publication Number Publication Date
JPS62193182A true JPS62193182A (en) 1987-08-25
JPH0528912B2 JPH0528912B2 (en) 1993-04-27

Family

ID=12424342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61034801A Granted JPS62193182A (en) 1986-02-18 1986-02-18 Manufacture of photovoltaic device

Country Status (1)

Country Link
JP (1) JPS62193182A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831774A (en) * 1994-07-12 1996-02-02 Sanyo Electric Co Ltd Metal film removing and processing method and manufacture of photoelectromotive element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831774A (en) * 1994-07-12 1996-02-02 Sanyo Electric Co Ltd Metal film removing and processing method and manufacture of photoelectromotive element

Also Published As

Publication number Publication date
JPH0528912B2 (en) 1993-04-27

Similar Documents

Publication Publication Date Title
US4755475A (en) Method of manufacturing photovoltaic device
US4542578A (en) Method of manufacturing photovoltaic device
JPS5935489A (en) Manufacture of photo semiconductor device
JPH0494174A (en) Compound thin film solar cell and its production
JP2680582B2 (en) Method for manufacturing photovoltaic device
JPS62193182A (en) Manufacture of photovoltaic device
JPH0799335A (en) Removal and processing of semiconductor film and manufacture of photovoltaic element
JPS6233477A (en) Manufacture of photovoltaic device
JP2001094131A (en) Method for fabricating integrated photovoltaic power device
JPS62193181A (en) Manufacture of photovoltaic device
JPS61280680A (en) Manufacture of semiconductor device
JPS6213829B2 (en)
JPS62242371A (en) Manufacture of photovoltaic device
JP2648064B2 (en) Method for manufacturing optical semiconductor device
JPS59220978A (en) Manufacture of photovoltaic device
JPS63179581A (en) Photovoltaic device and manufacture thereof
JPS63261883A (en) Manufacture of photovoltaic device
JPS633470A (en) Formation of photoelectric conversion device
JP2517226B2 (en) Method for manufacturing semiconductor device
JPS60231372A (en) Manufacture of semiconductor device
JPS60200578A (en) Manufacture of photoelectric converter
JPH0443432B2 (en)
JPH0370184A (en) Photovoltaic device
JPH0650781B2 (en) Method for manufacturing semiconductor device
JP3208219B2 (en) Photovoltaic device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term