JPH0494174A - Compound thin film solar cell and its production - Google Patents

Compound thin film solar cell and its production

Info

Publication number
JPH0494174A
JPH0494174A JP2211950A JP21195090A JPH0494174A JP H0494174 A JPH0494174 A JP H0494174A JP 2211950 A JP2211950 A JP 2211950A JP 21195090 A JP21195090 A JP 21195090A JP H0494174 A JPH0494174 A JP H0494174A
Authority
JP
Japan
Prior art keywords
film
thin film
compound thin
compound
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2211950A
Other languages
Japanese (ja)
Inventor
Takuro Ihara
井原 卓郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2211950A priority Critical patent/JPH0494174A/en
Publication of JPH0494174A publication Critical patent/JPH0494174A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Abstract

PURPOSE:To prevent short-circuit and reduce the production cost by forming a compound thin film on a patterned metal electrode, laminating a transparent conductive film on the compound thin film and irradiating laser beams whose output intensity distribution in the beam width direction is asymmetric. CONSTITUTION:An Mo film is formed on a glass substrate 1 by sputtering method and is patterned by laser scribing method so as to form strip-shaped metal electrodes 21, 22, 23.... A p-type CuInSe2, film and an n-type CdS film 40 are formed on the metal electrodes by the sputtering method and a transparent conductive film 50 made of ZnO layer is laminated by the sputtering method on the films 30 and 40 without patterning the layers. For the separation and electrical connection of the unit cells, laser beams which are asymmetric through a slit from the center and whose intensity is within the range of a-b-c-d are irradiated among the Nd:YAG laser beams. At one irradiated area, low resistance junctions 61, 62... are formed and are electrically connected with the metal electrodes 22, 23... of unit cells adjacent to transparent electrodes 51, 52, 53..., and at the other area, the adjacent transparent electrodes of the unit cell are electrically insulated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はカルコパイライト系化合物を活性層とする薄膜
半導体を用いた太陽電池のユニットセルを直列接続して
なる化合物薄膜太陽電池およびその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a compound thin film solar cell formed by connecting in series unit cells of a solar cell using a thin film semiconductor having a chalcopyrite compound as an active layer, and a method for manufacturing the same. Regarding.

〔従来の技術〕[Conventional technology]

カルコパイライト系化合物のCu Inks !は、そ
の禁制帯幅が約1eVであって、直接遷移形の帯構造を
持ち、pおよびnの両型の導電型を示す。また禁制帯幅
2.4eVのCdSとは格子の不整合も1%程度であり
、したがって窓層のn型CdSとp型Cu1nSe。
Cu Inks of chalcopyrite compounds! has a forbidden band width of about 1 eV, has a direct transition type band structure, and exhibits both p and n conductivity types. Furthermore, the lattice mismatch with CdS, which has a forbidden band width of 2.4 eV, is about 1%, so the n-type CdS and p-type Cu1nSe of the window layer.

のヘテロ接合で高効率太陽電池を構成することが期待で
きることから、近年その研究、開発が盛んに進められて
いる。このような化合物薄膜太陽電池から発電した電力
を効率良く取り出すためには、非晶質Si太陽電池にお
いても行われているように、例えば第2図に示すように
ユニットセルが直列接続されるような構造にするのが一
般的である。この構造は、ガラス、アルミナなどの絶縁
性基板1上にオーム性接触用の金属電極21,22.2
3・・・を−列に並んだ複数の短冊状に形成し、その上
に光起電力発生層であるp型CuInSez層31.3
2.33−n型CdS層41.42.43−・・ならび
にZnOやITOなどからなる透明電極51.52.5
3・・・を順に積層する。そして、例えば金1it極2
2の縁部近くにおいてCulnSez層3L32および
n型Cd5層41.42の間隙を満たす透明1Eti5
1の縁部が接触するようにして、一つのユニ・ノドセル
の金属電極が隣接するユニットセルの透明電極とが接続
される構造となるように画電極およびCulnSei層
、CdS層のパターンを構成することにより各ユニット
セルを直列接続する。
Since it is expected that high-efficiency solar cells can be constructed using heterojunctions, research and development have been actively conducted in recent years. In order to efficiently extract the power generated from such compound thin-film solar cells, unit cells should be connected in series, as shown in Figure 2, as is also done in amorphous Si solar cells. It is common to have a similar structure. This structure has metal electrodes 21, 22, 2 for ohmic contact on an insulating substrate 1 made of glass, alumina, etc.
3... are formed into a plurality of strips arranged in - rows, and a p-type CuInSez layer 31.3 serving as a photovoltaic generation layer is formed thereon.
2.33-n-type CdS layer 41.42.43-... and transparent electrode 51.52.5 made of ZnO, ITO, etc.
3... are laminated in order. For example, gold 1it pole 2
Transparent 1Eti5 filling the gap between CulnSez layer 3L32 and n-type Cd5 layer 41.42 near the edges of 2
The pattern of the picture electrode, the CulnSei layer, and the CdS layer is configured so that the metal electrode of one uni-node cell is connected to the transparent electrode of the adjacent unit cell so that the edges of the two cells are in contact with each other. This connects each unit cell in series.

一般に、このような直列接続型化合物薄膜太陽電池の形
成は、金属電極層の形成、金xisのバターニング、 
CulnSei層の形成、 CdS層の形成Cu1nS
et層とCdS層のパターニング、透明電極の形成、透
明電極のパターニングの!唾序で行われ、各層のバター
ニングには、レーザスクライブ法機械的スクライプ法、
フォトエンチング法などのプロセス技術が用いられる。
Generally, the formation of such a series-connected compound thin film solar cell involves forming a metal electrode layer, patterning gold xis,
Formation of CulnSei layer, Formation of CdS layer Cu1nS
Patterning of ET layer and CdS layer, formation of transparent electrode, patterning of transparent electrode! The buttering of each layer is done by laser scribing, mechanical scribing,
Process techniques such as photo-etching are used.

[発明が解決しようとする課題〕 直列接続型化合物薄膜太陽電池において良好な性能を得
るためには、金属電極とこれに接触する隣接するユニッ
トセルの透明電極間の抵抗が小さいこと、一つのユニッ
トセル内の金属電極とCulnSei眉間およびCdS
層と透明電極間の接触が良好であること、ならびに、特
に傷等によるCulnSez層やCdS層の一部欠落に
より、金属電極の一部と透明電極の一部がオーム性接触
する、いわゆるシッートがないことが重要である。
[Problems to be Solved by the Invention] In order to obtain good performance in series-connected compound thin film solar cells, it is necessary that the resistance between the metal electrode and the transparent electrode of the adjacent unit cell in contact with the metal electrode be small, and that one unit Metal electrode and CulnSei glabella and CdS in the cell
Good contact between the layer and the transparent electrode, as well as a so-called sheet, in which part of the metal electrode and part of the transparent electrode come into ohmic contact, especially due to part of the CulnSez layer or CdS layer missing due to scratches, etc. It is important that there is no

しかしながら、前記従来方法のように、CulnSex
層およびCdS層の形成と透明電極の形成の間にCur
nSe、層およびCdS層のバターニング工程が入るプ
ロセス構成にすると、機械的スクライブ法が主に用いら
れるパターニング工程において、発生する微小な破片や
雰囲気中のほこり等により、CuInSez層やCdS
層に傷がついてシッートが発生したり、表面が汚染され
て透明電極との良好な接触が妨げられることが起こる0
表面の汚染を除去するためには、透明電極の形成前に表
面の清浄化を行うことになるが、この清浄化工程を入れ
ると、CdS層やCulnSez層をさらに傷つけ、シ
ッート発生の確率が高くなり、また当然太陽電池の製造
工数が増すという欠点があった。
However, like the conventional method, CulnSex
Cur layer and between the formation of the CdS layer and the formation of the transparent electrode.
If the process is configured to include a patterning step for the CuInSez layer and the CdS layer, the CuInSez layer or CdS layer may be damaged by minute fragments or dust in the atmosphere during the patterning step where mechanical scribing is mainly used.
The layer may be scratched, causing sheets, or the surface may be contaminated, preventing good contact with the transparent electrode.
In order to remove surface contamination, the surface must be cleaned before forming the transparent electrode, but adding this cleaning step will further damage the CdS layer and CulnSez layer, increasing the probability of sheet generation. Naturally, this also has the disadvantage of increasing the number of man-hours required to manufacture the solar cell.

本発明の目的は、上記の欠点を除き、パターニング工程
や清浄化工程によるシッート発生のおそれがなく、少な
い製造工数で製造できる化合物薄膜太陽電池および製造
方法を提供することにある。
An object of the present invention is to provide a compound thin-film solar cell and a manufacturing method that eliminate the above-mentioned drawbacks, can be manufactured with fewer man-hours, and are free from the risk of sheet generation during patterning or cleaning steps.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明は、金属電極、少
なくともカルコパイライト系化合物よりなる膜を含む光
起電力発生層および透明電極を積層してなるユニットセ
ルの複数個を絶縁性基板上に金属電極を基板側にして一
列に配置し、各ユニットセルを直列接続してなる化合物
薄膜太陽電池において、一つのユニットセルの金it極
がl!J接するユニットセルの透明電極と光起電力発生
層の低抵抗化された縁部を介して接続されたものとする
。また、本発明の化合物薄膜太陽電池の製造方法は、絶
縁性基板上に複数の金属電極を間隔を介して一列に配置
する工程と、その上に光起電力発生層となる少なくとも
カルコパイライト系化合物よりなる膜を含む化合物m膜
および透明導電膜を積層する工程と、各金属電極の一方
の側の縁部に近接した領域の上の化合物薄膜および透明
導電膜に、ビーム幅方向に中心に対して非対称で金属電
極縁部側へは次第に低下し1.他側へは急激に低下する
強度分布をもつレーザビームを照射し、レーザビームの
中心が照射された領域の化合物薄膜および透明導電膜を
飛散させて複数の光起電力発生層および透明電極に分割
し、その分割部より金属電極の縁部に近い領域の化合物
薄膜を低抵抗化する工程とを含むものとする。
In order to achieve the above object, the present invention provides a plurality of unit cells formed by stacking a metal electrode, a photovoltaic generation layer including a film made of at least a chalcopyrite compound, and a transparent electrode on an insulating substrate. In a compound thin film solar cell in which the metal electrodes are arranged in a row with the substrate side and each unit cell is connected in series, the gold IT electrode of one unit cell is l! It is assumed that the transparent electrode of the unit cell in J contact with the photovoltaic force generation layer is connected via the low resistance edge. Further, the method for manufacturing a compound thin film solar cell of the present invention includes a step of arranging a plurality of metal electrodes in a row at intervals on an insulating substrate, and adding at least a chalcopyrite compound to be a photovoltaic generation layer thereon. The step of laminating a compound film and a transparent conductive film including a film consisting of It is asymmetrical and gradually decreases toward the edge of the metal electrode.1. The other side is irradiated with a laser beam with a rapidly decreasing intensity distribution, and the center of the laser beam scatters the compound thin film and transparent conductive film in the irradiated area, dividing it into multiple photovoltaic generation layers and transparent electrodes. The method also includes a step of lowering the resistance of the compound thin film in a region closer to the edge of the metal electrode than the divided portion.

〔作用〕[Effect]

積層された化合物薄膜および透明導電膜にレーザビーム
を、照射する場合、レーザビーム照射の効果はビーム強
度により異なる。強度が十分小さい場合は何も変化が起
こらず、強度を増していくと化合物薄膜により形成され
ているp−n接合が破壊されて低抵抗化し、透明導電膜
と金属電極が電気的にショート状態となる。さらに強度
を増すと、カルコパイライト系化合物膜が吸収したレー
ザ光エネルギーにより溶融、飛散し、この時カルコパイ
ライト系化合物膜上の他の化合物薄膜および透明導電膜
も除去される。レーザビームをスリットやミラー等の光
学系によりビーム幅方向の出力強度分布が中心に対して
非対称となるように調整すれば、化合物1膜と透明導電
膜を分割して各ユニットセルの光起電力発生層および透
明電極を形成し、その分割部の一方で透明電極と金属電
極がショートし、他方で絶縁状態を維持し、その結果1
本のレーザビーム照射でユニットセルの直列接続構造を
形成することが可能である。
When a laminated compound thin film and a transparent conductive film are irradiated with a laser beam, the effect of the laser beam irradiation varies depending on the beam intensity. If the strength is small enough, no change will occur; if the strength is increased, the p-n junction formed by the compound thin film will be destroyed and the resistance will become low, causing an electrical short between the transparent conductive film and the metal electrode. becomes. When the strength is further increased, the chalcopyrite compound film melts and scatters due to the absorbed laser beam energy, and at this time, other compound thin films and the transparent conductive film on the chalcopyrite compound film are also removed. If the laser beam is adjusted using an optical system such as a slit or mirror so that the output intensity distribution in the beam width direction is asymmetric with respect to the center, the photovoltaic power of each unit cell can be increased by dividing the compound 1 film and the transparent conductive film. A generation layer and a transparent electrode are formed, and the transparent electrode and metal electrode are short-circuited on one side of the divided part, and the insulating state is maintained on the other side, resulting in 1
It is possible to form a series connection structure of unit cells by laser beam irradiation.

〔実施例〕〔Example〕

以下、本発明の実施例を第2図と共通の部分に同一の符
号を付した図を引用して説明する。第1図(ajは本発
明であるレーザ光線によるユニットセル間の分割および
電気的接続を行う直前の化合物薄膜太陽電池の状態を示
す図である。この状態の構造は次のようにして得られる
。即ち、まずガラス基板1上にMo膜をスパッタ法によ
り1−の暑さで形成し、これをレーザスクライブ法によ
りパタニングして短冊状の金属電極21.22.23・
・・を形成する。次に、この上にp型CuInSez膜
30およびn型CdS膜40をスパッタ法により各々1
.5 tns、0.2tnaの厚さで形成し、これらの
層のバターニングを行うことなく、その上にZnO層か
らなる透明導電膜50を1−の厚さでスパッタ法により
積層する。
Embodiments of the present invention will be described below with reference to figures in which parts common to those in FIG. 2 are denoted by the same reference numerals. FIG. 1 (aj is a diagram showing the state of a compound thin film solar cell immediately before division and electrical connection between unit cells by a laser beam according to the present invention. The structure in this state can be obtained as follows. That is, first, a Mo film is formed on a glass substrate 1 by sputtering at a temperature of 1-1, and then patterned by a laser scribing method to form strip-shaped metal electrodes 21, 22, 23, and 23.
... to form. Next, a p-type CuInSez film 30 and an n-type CdS film 40 are each formed on top of this by sputtering.
.. 5 tns and 0.2 tna, and without patterning these layers, a transparent conductive film 50 made of a ZnO layer is laminated thereon to a thickness of 1 - by sputtering.

ユニットセル間の分割および電気的接続にはNd:YA
Gレーザを利用した。第3図(alはNd:YAGレー
ザのT E M a。モードでのビーム幅方向の出力強
度分布を、第3図(b)はこのレーザビームを化合物薄
膜太陽電池に照射した状態を示す図である。b−c−d
の強度範囲の領域では門0膜20上のCu1nSez 
1130. CdS膜40.ZnO膜50が除去される
Nd:YA for division and electrical connections between unit cells
G laser was used. Figure 3 (al is the output intensity distribution in the beam width direction in the T E M a mode of the Nd:YAG laser, and Figure 3 (b) is a diagram showing the state in which this laser beam is irradiated to a compound thin film solar cell. It is.b-c-d
Cu1nSez on the gate 0 membrane 20 in the region of intensity range of
1130. CdS film 40. ZnO film 50 is removed.

一方a−b間、d−s間の強度範囲の領域ではCu1n
Ssl膜とCdS膜のp−n接合が破壊されて低抵抗化
し、透明電極と金属電極が電気的にショート状態となる
接続部60が形成される。ユニットセル間の分割および
電気的接続には、このビーム幅のうち、スリットを通し
て中心に対して非対称なa−b−cdの範囲を利用する
。この強度範囲のレーザビームを、第1図fa)に示し
た積層構造にガラス基板1を通して照射して得られる構
造を第1図(blに示す、第1図(blのように照射部
の一方の第3図のa−bに相当する領域では、低抵抗接
続部6L62−・・が形成されて透明電極51,52.
53・・・と隣接するユニットセルの金属量i22,2
3・・・とが電気的に接続され、照射部の他方の第3図
のb−cdに相当する領域では、隣接するユニットセル
の透明電極間が電気的に絶縁される。
On the other hand, in the region of the intensity range between a-b and d-s, Cu1n
The p-n junction between the Ssl film and the CdS film is destroyed, resulting in a low resistance, and a connection portion 60 is formed in which the transparent electrode and the metal electrode are electrically shorted. For division and electrical connection between unit cells, the a-b-cd range of this beam width, which is asymmetrical with respect to the center through the slit, is utilized. The structure obtained by irradiating a laser beam in this intensity range through the glass substrate 1 shown in Fig. 1 fa) is shown in Fig. 1 (bl). In the region corresponding to a-b in FIG. 3, low-resistance connecting portions 6L62-... are formed, and transparent electrodes 51, 52, .
53... and the metal amount i22,2 of the adjacent unit cell
3... are electrically connected, and in the other region of the irradiation section corresponding to b-cd in FIG. 3, the transparent electrodes of adjacent unit cells are electrically insulated.

上記の実施例では、レーザビームをガラス基板1を通し
て照射したが、セラミック基板を用いる場合には、レー
ザビームを基板の反対側から照射する。なお、金属電極
形成のバターニングをレーザスクライブ法で行う場合は
出力強度は第3図における強度よりも高くする。
In the above embodiment, the laser beam was irradiated through the glass substrate 1, but when a ceramic substrate is used, the laser beam is irradiated from the opposite side of the substrate. Note that when patterning for forming metal electrodes is performed by a laser scribing method, the output intensity is set higher than the intensity shown in FIG. 3.

本発明は、光起電力発生層がp型Cu1nSe2膜とn
型CdS膜とからなる場合に限らず、Cu1nSez 
lIlによるpn接合、あるいは他のカルコパイライト
系化合物を用いたpn接合によって形成されるときにも
実施できる。
In the present invention, the photovoltaic force generation layer is a p-type Cu1nSe2 film and an n-type Cu1nSe2 film.
Cu1nSez film is not limited to the case where it is composed of
It is also possible to form a pn junction using lIl or a pn junction using other chalcopyrite compounds.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、バターニングされた金属電極上に光起
電力発生層のための化合物薄膜を形成後、これらの層の
バターニングを行うことなくその上に透明導電膜を積層
し、ビーム幅方向の出力強度分布が中心に対して非対称
となるレーザ光を照射することにより、隣接するユニッ
トセル間の透明電極−金属電極の接続と隣接するユニー
/ トセル間の分離とを同時に行う方法を適用したので
、以下の効−果がある。
According to the present invention, after forming a compound thin film for a photovoltaic generation layer on a patterned metal electrode, a transparent conductive film is laminated thereon without patterning these layers, and the beam width is A method is applied that simultaneously connects transparent electrodes and metal electrodes between adjacent unit cells and separates adjacent units/tocells by irradiating a laser beam whose output intensity distribution in the direction is asymmetric with respect to the center. Therefore, it has the following effects.

何)化合物薄膜の形成と透明電極の形成の間に化合物薄
膜のパターニング工程が入らないため、化合物薄膜に傷
がついてシッートが発生し、太陽電池の性能が低下する
ことを防ぐことができる。
What) Since there is no patterning process for the compound thin film between the formation of the compound thin film and the formation of the transparent electrode, it is possible to prevent the compound thin film from being scratched, causing spots, and reducing the performance of the solar cell.

(ロ)バターニング工程の数が一つ減るため製造コスト
が低減する。
(b) Manufacturing costs are reduced because the number of buttering steps is reduced by one.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の製造工程を(al、(b)
の順に示す断面図、第2図は従来の化合物薄膜太陽電池
の断面図、第3図はレーザビーム照射効果を示し、その
うち(4)は出力強度分布図、(bJはfa)に示した
レーザビームを化合物薄膜太陽電池に照射した状態の断
面図である。 1ニガラス基板、21.22.23 :金属電極、30
.3132.33 : p型CuInSez膜、40,
41,42.43 : 11型dS 62: 膜、50 : ZnO層、 低抵抗接続部。 L52 53: イ(1人升J1士 透明電極、 曾厘ψ沖 第2肥 第1図
FIG. 1 shows the manufacturing process of an embodiment of the present invention (al, (b)
Figure 2 is a cross-sectional diagram of a conventional compound thin film solar cell, Figure 3 shows the laser beam irradiation effect, of which (4) is an output intensity distribution diagram, (bJ is fa) FIG. 2 is a cross-sectional view of a compound thin film solar cell irradiated with a beam. 1. Glass substrate, 21.22.23: Metal electrode, 30
.. 3132.33: p-type CuInSez film, 40,
41, 42.43: 11 type dS 62: Film, 50: ZnO layer, low resistance connection. L52 53: I (1 person square J1 person transparent electrode, Zengling ψ offing No. 2 fertilizer Figure 1)

Claims (1)

【特許請求の範囲】 1)金属電極、少なくともカルコパイライト系化合物よ
りなる膜を含む光起電力発生層および透明電極を積層し
てなるユニットセルの複数個を絶縁性基板上に金属電極
を基板側にして一列に配置し、各ユニットセルを直列接
続してなるものにおいて、一つのユニットセルの金属電
極が隣接するユニットセルの透明電極と光起電力発生層
の低抵抗化された縁部を介して接続されたことを特徴と
する化合物薄膜太陽電池。 2)光起電力発生層がp型CuInSe_z膜およびn
型CdS膜である請求項1記載の化合物薄膜太陽電池。 3)絶縁性基板上に複数の金属電極を間隔を介して一列
に配置する工程と、その上に光起電力発生層となる少な
くともカルコパイライト系化合物よりなる膜を含む化合
物薄膜および透明導電膜を積層する工程と、各金属電極
の一方の側の縁部に近接した領域の上の化合物薄膜およ
び透明導電膜に、ビーム幅方向に中心に対して非対称で
金属電極縁部側へは次第に低下し、他側へは急激に低下
する強度分布をもつレーザビームを照射し、レーザビー
ムの中心が照射された領域の化合物薄膜および透明導電
膜を飛散させて複数の光起電力発生層および透明電極に
分割し、その分割部より金属電極の縁部に近い領域の化
合物薄膜を低抵抗化する工程とを含むことを特徴とする
化合物薄膜太陽電池の製造方法。 4)化合物薄膜がp型CuInSe_z膜およびn型C
dS膜である請求項3記載の化合物薄膜太陽電池の製造
方法。
[Scope of Claims] 1) A plurality of unit cells formed by stacking a metal electrode, a photovoltaic generation layer including a film made of at least a chalcopyrite compound, and a transparent electrode are placed on an insulating substrate, with the metal electrode on the substrate side. In a device in which unit cells are arranged in a row and connected in series, the metal electrode of one unit cell is connected to the transparent electrode of the adjacent unit cell through the low-resistance edge of the photovoltaic generation layer. A compound thin film solar cell characterized in that the compound thin film solar cell is connected to 2) The photovoltaic generation layer is a p-type CuInSe_z film and an n
The compound thin film solar cell according to claim 1, which is a type CdS film. 3) A step of arranging a plurality of metal electrodes in a line at intervals on an insulating substrate, and a transparent conductive film and a compound thin film containing at least a film made of a chalcopyrite compound and a transparent conductive film are formed thereon to serve as a photovoltaic generation layer. During the lamination process, the thin compound film and transparent conductive film on the area close to the edge on one side of each metal electrode are asymmetrical with respect to the center in the beam width direction and gradually decrease toward the edge of the metal electrode. , the other side is irradiated with a laser beam with an intensity distribution that rapidly decreases, and the center of the laser beam scatters the compound thin film and transparent conductive film in the irradiated area, forming multiple photovoltaic generation layers and transparent electrodes. 1. A method for manufacturing a compound thin film solar cell, comprising the steps of: dividing the thin compound film, and lowering the resistance of the compound thin film in a region closer to the edge of the metal electrode than the divided portion. 4) Compound thin film is p-type CuInSe_z film and n-type C
4. The method for manufacturing a compound thin film solar cell according to claim 3, wherein the compound thin film solar cell is a dS film.
JP2211950A 1990-08-10 1990-08-10 Compound thin film solar cell and its production Pending JPH0494174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2211950A JPH0494174A (en) 1990-08-10 1990-08-10 Compound thin film solar cell and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2211950A JPH0494174A (en) 1990-08-10 1990-08-10 Compound thin film solar cell and its production

Publications (1)

Publication Number Publication Date
JPH0494174A true JPH0494174A (en) 1992-03-26

Family

ID=16614384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2211950A Pending JPH0494174A (en) 1990-08-10 1990-08-10 Compound thin film solar cell and its production

Country Status (1)

Country Link
JP (1) JPH0494174A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512107A (en) * 1992-03-19 1996-04-30 Siemens Solar Gmbh Environmentally stable thin-film solar module
JP2002528888A (en) * 1998-09-17 2002-09-03 シーメンス ソーラー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for structuring a transparent electrode layer
WO2005064693A1 (en) * 2003-12-25 2005-07-14 Showa Shell Sekiyu K.K. Integrated thin-film solar cell and its manufacturing method
WO2007043219A1 (en) * 2005-10-13 2007-04-19 Honda Motor Co., Ltd. Solar battery and its fabrication method
WO2007049384A1 (en) * 2005-10-27 2007-05-03 Honda Motor Co., Ltd. Solar battery
JP2007317885A (en) * 2006-05-25 2007-12-06 Honda Motor Co Ltd Solar cell, and its manufacturing method
JP2007317879A (en) * 2006-05-25 2007-12-06 Honda Motor Co Ltd Chalcopyrite solar cell, and manufacturing method thereof
WO2008146693A1 (en) * 2007-05-23 2008-12-04 National Institute Of Advanced Industrial Science And Technology Oxide transparent electroconductive film, and photoelectric conversion element and photodetection element using the oxide transparent electroconductive film
WO2009110093A1 (en) * 2008-03-07 2009-09-11 昭和シェル石油株式会社 Integrated structure of cis-type solar battery
WO2010119944A1 (en) * 2009-04-17 2010-10-21 昭和シェル石油株式会社 Method for manufacturing a solar cell module provided with an edge space
WO2010119943A1 (en) * 2009-04-17 2010-10-21 昭和シェル石油株式会社 Solar cell module provided with an edge space
JP2010282998A (en) * 2009-06-02 2010-12-16 Seiko Epson Corp Solar cell and method for manufacturing the same
JP2017509145A (en) * 2014-01-31 2017-03-30 フリソム アクツィエンゲゼルシャフトFlisom Ag Method for thin film via segment of photovoltaic device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512107A (en) * 1992-03-19 1996-04-30 Siemens Solar Gmbh Environmentally stable thin-film solar module
JP2002528888A (en) * 1998-09-17 2002-09-03 シーメンス ソーラー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for structuring a transparent electrode layer
WO2005064693A1 (en) * 2003-12-25 2005-07-14 Showa Shell Sekiyu K.K. Integrated thin-film solar cell and its manufacturing method
JP4703350B2 (en) * 2005-10-13 2011-06-15 本田技研工業株式会社 Manufacturing method of solar cell
WO2007043219A1 (en) * 2005-10-13 2007-04-19 Honda Motor Co., Ltd. Solar battery and its fabrication method
JP2007109842A (en) * 2005-10-13 2007-04-26 Honda Motor Co Ltd Solar cell and method of manufacturing same
WO2007049384A1 (en) * 2005-10-27 2007-05-03 Honda Motor Co., Ltd. Solar battery
JP2007317885A (en) * 2006-05-25 2007-12-06 Honda Motor Co Ltd Solar cell, and its manufacturing method
JP2007317879A (en) * 2006-05-25 2007-12-06 Honda Motor Co Ltd Chalcopyrite solar cell, and manufacturing method thereof
WO2008146693A1 (en) * 2007-05-23 2008-12-04 National Institute Of Advanced Industrial Science And Technology Oxide transparent electroconductive film, and photoelectric conversion element and photodetection element using the oxide transparent electroconductive film
JP5229919B2 (en) * 2007-05-23 2013-07-03 独立行政法人産業技術総合研究所 Photoelectric conversion element and photodetection element using oxide transparent conductive film
WO2009110093A1 (en) * 2008-03-07 2009-09-11 昭和シェル石油株式会社 Integrated structure of cis-type solar battery
US8575478B2 (en) 2008-03-07 2013-11-05 Showa Shell Sekiyu K.K. Integrated structure of CIS based solar cell
JP5156090B2 (en) * 2008-03-07 2013-03-06 昭和シェル石油株式会社 Integrated structure of CIS solar cells
WO2010119943A1 (en) * 2009-04-17 2010-10-21 昭和シェル石油株式会社 Solar cell module provided with an edge space
JP2010251575A (en) * 2009-04-17 2010-11-04 Showa Shell Sekiyu Kk Solar cell module provided with edge space
JP2010251576A (en) * 2009-04-17 2010-11-04 Showa Shell Sekiyu Kk Method for manufacturing solar cell module provided with edge space
WO2010119944A1 (en) * 2009-04-17 2010-10-21 昭和シェル石油株式会社 Method for manufacturing a solar cell module provided with an edge space
US8603853B2 (en) 2009-04-17 2013-12-10 Showa Shell Sekiyu K.K. Method for manufacturing a solar cell module provided with an edge space
US9166086B2 (en) 2009-04-17 2015-10-20 Solar Frontier K.K. Method for manufacturing solar cell module provided with an edge space
US9166085B2 (en) 2009-04-17 2015-10-20 Solar Frontier K.K. Method for manufacturing solar cell module provided with an edge space
JP2010282998A (en) * 2009-06-02 2010-12-16 Seiko Epson Corp Solar cell and method for manufacturing the same
JP2017509145A (en) * 2014-01-31 2017-03-30 フリソム アクツィエンゲゼルシャフトFlisom Ag Method for thin film via segment of photovoltaic device

Similar Documents

Publication Publication Date Title
EP1727211B1 (en) Method of fabricating a thin-film solar cell, and thin-film solar cell
JP5328363B2 (en) Method for manufacturing solar cell element and solar cell element
JP4909032B2 (en) Solar cell module
JPH0472392B2 (en)
US9893221B2 (en) Solar cell and method of fabricating the same
JPS63232376A (en) Manufacture of photovoltaic device
WO2007086522A1 (en) Solar cell and manufacturing method thereof
JPH0494174A (en) Compound thin film solar cell and its production
TW201436264A (en) Solar cell and method of manufacture thereof
JP2002319686A (en) Method of manufacturing integrated thin film solar battery
Brecl et al. A detailed study of monolithic contacts and electrical losses in a large‐area thin‐film module
JP4053193B2 (en) Thin film photoelectric conversion module
JP2008060374A (en) Solar-battery module
JP2008034744A (en) Solar cell module
US20100186796A1 (en) Solar cell module and method for manufacturing the same
JP2006222384A (en) Integrated thin film solar battery and its manufacturing method
KR101550927B1 (en) Solar cell and method of fabircating the same
JP4568531B2 (en) Integrated solar cell and method of manufacturing integrated solar cell
JPH09162431A (en) Parallel integrated solar battery
EP2811521A1 (en) Solar cell and method of manufacturing the same
CN112928175B (en) Preparation method of solar cell module
US20120285512A1 (en) Solar cell array and thin-film solar module and production method therefor
JP3720254B2 (en) Thin film solar cell and manufacturing method thereof
KR102122567B1 (en) Flexible Thin Film Solar Cell With Extension Capability And Method For The Same
JP2000252490A (en) Integrated thin-film solar cell and its manufacture