JP2648064B2 - Method for manufacturing optical semiconductor device - Google Patents

Method for manufacturing optical semiconductor device

Info

Publication number
JP2648064B2
JP2648064B2 JP3300520A JP30052091A JP2648064B2 JP 2648064 B2 JP2648064 B2 JP 2648064B2 JP 3300520 A JP3300520 A JP 3300520A JP 30052091 A JP30052091 A JP 30052091A JP 2648064 B2 JP2648064 B2 JP 2648064B2
Authority
JP
Japan
Prior art keywords
film
transparent conductive
laser
films
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3300520A
Other languages
Japanese (ja)
Other versions
JPH04363071A (en
Inventor
敏昭 横尾
尚 澁谷
勝 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP3300520A priority Critical patent/JP2648064B2/en
Publication of JPH04363071A publication Critical patent/JPH04363071A/en
Application granted granted Critical
Publication of JP2648064B2 publication Critical patent/JP2648064B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光起電力装置や光導電
装置の如き光半導体装置の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical semiconductor device such as a photovoltaic device or a photoconductive device.

【0002】[0002]

【従来の技術】この種の装置において、その光感応層に
非晶質シリコンのような半導体膜を用いたものは既に知
られている。
2. Description of the Related Art In this type of device, a device using a semiconductor film such as amorphous silicon for a light-sensitive layer is already known.

【0003】図1は、非晶質半導体膜を用いた従来の光
半導体装置を示し、1は透明基板、2a、2b、2c・
・・は基板1上に一定間隔で被着された透明導電膜、3
a、3b、3c・・・は各透明導電膜上に重畳被着され
た非晶質半導体膜、4a、4b、4c・・・は各非晶質
半導体膜上に重畳被着され、かつ各右隣の透明導電膜2
b、2c・・・に部分的に重畳せる裏面電極膜である。
FIG. 1 shows a conventional optical semiconductor device using an amorphous semiconductor film, wherein 1 is a transparent substrate, 2a, 2b, 2c.
.. Are transparent conductive films deposited at regular intervals on the substrate 1;
a, 3b, 3c... are superposed and deposited on each transparent conductive film, 4a, 4b, 4c. Transparent conductive film 2 on the right
b, 2c... are back electrode films that partially overlap with each other.

【0004】各非晶質半導体膜3a、3b、3c・・・
は、その内部に例えば膜面に平行なPIN接合を含み、
従って、透明基板1及び透明導電膜2a、2b、2c・
・・を順次介して光入射があると、光起電力を発生す
る。各非晶質半導体膜3a、3b、3c・・・内で発生
した光起電力は、裏面電極膜4a、4b、4c・・・で
の接続により直列的に相加される。
Each of the amorphous semiconductor films 3a, 3b, 3c...
Contains, for example, a PIN junction parallel to the film surface inside,
Therefore, the transparent substrate 1 and the transparent conductive films 2a, 2b, 2c
.. If light is incident sequentially through, a photoelectromotive force is generated. The photovoltaic power generated in each of the amorphous semiconductor films 3a, 3b, 3c... Is added in series by the connection at the back electrode films 4a, 4b, 4c.

【0005】この様な装置において、光利用効率を左右
する一つの要因は、装置全体の受光面積(即ち、基板面
積)に対し、実際に発電に寄与する非晶質半導体膜3
a、3b、3c・・・の総面積の占める割合である。然
るに、各非晶質半導体膜3a、3b、3c・・・の隣接
間に必然的に存在する非晶質半導体膜のない領域(図中
符号NONで示す領域)は上記面積割合を低下させる。
[0005] In such a device, one factor that affects the light utilization efficiency is that the amorphous semiconductor film 3 that actually contributes to power generation is compared with the light receiving area (ie, substrate area) of the entire device.
a, 3b, 3c,... are ratios of the total area. However, the area ratio (area indicated by NON in the figure) where there is no amorphous semiconductor film necessarily present between the adjacent amorphous semiconductor films 3a, 3b, 3c... Decreases the area ratio.

【0006】従って、光利用効率を向上するには、まず
透明導電膜2a、2b、2c・・・の隣接間隔を小さく
し、そして非晶質半導体膜3a、3b、3c・・・の隣
接間隔を小さくせねばならない。
Therefore, in order to improve the light use efficiency, the distance between the adjacent transparent conductive films 2a, 2b, 2c... Is first reduced, and the distance between the adjacent amorphous semiconductor films 3a, 3b, 3c. Must be small.

【0007】この様な間隔縮小は各膜の加工精度で決ま
り、従って、従来は精密加工性に優れている写真蝕刻技
術が用いられている。この技術による場合、基板1上全
面への透明導電膜の被着工程と、フォトレジスト及びエ
ッチングによる各個別の透明導電膜2a、2b、2c・
・・の分離、即ち、各透明導電膜2a、2b、2c・・
・の隣接間隔部分の除去工程と、これら各透明導電膜上
を含む基板1上全面への非晶質半導体膜の被着工程と、
フォトレジスト及びエッチングによる各個別の非晶質半
導体膜3a、3b、3c・・・の分離、即ち、各非晶質
半導体膜3a、3b、3c・・・の隣接間隔部分の除去
工程とを順次経ることになる。
[0007] Such a reduction in the interval is determined by the processing accuracy of each film. Therefore, conventionally, a photolithography technique which is excellent in precision workability has been used. In the case of this technique, a step of depositing a transparent conductive film over the entire surface of the substrate 1 and individual transparent conductive films 2a, 2b, 2c.
Separation of the transparent conductive films 2a, 2b, 2c
A step of removing an adjacent space portion, and a step of depositing an amorphous semiconductor film on the entire surface of the substrate 1 including on each of these transparent conductive films.
The separation of the individual amorphous semiconductor films 3a, 3b, 3c... By photoresist and etching, that is, the step of removing the adjacent space portions of the amorphous semiconductor films 3a, 3b, 3c. Will go through.

【0008】しかし乍ら、写真蝕刻技術は細密加工の上
で優れてはいるが、蝕刻パターンを規定するフォトレジ
ストのピンホールや周縁での剥がれにより、非晶質半導
体膜に欠陥を生じさせやすい。
[0008] However, although the photolithography technique is excellent in fine processing, the amorphous semiconductor film is liable to cause defects in the amorphous semiconductor film due to peeling of the photoresist that defines the etching pattern at pinholes and at the periphery. .

【0009】特開昭57−12568号公報に開示され
た先行技術は、レーザ照射による膜の焼き切りで上記隣
接間隔を設けるものであり、写真蝕刻技術で必要なフォ
トレジストを一切使わないその技法は、上記の課題を解
決する上で極めて有効である。また、写真蝕刻技術で得
られる各非晶質半導体膜3a、3b、3c・・・の隣接
間隔は約600μmであるが、レーザ使用の場合、その
間隔を更に小さくすることができる。
In the prior art disclosed in Japanese Patent Application Laid-Open No. 57-12568, the above-mentioned adjacent distance is provided by burning out a film by laser irradiation. This is extremely effective in solving the above problems. The adjacent distance between the amorphous semiconductor films 3a, 3b, 3c,... Obtained by the photolithography technique is about 600 μm, but in the case of using a laser, the distance can be further reduced.

【0010】レーザ使用の際に留意すべきことは、焼き
切らんとする膜部分の下に他の膜が存在しておれば、そ
れに損傷を与えないことである。さもなければ、目的の
膜部分を焼き切った上、必要としない下の膜まで焼き切
ってしまう。上記先行技術は、この要求を満たすため
に、レーザ出力やパルス周波数を各膜に対して選択する
ことを提案している。
It should be noted that the use of a laser does not damage other films if they exist under the film portion to be burned out. Otherwise, the target film portion is burned off, and then the unnecessary film below is burned off. The above prior art proposes selecting a laser output and a pulse frequency for each film to satisfy this requirement.

【0011】[0011]

【発明が解決しようとする課題】しかし乍ら、レーザ出
力やパルス周波数の安定化を図ることは困難であり、従
って、この種の装置における各膜の厚みが非常に薄いこ
とを考慮すると、レーザ出力あるいはパルス周波数の選
択により他の膜の損傷を防止する方法は最善のものでは
ない。
However, it is difficult to stabilize the laser output and the pulse frequency. Therefore, considering that the thickness of each film in this type of apparatus is extremely small, the laser The choice of output or pulse frequency to prevent damage to other films is not the best.

【0012】[0012]

【課題を解決するための手段】本発明は、透明導電膜
と、該導電膜上に被着され、該膜を透過せる光に感応す
る半導体膜とを備えた光半導体装置の製造に際し、上記
半導体膜の不要部分の少なくとも一部は、上記透明導電
膜に対する光吸収率が上記半導体膜に対するそれよりも
十分低い0.6μm以下の波長のレーザ光を照射するこ
とにより該半導体膜のみを部分的に除去し、上記透明導
電膜の一部を露出せしめることを特徴とする。
According to the present invention, there is provided an optical semiconductor device comprising: a transparent conductive film; and a semiconductor film deposited on the conductive film and responsive to light transmitted through the film. At least a part of the unnecessary portion of the semiconductor film is partially irradiated with laser light having a wavelength of 0.6 μm or less, which has a sufficiently low light absorptivity for the transparent conductive film as compared with that for the semiconductor film. And a portion of the transparent conductive film is exposed.

【0013】[0013]

【作用】本発明は、レーザを利用するものであるが、透
明導電膜と半導体膜との重畳体からなる光半導体装置に
おいて、これら各膜の光吸収率特性の差異に着目し、こ
れを利用している。
According to the present invention, a laser is used. In an optical semiconductor device composed of a superposed body of a transparent conductive film and a semiconductor film, the difference in the light absorptivity of each of these films is focused on and utilized. doing.

【0014】図2は光波長と膜の吸収率との関係を示し
ており、図中実線が非晶質シリコンの吸収率を、また破
線が透明導電膜(酸化錫膜)の吸収率を夫々表してい
る。従って、0.6μm以下の波長のレーザ光を非晶質
半導体膜に、その部分的除去のために照射すれば、斯る
レーザ光に対する透明導電膜の吸収率は、非晶質半導体
膜に対するそれのおよそ1/4程度と極めて低いので、
透明導電膜は上記レーザ照射により損傷を受け難い。
FIG. 2 shows the relationship between the light wavelength and the absorptivity of the film. In the figure, the solid line indicates the absorptivity of amorphous silicon, and the broken line indicates the absorptivity of the transparent conductive film (tin oxide film). Represents. Therefore, if the amorphous semiconductor film is irradiated with laser light having a wavelength of 0.6 μm or less to partially remove the amorphous semiconductor film, the absorptivity of the transparent conductive film with respect to the laser light becomes higher than that of the amorphous semiconductor film.
Since it is extremely low , about 1/4 of that for the membrane ,
The transparent conductive film is hardly damaged by the laser irradiation.

【0015】[0015]

【実施例】図3A乃至Fは本発明の一実施例方法を工程
順に示している。
3A to 3F show a method according to an embodiment of the present invention in the order of steps.

【0016】図3Aの工程では、厚さ1mm〜3mmの
透明なガラス基板10上全面に、厚さ2000Å〜50
00Åの酸化錫からなる透明導電膜11が被着される。
In the step of FIG. 3A, the transparent glass substrate 10 having a thickness of 1 mm to 3 mm
A transparent conductive film 11 made of tin oxide of 00 ° is deposited.

【0017】図3Bの工程では、隣接間隔部11’がレ
ーザ光照射により除去されて、個別の各透明導電膜11
a、11b、11c・・・が分離形成される。使用され
るレーザは波長1.06μm、出力1.3×108W/
cm2、パルス周波数3kHzのYAGレーザが適当で
あり、隣接間隔部11’の間隔L1は約100μmに設
定される。ここで、YAGレーザは高速繰返しパルス励
起レーザとして最適なレーザである。そして、光パルス
の平均出力及び尖頭出力は繰返し周波数で制御すること
ができ、半導体素子の加工に有効に利用されている。
In the step shown in FIG. 3B, the adjacent space portions 11 'are removed by laser beam irradiation, and
a, 11b, 11c,... are formed separately. The laser used has a wavelength of 1.06 μm and an output of 1.3 × 10 8 W /
A YAG laser of cm 2 and a pulse frequency of 3 kHz is suitable, and the interval L1 between the adjacent interval portions 11 ′ is set to about 100 μm. Here, the YAG laser uses a high-speed repetitive pulse excitation.
This is the most suitable laser for the electromotive laser. And the light pulse
Average output and peak output should be controlled by repetition frequency
And is effectively used for processing semiconductor devices.

【0018】図3Cの工程では、各透明導電膜11a、
11b、11c・・・の表面を含んで基板10上全面に
厚さ5000Å〜7000Åの非晶質シリコン膜12が
被着される。斯るシリコン膜はその内部に膜面と平行な
PIN接合を含み、従ってより具体的には、まずP型の
非晶質シリコン膜が被着され、次いでI型及びN型の非
晶質シリコン膜が順次積層被着される。
In the step of FIG. 3C, each transparent conductive film 11a,
An amorphous silicon film 12 having a thickness of 5000 to 7000 mm is deposited on the entire surface of the substrate 10 including the surfaces 11b, 11c,. Such a silicon film contains a PIN junction therein parallel to the plane of the film, so that more specifically, a P-type amorphous silicon film is first deposited and then an I-type and N-type amorphous silicon film. The films are sequentially deposited.

【0019】図3Dの工程では、隣接間隔部12’がレ
ーザ光照射により除去されて、個別の各非晶質シリコン
膜12a、12b、12c・・・が分離形成される。使
用されるレーザとしてはArレーザが適当である。Ar
レーザはArイオンのスペクトル線で発振するものであ
り、0.6μm以下の波長の発振線を出力する。ここで
は、波長0.51μm、出力2×103W/cm2,CW
のArレーザを使用し、隣接間隔部12’の間隔L2は
約300μmに設定される。
In the step shown in FIG. 3D, the adjacent space portions 12 'are removed by laser beam irradiation, and individual amorphous silicon films 12a, 12b, 12c... Are separately formed. Ar laser is suitable as a laser to be used . Ar
The laser oscillates with Ar ion spectrum lines.
Thus, an oscillation line having a wavelength of 0.6 μm or less is output. here
Is a wavelength of 0.51 μm, an output of 2 × 10 3 W / cm 2 , and a CW
Is used, and the interval L2 between the adjacent interval portions 12 'is set to about 300 μm.

【0020】この時、隣接間隔部12’の下に存在する
透明導電膜部分110にもレーザ光が最終的に到達する
が、注意すべきは、現在の波長の光の吸収率は図2にて
述べた如く、非晶質シリコン膜に対して透明導電膜のほ
うが極めて低い。よって、非晶質シリコン膜12をその
膜厚分だけ除去するにほぼ必要十分な照射時間長をもっ
てレーザ光を走査させると、非晶質シリコン膜の膜厚分
だけ完全に除去されて、その結果、一時的にレーザ光が
透明導電膜部分110を直撃するに至ったとしても、そ
の部分はほとんど損傷を受けない。
At this time, the laser beam finally reaches the transparent conductive film portion 110 located below the adjacent space portion 12 ', but it should be noted that the absorptance of the current wavelength light is shown in FIG. As described above, the transparent conductive film is much lower than the amorphous silicon film. Therefore, if the laser beam is scanned with an irradiation time length almost necessary and sufficient to remove the amorphous silicon film 12 by the film thickness, the amorphous silicon film 12 is completely removed by the film thickness of the amorphous silicon film. Even if the laser beam temporarily hits the transparent conductive film portion 110 temporarily, the portion is hardly damaged.

【0021】図3Eの工程では、透明導電膜部分110
及び非晶質シリコン膜12a、12b、12c・・・の
各表面を含んで基板10上全面に、2000Å〜1μm
厚さのアルミニウムからなる裏面電極膜13が被着され
る。
In the step of FIG. 3E, the transparent conductive film portion 110 is formed.
And the entire surface of the substrate 10 including the surfaces of the amorphous silicon films 12a, 12b, 12c,.
A back electrode film 13 made of aluminum having a thickness is deposited.

【0022】図3Fの最終工程では、隣接間隔部13’
がレーザ光照射により除去されて、個別の各裏面電極膜
13a、13b、13c・・・が分離形成される。使用
されるレーザは波長1.06μm、出力5×106W/
cm2、パルス周波数3KHzのYAGレーザが適当で
あり、隣接間隔部13’の間隔L3は約20μmに設定
される。
In the final step of FIG.
Are removed by laser light irradiation, and the individual back electrode films 13a, 13b, 13c... Are separately formed. The laser used has a wavelength of 1.06 μm and an output of 5 × 10 6 W /
A YAG laser having a pulse frequency of 3 KHz and a cm 2 is suitable.

【0023】裏面電極膜13の材料であるアルミニウム
の融点は透明導電膜11に比べて非常に低く、従って、
各透明導電膜11a、11b、11c・・・の分離に用
いたレーザ出力より十分に低い出力値のレーザが用いら
れていることに注意すべきである。よって、裏面電極膜
13をその膜厚部分だけ除去するにほぼ必要十分な照射
時間長をもってレーザ光を走査させると、裏面電極膜の
膜厚分だけ完全に除去されて、その結果、一時的にレー
ザ光が透明導電膜部分110を直撃するに至ったとして
も、その部分はほとんど損傷を受けない。
The melting point of aluminum, which is the material of the back electrode film 13, is much lower than that of the transparent conductive film 11.
It should be noted that a laser having an output value sufficiently lower than the laser output used for separating the transparent conductive films 11a, 11b, 11c... Is used. Therefore, when the laser beam is scanned with an irradiation time length almost necessary and sufficient to remove the back electrode film 13 only by its thickness, the back electrode film 13 is completely removed by the thickness of the back electrode film, and as a result, it is temporarily removed. Even if the laser beam hits the transparent conductive film portion 110 directly, the portion is hardly damaged.

【0024】尚、裏面電極膜13の斯る部分除去に際
し、除去部分の表面に黒色インク等を塗布してレーザ光
の吸収を促進するようにすれば、より確実に裏面電極膜
13の所望部分のみを除去することができる。
When removing such a portion of the back electrode film 13, if a black ink or the like is applied to the surface of the removed portion so as to promote the absorption of the laser beam, the desired portion of the back electrode film 13 can be more reliably ensured. Only one can be removed.

【0025】上記実施例で挙げた各種の構成及び数値は
例示的なものであり、適宜に変更できることはもちろん
のことである。例えば、半導体膜としては、非晶質ゲル
マニウム、非晶質窒化シリコン等の非晶質半導体やその
他の無定形半導体も用いられ、また、透明導電膜として
は酸化錫・インジウム膜等も用いられる。更に、例えば
各透明導電膜11a、11b、11c・・・の間隔を2
0μm程度になしても良い。
The various configurations and numerical values described in the above embodiments are merely examples, and can be changed as appropriate. For example, an amorphous semiconductor such as amorphous germanium and amorphous silicon nitride and other amorphous semiconductors are used as the semiconductor film, and a tin oxide / indium film or the like is used as the transparent conductive film. Further, for example, the interval between the transparent conductive films 11a, 11b, 11c.
It may be about 0 μm.

【0026】[0026]

【発明の効果】本発明のよれば、透明導電膜と、その上
に被着された半導体膜とを備えた光半導体装置を製造す
る際に、半導体膜のレーザによる部分的除去を、他の膜
を損傷することなく確実になすことができ、レーザによ
る超微細加工を有効に利用することができる。
According to the present invention, when an optical semiconductor device having a transparent conductive film and a semiconductor film deposited thereon is manufactured, partial removal of the semiconductor film by laser is performed by another method. The film can be reliably formed without damaging the film, and the ultrafine processing by laser can be effectively used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】典型的な光半導体装置を示す側面図である。FIG. 1 is a side view showing a typical optical semiconductor device.

【図2】透明導電膜と半導体膜との光吸収特性を示す特
性図である。
FIG. 2 is a characteristic diagram showing light absorption characteristics of a transparent conductive film and a semiconductor film.

【図3】本発明の一実施例を示す工程別断面図である。FIG. 3 is a sectional view of each step showing an example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武内 勝 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 昭57−12568(JP,A) 特開 昭52−108780(JP,A) 特開 昭54−120498(JP,A) 特開 昭59−35489(JP,A) 米国特許4315096(US,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masaru Takeuchi 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-57-12568 (JP, A) JP-A Sho 52-108780 (JP, A) JP-A-54-120498 (JP, A) JP-A-59-35489 (JP, A) US Pat. No. 4,150,096 (US, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】透明導電膜と、該導電膜上に被着され、該
膜を透過せる光に感応する半導体膜とを備えた光半導体
装置の製造に際し、上記半導体膜の不要部分の少なくと
も一部は、上記透明導電膜に対する光吸収率が上記半導
体膜に対するそれよりも十分低い0.6μm以下の波長
のレーザ光を照射することにより該半導体膜のみを部分
的に除去し、上記透明導電膜の一部を露出せしめること
を特徴とする光半導体装置の製造方法。
In manufacturing an optical semiconductor device comprising a transparent conductive film and a semiconductor film deposited on the conductive film and responsive to light transmitted through the film, at least one of unnecessary portions of the semiconductor film is manufactured. The portion is formed by irradiating laser light having a wavelength of 0.6 μm or less, which has a sufficiently low light absorptivity to the transparent conductive film than that to the semiconductor film, to partially remove only the semiconductor film, A method of manufacturing an optical semiconductor device, wherein a part of the optical semiconductor device is exposed.
JP3300520A 1991-11-15 1991-11-15 Method for manufacturing optical semiconductor device Expired - Lifetime JP2648064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3300520A JP2648064B2 (en) 1991-11-15 1991-11-15 Method for manufacturing optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3300520A JP2648064B2 (en) 1991-11-15 1991-11-15 Method for manufacturing optical semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57147357A Division JPS5935489A (en) 1982-08-24 1982-08-24 Manufacture of photo semiconductor device

Publications (2)

Publication Number Publication Date
JPH04363071A JPH04363071A (en) 1992-12-15
JP2648064B2 true JP2648064B2 (en) 1997-08-27

Family

ID=17885812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3300520A Expired - Lifetime JP2648064B2 (en) 1991-11-15 1991-11-15 Method for manufacturing optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2648064B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19842679C2 (en) * 1998-09-17 2000-12-21 Siemens Solar Gmbh Process for structuring transparent electrode layers
JP2010062185A (en) * 2008-09-01 2010-03-18 Mitsubishi Electric Corp Photoelectric converter and method of manufacturing the same
JP2010087041A (en) * 2008-09-29 2010-04-15 Ulvac Japan Ltd Method of removing thin film by laser beam, and method of manufacturing thin-film solar cell panel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315096A (en) 1980-07-25 1982-02-09 Eastman Kodak Company Integrated array of photovoltaic cells having minimized shorting losses

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108780A (en) * 1976-03-08 1977-09-12 Seiko Epson Corp Manufacture for solar cell
JPS54120498A (en) * 1978-03-10 1979-09-19 Hitachi Ltd Laser machining
US4292092A (en) * 1980-06-02 1981-09-29 Rca Corporation Laser processing technique for fabricating series-connected and tandem junction series-connected solar cells into a solar battery
JPS5935489A (en) * 1982-08-24 1984-02-27 Sanyo Electric Co Ltd Manufacture of photo semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315096A (en) 1980-07-25 1982-02-09 Eastman Kodak Company Integrated array of photovoltaic cells having minimized shorting losses

Also Published As

Publication number Publication date
JPH04363071A (en) 1992-12-15

Similar Documents

Publication Publication Date Title
JP3436858B2 (en) Manufacturing method of thin film solar cell
US4568409A (en) Precision marking of layers
JPH05218472A (en) Laser beam machining method of thin-film structure
JPH0472392B2 (en)
JP2006013403A (en) Solar cell, solar cell module, its manufacturing method, and its reparing method
JP2006080450A (en) Solar battery manufacturing method
JPH0447466B2 (en)
JPH053151B2 (en)
JP2648064B2 (en) Method for manufacturing optical semiconductor device
JP2002231986A (en) Method for manufacturing integrated thin film solar battery
JPH0536998A (en) Formation of electrode
JP4786010B2 (en) Manufacturing method of integrated hybrid thin film solar cell
JP3133494B2 (en) Photovoltaic element
JP2001210851A (en) Integrated thin-film solar cell
JP3521268B2 (en) Method for manufacturing photovoltaic device
JP2001094131A (en) Method for fabricating integrated photovoltaic power device
JP4636689B2 (en) Method for structuring transparent electrode layers
JP3505201B2 (en) Method for manufacturing photovoltaic device
JPS6213829B2 (en)
JP3525048B2 (en) Method for manufacturing photovoltaic device
JPS61280680A (en) Manufacture of semiconductor device
JP2000261020A (en) Integrated thin-film solar battery
JP2895797B2 (en) Method for patterning translucent thin film
JPH0691269B2 (en) Method for manufacturing amorphous silicon solar cell
JP2009072831A (en) Apparatus for forming laser scribes