JPH0536998A - Formation of electrode - Google Patents

Formation of electrode

Info

Publication number
JPH0536998A
JPH0536998A JP3189679A JP18967991A JPH0536998A JP H0536998 A JPH0536998 A JP H0536998A JP 3189679 A JP3189679 A JP 3189679A JP 18967991 A JP18967991 A JP 18967991A JP H0536998 A JPH0536998 A JP H0536998A
Authority
JP
Japan
Prior art keywords
film
electrode
opening
laser
solar battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3189679A
Other languages
Japanese (ja)
Inventor
Toshihiro Machida
智弘 町田
Satoshi Tanaka
聡 田中
Yoshihiko Takeda
喜彦 竹田
Takayuki Minamimori
孝幸 南森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3189679A priority Critical patent/JPH0536998A/en
Publication of JPH0536998A publication Critical patent/JPH0536998A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve the property of a solar battery by micronizing the electrode at the surface of the solar battery. CONSTITUTION:A film 7 is stuck to the surface of a solar battery, and an opening for an electrode pattern is provided with a laser. Applying metallic paste 8 in the opening, and peeling off the film 7, the metallic paste protruding from the opening will be removed. Next, baking this, the metallic paste 8 will pierce the reflection preventive film and the surface passivation film and become a minute electrode 8-1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スクリーン印刷法によ
る電極の形成方法の改良に関するもので、太陽電池の微
細電極に使用するときは特に有用なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in the method of forming electrodes by screen printing, and is particularly useful when used for fine electrodes of solar cells.

【0002】[0002]

【従来の技術】スクリーン印刷による電極の代表的なも
のとして、以下太陽電池の例について述べる。
2. Description of the Related Art An example of a solar cell will be described below as a typical electrode by screen printing.

【0003】太陽電池の高効率化を図るためには、受光
面電極の電極占有面積を電極の直列抵抗を増加させない
範囲で、できるだけ低減させる必要がある。これは、電
極は半導体への光を遮蔽するばかりでなく、電極とシリ
コン結晶との接触部分での少数キャリアの再結合が無限
大であるからである。また、表面パッシベーション太陽
電池では、酸化膜による表面での少数キャリアの再結合
低減を目的としているため、電極占有面積の低減は、パ
ッシベーション効果を高め、太陽電池特性(短絡電流、
開放電圧)の向上につながる。また、電極を微細にし高
密度化して配置すれば、同じ電極占有面積であっても、
F.F.(曲線因子)の向上が期待できる。
In order to increase the efficiency of the solar cell, it is necessary to reduce the electrode occupying area of the light-receiving surface electrode as much as possible without increasing the series resistance of the electrode. This is because the electrode not only blocks light to the semiconductor, but also recombination of minority carriers at the contact portion between the electrode and the silicon crystal is infinite. Further, in the surface passivation solar cell, since the purpose is to reduce the recombination of minority carriers on the surface by the oxide film, the reduction of the electrode occupation area enhances the passivation effect, and the solar cell characteristics (short circuit current,
Open circuit voltage). Also, if the electrodes are made fine and arranged with high density, even if the electrodes occupy the same area,
F. F. (Curve factor) can be expected to improve.

【0004】電極形成には、工程が簡略化でき、製造コ
ストの低減化につながる、金属ペーストを用いたスクリ
ーン印刷法が広く使われている。
For the electrode formation, a screen printing method using a metal paste is widely used because the process can be simplified and the manufacturing cost can be reduced.

【0005】[0005]

【発明が解決しようとする課題】従来の金属ペーストを
用いたスクリーン印刷法では、スクリーンマスクのパタ
ーン精度から、約4%の電極占有率(線幅にして100
ミクロン)が限界であり、これ以上の電極の微細化は困
難であった。
In the conventional screen printing method using a metal paste, the electrode occupancy ratio (line width is 100%) is about 4% because of the pattern accuracy of the screen mask.
(Micron) is the limit, and it has been difficult to further miniaturize the electrode.

【0006】[0006]

【課題を解決するための手段】本発明においては、所望
の電極パターンの形状のレーザ加工による開口部を有す
るフィルムを介して基板に金属ペーストを印刷し、その
後フィルムを剥がして焼成を行なうようにした。
In the present invention, a metal paste is printed on a substrate through a film having an opening formed by laser processing in the shape of a desired electrode pattern, and then the film is peeled off and baked. did.

【0007】[0007]

【作用】レーザ加工をすることにより、フィルムに微細
な電極パターンの開口部を設けることができるから、微
細電極の形成が可能になる。フィルムを剥がすとき開口
部からはみでた余分のペーストが除去される。
By performing laser processing, it is possible to form fine electrode pattern openings in the film, so that fine electrodes can be formed. When the film is peeled off, excess paste that has overflowed from the opening is removed.

【0008】[0008]

【実施例】図1(a)〜(g)は、本発明により形成さ
れた微細電極を有する太陽電池の製造工程の一例を示す
略断面図である。
EXAMPLES FIGS. 1A to 1G are schematic cross-sectional views showing an example of a manufacturing process of a solar cell having fine electrodes formed according to the present invention.

【0009】まず、図1(a)に示されるように、P型
シリコン基板4の表面にN+ 型拡散層3、SiO2 膜の
ような表面のパッシベーション膜2、およびTiO2
のような反射防止膜1を順次積層して形成する。裏面に
は、BSF層となるP+ 型拡散層5および裏面電極6を
形成する。
First, as shown in FIG. 1A, an N + type diffusion layer 3, a surface passivation film 2 such as a SiO 2 film, and a TiO 2 film such as a SiO 2 film are formed on the surface of a P type silicon substrate 4. The antireflection film 1 is sequentially laminated and formed. On the back surface, a P + type diffusion layer 5 to be a BSF layer and a back surface electrode 6 are formed.

【0010】次に、同図(b)に示されるように、反射
防止膜1の表面にフィルム7を張付ける。本実施例で
は、市販の25ミクロン厚さのポリイミドフィルムを使
用した。
Next, as shown in FIG. 1B, a film 7 is attached to the surface of the antireflection film 1. In this example, a commercially available 25 micron thick polyimide film was used.

【0011】次に、同図(c)に示されるように、この
素子を短波長レーザ装置のX−Yステージに保持し、H
2 ガス雰囲気中で線幅を60ミクロンとしXeClエキ
シマレーザ光(λ=308nm)を電極形成予定位置に
照射し、ポリイミドフィルムに開口部を設ける。
Next, as shown in FIG. 1C, this element is held on the XY stage of the short wavelength laser device, and H
An XeCl excimer laser beam (λ = 308 nm) is applied to the electrode formation planned position in a 2 gas atmosphere with a line width of 60 μm to form an opening in the polyimide film.

【0012】同図(d)はポリイミドフィルムに開口部
が設けられた状態である。加工幅はエキシマレーザ1シ
ョット当たり0.2ミクロンである。
FIG. 1D shows a state in which an opening is provided in the polyimide film. The processing width is 0.2 micron per excimer laser shot.

【0013】レーザ照射条件を下記の表に示す。The laser irradiation conditions are shown in the table below.

【0014】[0014]

【表1】 [Table 1]

【0015】次に、同図(e)に示すように、開口部に
Agのような金属ペースト8を印刷する。このとき金属
ペースト8は開口部よりも広く塗布される。
Next, as shown in FIG. 2E, a metal paste 8 such as Ag is printed on the opening. At this time, the metal paste 8 is applied wider than the opening.

【0016】次に同図(f)に示されるように、フィル
ム7を余分な金属ペーストごと除去する。
Next, as shown in FIG. 3F, the film 7 is removed together with the excess metal paste.

【0017】次に、同図(g)に示されるように、焼成
を行なうと、金属ペーストは反射防止膜1およびパッシ
ベーション膜2を貫通して微細な表面の電極8−1が形
成される。
Next, as shown in FIG. 1G, when firing is performed, the metal paste penetrates the antireflection film 1 and the passivation film 2 to form an electrode 8-1 having a fine surface.

【0018】本実施例では、XeClレーザ(λ=30
8nm)を用いたが、KrFレーザ差(λ=248n
m)を使用しても、同様に微細な電極パターンの開口部
を形成することが可能である。
In this embodiment, a XeCl laser (λ = 30) is used.
8 nm) was used, but KrF laser difference (λ = 248n
Even if m) is used, it is possible to form an opening having a fine electrode pattern.

【0019】また、本実施例では、ポリイミドフィルム
を素子表面に張付けてからレーザにより開口部を設けた
が、予めレーザにより開口部を設けたフィルムを張付け
ても同様の効果が得られる。
Further, in this embodiment, the polyimide film is attached to the surface of the element and then the opening is provided by the laser. However, the same effect can be obtained by attaching the film having the opening provided by the laser in advance.

【0020】上記の実施例による太陽電池と従来のスク
リーン印刷法による太陽電池の特性を下記の表に示す。
The characteristics of the solar cell according to the above-mentioned embodiment and the solar cell according to the conventional screen printing method are shown in the following table.

【0021】[0021]

【表2】 [Table 2]

【0022】表2においては、実施例の電極線幅は60
ミクロンとされているが、さらに細くすることも可能で
ある。
In Table 2, the electrode line width of the example is 60.
It is said to be micron, but it can be made thinner.

【0023】以上は太陽電池に微細な電極を設ける場合
について述べたが、スクリーン印刷による微細な電極を
必要とする他の装置にも応用することができるであろ
う。
Although the case where the fine electrodes are provided in the solar cell has been described above, the present invention can be applied to other devices that require fine electrodes by screen printing.

【0024】[0024]

【発明の効果】本発明によれば、従来のスクリーンマス
クを用いた電極形成法に比べて、微細な電極の形成が可
能となり、前述の表2のように、短絡電流、開放電圧が
向上する。これは、電極占有面積が減少し、入射光の遮
蔽される割合が減少した効果と、パッシベーション効果
が大きくなったためである。
According to the present invention, finer electrodes can be formed, as compared with the conventional electrode forming method using a screen mask, and the short circuit current and open circuit voltage are improved as shown in Table 2 above. . This is because the area occupied by the electrodes is reduced, the effect of blocking the incident light is reduced, and the passivation effect is increased.

【0025】また、極めて細い電極を多数配置するとい
うF.F.の向上の一手段としても適合しており、太陽
電池の高効率化が可能となる。
In addition, according to F. F. It is also suitable as a means for improving the efficiency of solar cells, which makes it possible to increase the efficiency of solar cells.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(g)は、本発明による太陽電池の製
造工程の一例の略断面図である。
1A to 1G are schematic cross-sectional views of an example of a manufacturing process of a solar cell according to the present invention.

【符号の説明】[Explanation of symbols]

1 反射防止膜 2 パッシベーション膜 3 N+ 型拡散層 4 P型シリコン基板 5 P+ 型拡散層 6 裏面電極 7 フィルム 8 金属ペースト 8−1 電極1 Antireflection Film 2 Passivation Film 3 N + Type Diffusion Layer 4 P Type Silicon Substrate 5 P + Type Diffusion Layer 6 Backside Electrode 7 Film 8 Metal Paste 8-1 Electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 南森 孝幸 大阪市阿倍野区長池町22番22号 シヤープ 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takayuki Minamimori 22-22 Nagaikecho, Abeno-ku, Osaka

Claims (1)

【特許請求の範囲】 【請求項1】 所望の電極パターンの形状のレーザ加工
による開口部を有するフィルムを介して基板に金属ペー
ストを印刷し、その後フィルムを剥がして焼成を行なう
ことを特徴とする電極の形成方法。
Claim: What is claimed is: 1. A metal paste is printed on a substrate through a film having an opening formed by laser processing in the shape of a desired electrode pattern, and then the film is peeled off and baked. Method of forming electrode.
JP3189679A 1991-07-30 1991-07-30 Formation of electrode Withdrawn JPH0536998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3189679A JPH0536998A (en) 1991-07-30 1991-07-30 Formation of electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3189679A JPH0536998A (en) 1991-07-30 1991-07-30 Formation of electrode

Publications (1)

Publication Number Publication Date
JPH0536998A true JPH0536998A (en) 1993-02-12

Family

ID=16245368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3189679A Withdrawn JPH0536998A (en) 1991-07-30 1991-07-30 Formation of electrode

Country Status (1)

Country Link
JP (1) JPH0536998A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010373A1 (en) * 2009-07-22 2011-01-27 三菱電機株式会社 Solar battery cell and method for manufacturing the solar battery cell
WO2012077567A1 (en) * 2010-12-06 2012-06-14 信越化学工業株式会社 Solar cell and solar-cell module
WO2013030935A1 (en) * 2011-08-29 2013-03-07 株式会社日立製作所 Solar cell
KR101498619B1 (en) * 2009-06-05 2015-03-05 엘지전자 주식회사 Method of preparing electrode of solar cell and Solar cell using the said method
KR101542583B1 (en) * 2009-05-28 2015-08-07 인텔렉츄얼 키스톤 테크놀로지 엘엘씨 Solar cell and method for manufacturing the same
US9224888B2 (en) 2010-12-06 2015-12-29 Shin-Etsu Chemical Co., Ltd. Solar cell and solar-cell module
CN111584654A (en) * 2020-03-31 2020-08-25 天津爱旭太阳能科技有限公司 Method for preparing crystalline silicon solar cell electrode
CN113385890A (en) * 2021-06-01 2021-09-14 山东力诺光伏高科技有限公司 Assembly packaging process for laser cutting of battery piece

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101542583B1 (en) * 2009-05-28 2015-08-07 인텔렉츄얼 키스톤 테크놀로지 엘엘씨 Solar cell and method for manufacturing the same
KR101498619B1 (en) * 2009-06-05 2015-03-05 엘지전자 주식회사 Method of preparing electrode of solar cell and Solar cell using the said method
US9647147B2 (en) 2009-07-22 2017-05-09 Mitsubishi Electric Corporation Solar battery cell and production method thereof
WO2011010373A1 (en) * 2009-07-22 2011-01-27 三菱電機株式会社 Solar battery cell and method for manufacturing the solar battery cell
CN102576776A (en) * 2009-07-22 2012-07-11 三菱电机株式会社 Solar battery cell and method for manufacturing the solar battery cell
EP2458641A4 (en) * 2009-07-22 2014-01-01 Mitsubishi Electric Corp Solar battery cell and method for manufacturing the solar battery cell
JP5410526B2 (en) * 2009-07-22 2014-02-05 三菱電機株式会社 Method for manufacturing solar battery cell
EP2458641A1 (en) * 2009-07-22 2012-05-30 Mitsubishi Electric Corporation Solar battery cell and method for manufacturing the solar battery cell
US8975109B2 (en) 2009-07-22 2015-03-10 Mitsubishi Electric Corporation Solar battery cell and production method thereof
WO2012077567A1 (en) * 2010-12-06 2012-06-14 信越化学工業株式会社 Solar cell and solar-cell module
US9224888B2 (en) 2010-12-06 2015-12-29 Shin-Etsu Chemical Co., Ltd. Solar cell and solar-cell module
US9887312B2 (en) 2010-12-06 2018-02-06 Shin-Etsu Chemical Co., Ltd. Solar cell and solar-cell module
JPWO2013030935A1 (en) * 2011-08-29 2015-03-23 株式会社日立製作所 Solar cell
WO2013030935A1 (en) * 2011-08-29 2013-03-07 株式会社日立製作所 Solar cell
CN111584654A (en) * 2020-03-31 2020-08-25 天津爱旭太阳能科技有限公司 Method for preparing crystalline silicon solar cell electrode
CN113385890A (en) * 2021-06-01 2021-09-14 山东力诺光伏高科技有限公司 Assembly packaging process for laser cutting of battery piece

Similar Documents

Publication Publication Date Title
US7998863B2 (en) High efficiency solar cell fabrication
US5543333A (en) Method for manufacturing a solar cell having combined metallization
USRE37512E1 (en) Method of preparing solar cell front contacts
DE102005025125B4 (en) Process for producing a solar cell contacted on one side and solar cell contacted on one side
JP2006523025A (en) Metal contact structure for solar cell and manufacturing method
US7816167B2 (en) Method of fabricating a differential doped solar cell
JPH04276665A (en) Integrated solar battery
GB2077038A (en) Fabrication of a solar battery using laserscribing
JPH10144943A (en) Solar cell and its manufacture
JPH0536998A (en) Formation of electrode
JP2989373B2 (en) Method for manufacturing photoelectric conversion device
JPS5935489A (en) Manufacture of photo semiconductor device
JP3429768B2 (en) Metallization method for solar cells made of crystalline silicon
Verlinden et al. High efficiency large area back contact concentrator solar cells with a multilevel interconnection
JPH09283781A (en) Photovoltaic device
JPH03250671A (en) Semiconductor photoelectric converting device and its manufacture
JP2999867B2 (en) Solar cell and method of manufacturing the same
JP3073833B2 (en) Solar cell manufacturing method
JPS6231834B2 (en)
JP2968404B2 (en) Method for manufacturing photovoltaic device
JP4212292B2 (en) Solar cell and manufacturing method thereof
JP2835415B2 (en) Photoelectric conversion element
JP2648064B2 (en) Method for manufacturing optical semiconductor device
JP2000164903A (en) Solar battery
JPS62237765A (en) Solar cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008