USRE37512E1 - Method of preparing solar cell front contacts - Google Patents

Method of preparing solar cell front contacts Download PDF

Info

Publication number
USRE37512E1
USRE37512E1 US09/525,334 US52533400A USRE37512E US RE37512 E1 USRE37512 E1 US RE37512E1 US 52533400 A US52533400 A US 52533400A US RE37512 E USRE37512 E US RE37512E
Authority
US
United States
Prior art keywords
lines
printing
finger
screen
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/525,334
Inventor
Jozef Szlufcik
Johan Nijs
Roland Jozef Fick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Interuniversitair Microelektronica Centrum vzw IMEC
Original Assignee
Interuniversitair Microelektronica Centrum vzw IMEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interuniversitair Microelektronica Centrum vzw IMEC filed Critical Interuniversitair Microelektronica Centrum vzw IMEC
Priority to US09/525,334 priority Critical patent/USRE37512E1/en
Application granted granted Critical
Publication of USRE37512E1 publication Critical patent/USRE37512E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention is related to a method of preparing contacts on the surface of semiconductor substrates.
  • the present invention is also related to products obtained by this method and more particularly to a solar cell.
  • the top contact pattern of a solar cell consists of a set of parallel narrow finger lines and wide collector lines deposited essentially at a right angle to the finger lines on the semiconductor substrate or wafer.
  • Such front contact formation of crystalline solar cells is performed with standard screen printing techniques. It has advantages in terms of production simplicity, automation, and low production cost.
  • Narrower conductive lines can be printed using ultra-thin stainless steel wire screens with a high mesh density of 325 or 400.
  • a thin masking emulsion with a thickness of 5-15 ⁇ m is required to produce a line definition on the screen of at least 50 ⁇ m.
  • An alternative technique to the standard screen printing is the application of an etched or electroformed metal mask.
  • the manufacturing process of such mask involves etching of a cavity pattern on the one side of the metal foil and a mesh pattern on the reverse side. Photoresist masking and precise mask positioning are necessary for double-sided etching of the metal foil. This implies a complicated design and a very high screen cost.
  • the open area (mesh openings) is usually not higher than 50% of the pattern.
  • the open area defines the maximum amount of paste transferred to the substrates and at the same time the wet line thickness.
  • Another important point is that a small mesh aperture requires utilization of special inks formulated for fine line printing. This is in conflict with most of the commercially available silver pastes for solar cell front contact metallization. Silver powder has a tendency to create agglomerates of particles in the paste.
  • a flake-shaped silver powder usually used in the paste formulation for a solar metallization, increases the tendencies to create agglomerates of particles in the paste.
  • the modern solar cell processing includes growing of thin thermal oxide (50-250 ⁇ ) on the top emitter surface using methods well known in microelectronics. Such an oxide layer passivates defects and recombination centers always present on the semiconductor surface. This process leads to an improvement of cell response to solar short wavelength radiation that in effect gives rise to a higher cell efficiency.
  • thermal oxide 50-250 ⁇
  • screen printed pastes produce good contact to non-oxidized silicon surfaces, the firing through thermal oxide gives difficulties in obtaining high quality contacts with low resistance.
  • the solar cell manufacturing process includes in most cases a step of applying an antireflection (AR) coating which can be deposited before or after the contact formation. If the AR layer is deposited before contact printing, it often gives rise to the problem of high contact resistance between silicon and printed contacts. This problem occurs particularly when silicon nitride is used as an antireflection coating.
  • AR antireflection
  • PCT Document WO 92/22928 describes a solar cell and a method to make it wherein an antireflective coating is deposited on a semiconductor substrate before a first set of narrow elongated parallel electrodes are printed thereon and wherein finally a second set of elongated electrodes are affixed to each of the first electrodes.
  • the paste or the ink used in order to form the array of narrow elongated parallel electrodes is such that it penetrates said antireflective material and forms mechanically adherent and low electrical resistance contact with the front surface of the semiconductor substrate. This means that not all the conventional pastes can be used. Furthermore, in order to have such good contact between the semiconductor substrate and the narrow elongated parallel electrodes, a step of “firing through” is necessary.
  • E.P.O. Document EP-A-0002550 describes a method of forming a contact configuration for soldering a metal connection on a region of the surface of a semiconductor body comprising the provision by serigraphy, on at least a part of said region, of a conductive paste which comprises at least a principal metal, said paste then being vitrified thermally such that the dopant migrates into at least a surface part on the region of a surface of the semiconductor body.
  • the present invention has an object to provide improved semiconductor devices such as solar cells which do not have the drawbacks of the prior art.
  • the present invention aims to form semiconductor devices such as solar cells wherein the electrical contacts exhibit a low series of resistance and a low metal coverage which also provides a low front surface shadowing.
  • the present invention provides a method of forming the top contact pattern of a solar cell, which consists of a set of parallel narrow finger lines and wide collector lines deposited essentially at the right angles to the finger lines on a semiconductor substrate, characterized in that it comprises the following steps:
  • the following steps are performed before the screen printing step of the contact finger lines:
  • an antireflection coating is deposited in an intermediate step after printing and drying the front contact finger lines and before the collector lines are printed and dried.
  • the last step is only a co-firing step and not a step of firing through.
  • the screen for printing the set of narrow parallel finger lines is preferably made from a solid metal foil in which the set of parallel lines which form the finger contact pattern can be chemically etched or cut by a laser or an electron beam.
  • the screen used for printing the collector lines is preferably made of a conventional mesh screen or a metal stencil screen.
  • the pattern of parallel finger lines is formed in a solid metal foil which means that it has an open area equal to 100%. No meshes are present in the pattern openings. This increases the volume of the paste transferred to the substrate in the printing process. It should be noted that when using a standard wire mesh screen, the open area is only between 40%-60%.
  • a collector pattern is preferably prepared with a conventional wire mesh screen or with solid metal masks.
  • a durable screen with a total (screen+emulsion) thickness above 100 ⁇ m can be used.
  • a standard screen with a mesh density of 200 or 180 per inch covered with a 20 ⁇ m thick emulsion is typical for collector printing.
  • the thick collector lines with a sheet resistance below 1 mohm/sq. will be easily obtained with most of the silver pastes for front contact metallization.
  • the width of the collector lines can be decreased, giving lower shading.
  • the role of the masking paste is to provide a selective mask for an antireflection coating (ARC) deposition at those regions of oxidized silicon substrates where the front contact finger lines are going to be printed.
  • ARC antireflection coating
  • the masking paste after the drying or curing process should stay intact during the ARC deposition and be easily removed, later lifting off of the ARC layer deposited on top of it.
  • Pastes containing fine metal powders or powders of silicon oxide, titanium oxide, or chalk powder mixed with an organic vehicle fulfill the task. These pastes are easily removed in organic solvents.
  • the requirements for the front contact silver pastes specialized for the front contact formation can be applied in the present invention.
  • the paste applied for the collector lines can be the same silver paste as for the front fingers or any other high conductivity paste which gives a good adherence to an antireflection coating layer, does not penetrate completely through the ARC, and provides a perfect low resistance ohmic contact to finger lines.
  • Solar cell contacts prepared according to the present invention can have contact finger lines placed much more closely without additional shadowing.
  • Solar cells with lightly doped emitter and a higher sheet resistance can be fabricated by a screen printing solar cell process, which results in an improvement of solar cell response to short wavelength light.
  • the solar cells having electrical contacts prepared with the method according to the present invention exhibit:
  • FIG. 1 is a schematic view of the top contact pattern containing both contact collector lines and contact finger lines;
  • FIG. 2 is a schematic view of the top contact finger pattern obtained by a separation of finger printing from collector printing;
  • FIGS. 3a-3i show the steps of an entire manufacturing process of a solar cell for one preferred embodiment of the invention.
  • a standard fabric screen is stretched and glued to a frame adequate to the screen printer used. Typical parameters are metal screen of 80 UT, orientation of wires to the frame at an angle of 90°, and tension of the screen 30N.
  • An emulsion typical for screen patterning is deposited over the screen and dried.
  • a solid metal foil with thickness of 40-60 ⁇ m is bonded at its peripheries to the standard fabric screen stretched to the frame.
  • the meshes of the fabric screen are cut away from the middle region of the foil where the pattern will be formed.
  • a set of parallel lines reflecting the finger pattern of solar cell contacts is cut by a laser beam.
  • An electron or iron beam can also be used for the cutting process.
  • the width of the cut lines is regulated by the beam diameter, the power, and the cutting speed.
  • a typical contact flager screen consists of lines with width of 40-50 ⁇ m and a distance between them of 1.2-1.5 mm cut in a stainless steel foil with a thickness of 50-60 ⁇ m.
  • the area of finger lines is between 3% and 4% of the total top surface.
  • the collector lines screen is prepared by standard techniques using a wire mesh screen or by laser cutting of a metal foil. A standard screen with a mesh density of 165 is typical for this application.
  • the metal foil bonded to a fabric screen as described in I.1 is used for the preparation of a laser cut screen.
  • Typical collector line width is between 1-1.5 mm.
  • the starting material which is represented in FIG. 3a as an “as cut” Cz monocrystalline or multicrystalline silicon substrate ( 1 ) and is subjected to the following preliminary steps:
  • Saw damage etching can be performed in an acid or caustic solution.
  • Hot sodium hydroxide or potassium hydroxide is used more often for removal of a surface damaged layer.
  • a concentration of 20-30% NaOH solution in water and at a temperature of 90°-95° is used.
  • a time of five minutes is sufficient to etch away 20 ⁇ m from each side of the wafer. This is followed by a through rinsing in DI water.
  • wafers are immersed in the solution for 15-30 minutes;
  • Phosphorus diffusion is usually preceded by chemical cleaning.
  • it is dipped in a 4:1 solution of sulfuric acid and hydrogen peroxide, followed by rinsing in DI water.
  • the wafers are dipped in a 1% solution of hydrofluoric acid and rinsed in DI water.
  • Other cleaning method such as a RCA-cleaning or rinsing in HCl solution can also be used.
  • Phosphorus diffusion can be done by any means known in microelectronics: gaseous source, or spin-on solution or screen printing on a phosphorus paste. More information concerning this step can be found in EP-B-0108065.
  • the diffusion is done by screen printing a phosphorus paste on the top substrate surface ( 1 ) in order to create an n+ layer ( 2 ). Diffusion was carried out in a conveyor belt furnace at a peak temperature of 910° C. Diffusion glass was removed by dipping in wafers in 10%-25% hydrofluoric acid for about 30 sec. The sheet resistance of the diffused layer is in the range of 45-50 ohm/sq.
  • the process of dry silicon dioxide growth is well known and widely described in microelectronic literature.
  • the thin passivation layer ( 3 ) of silicon dioxide is usually grown in an open tube furnace in a dry oxygen atmosphere at a temperature in the range from 800° C. to 900° C. In the present embodiment, a temperature of 800° C. and time of 15 minutes is used for growing a 150 ⁇ thick silicon dioxide layer ( 3 ).
  • a front contact metal stencil screen with a finger pattern as shown in FIG. 2 is used for printing of a masking paste ( 4 ).
  • the paste is subsequently dried at a temperature of around 100°-300° C.
  • a paste comprising 60% wt. titanium dioxide powder and 40% wt. butyl carbitol is used.
  • Antireflection coating ( 5 ) can be fabricated by means and use of any material known in microelectronics for antireflection coating deposition. However, the properties of the AR layer influence the next processing steps and solar cell characteristics. In this embodiment of the present invention PECVD silicon nitride is applied.
  • the substrates are then immersed in an organic solvent (isopropyl alcohol, acetone or butyl carbitol or others) which can dissolve the masking paste and leave the ARC layer intact.
  • organic solvent isopropyl alcohol, acetone or butyl carbitol or others
  • a solution of sulfuric acid (4 vol. parts) and hydrogen peroxide (1 vol. part) can also be used when the ARC is fabricated of silicon nitride.
  • Dissolving the masking paste lifts-off the ARC layer deposited on its top and creates openings in the ARC layer.
  • the ARC layer can be used now as a mask for a thermal oxide etching in the openings. This selectively uncovers the silicon surface in the areas where the front finger pattern will be printed. It should be mentioned, however, that if an applied paste fires through a thermal oxide, the etching step can be omitted.
  • a front metal stencil screen with the same finger pattern ( 6 ) as in step 6 is used for front contact screen printing.
  • the silicon surface in the contact areas is not covered by any layer (oxide or ARC) so all problems related to a high contact resistance created by intermediate layers between screen printed metal layers and silicon are solved.
  • any silver paste suitable for a solar cell front contact metallization can be applied.
  • Modern screen printers equipped with an optical alignment system can be employed. The pattern printing is followed by drying in an IR-dryer at a temperature of 125° C.-150° C. A line width as low as 40 ⁇ m has been oriented.
  • Top contact collector lines ( 7 ) are printed and dried in a temperature range 125°C.-150° C. A thick standard mesh screen or stencil screen can be used which in effect gives the possibility of printing very thick collector lines with a low resistance. The complete top contact pattern as shown in FIG. 1 is obtained. The collector lines ( 7 ) are not covered by an ARC layer ( 5 ), which causes no problems in soldering during module fabrication.
  • the paste used for collector line printing can be the same silver paste as for the front finger pattern or different.
  • a contact ( 9 ) is then formed on the back side of the wafer which is covered by silver-aluminum paste or aluminum paste with small apertures where silver paste slightly overlapping the adjacent aluminum layer can be later printed.
  • the silver areas are used for tab attachment during module fabrication.
  • All pastes are co-fired in one step, preferably in an IR furnace.
  • silver finger lines ( 6 ) are sintered together with the n+ silicon surface, thereby creating a good electrical contact.
  • collector lines ( 7 ) and finger lines ( 6 ) are sintered together, also crating a good electrical contact.
  • a p + region ( 8 ) is formed in the silicon substrate adjacent the back contact ( 9 ) as a result of the firing process.
  • edge isolation is carried out by scribing and cleaving off the cell edges.
  • scribing and cleaving off the cell edges.
  • plasma etching chemical etching
  • laser scribing etc.

Abstract

Method of preparing on a solar cell the top contact pattern which consists of a set of parallel narrow finger lines and wide collector lines deposited essentially at right angles to the finger lines on the semiconductor substrate, characterized in that it comprises at least the following steps:
(a) screen printing and drying the set of contact finger lines;
(b) printing and drying the wide collector lines on the top of the set of finger lines in a subsequent step;
(c) firing both finger lines and collector lines in a single final step in order to form an ohmic contact between the finger lines and the semiconductor substrate and between the finger lines and the wide collector lines.

Description

OBJECT OF THE INVENTION
The present invention is related to a method of preparing contacts on the surface of semiconductor substrates. The present invention is also related to products obtained by this method and more particularly to a solar cell.
STATE OF THE ART
Conventional screen printing is currently used in a mass scale production of solar cells. Typically, the top contact pattern of a solar cell consists of a set of parallel narrow finger lines and wide collector lines deposited essentially at a right angle to the finger lines on the semiconductor substrate or wafer.
Such front contact formation of crystalline solar cells is performed with standard screen printing techniques. It has advantages in terms of production simplicity, automation, and low production cost.
Low series resistance and low metal coverage (low front surface shadowing) are basic requirements for the front surface metallization.
According to the document Hybrid Circuit No. 30, January 1993, “Thick-film Fine-line Fabrication Technique—Application to Front Metallization of Solar Cells,” by A. Dziedzic, J. Nijs, and J. Szlufcik, minimum metallization widths of 100-150 μm are obtained using conventional screen printing. This causes a relatively high shading of the front solar cell surface. In order to decrease the shading a large distance between the contact lines, i.e., 2 to 3 mm is required. On the other hand, this implies the use of a highly doped, conductive emitter layer. However, the heavy emitter doping induces a poor response of the solar cell to short wavelength light. Narrower conductive lines can be printed using ultra-thin stainless steel wire screens with a high mesh density of 325 or 400. A thin masking emulsion with a thickness of 5-15 μm is required to produce a line definition on the screen of at least 50 νm.
Although a line width of 50 μm can be achieved, the line thickness decreases below 10 μm measured after the firing process. This gives rise to increased line resistance causing high power dissipation, particularly in the main collector lines.
The fact that the fingers are ultra-thin can result in the interruption of such fingers.
Another main disadvantage of the ultra-thin screens is their higher cost and lower durability and/or reliability.
An alternative technique to the standard screen printing is the application of an etched or electroformed metal mask. The manufacturing process of such mask involves etching of a cavity pattern on the one side of the metal foil and a mesh pattern on the reverse side. Photoresist masking and precise mask positioning are necessary for double-sided etching of the metal foil. This implies a complicated design and a very high screen cost.
In the case of conventional wire mesh screens as well as in the case of the metal etched screens, the open area (mesh openings) is usually not higher than 50% of the pattern. The open area defines the maximum amount of paste transferred to the substrates and at the same time the wet line thickness. Another important point is that a small mesh aperture requires utilization of special inks formulated for fine line printing. This is in conflict with most of the commercially available silver pastes for solar cell front contact metallization. Silver powder has a tendency to create agglomerates of particles in the paste. In addition, a flake-shaped silver powder, usually used in the paste formulation for a solar metallization, increases the tendencies to create agglomerates of particles in the paste.
The modern solar cell processing includes growing of thin thermal oxide (50-250 Å) on the top emitter surface using methods well known in microelectronics. Such an oxide layer passivates defects and recombination centers always present on the semiconductor surface. This process leads to an improvement of cell response to solar short wavelength radiation that in effect gives rise to a higher cell efficiency. Although commercially available screen printed pastes produce good contact to non-oxidized silicon surfaces, the firing through thermal oxide gives difficulties in obtaining high quality contacts with low resistance.
It should also be noted that the solar cell manufacturing process includes in most cases a step of applying an antireflection (AR) coating which can be deposited before or after the contact formation. If the AR layer is deposited before contact printing, it often gives rise to the problem of high contact resistance between silicon and printed contacts. This problem occurs particularly when silicon nitride is used as an antireflection coating.
If an AR layer is deposited after the contact formation, another problem is raised which is the soldering of the collector lines during the module fabrication.
The solution to this problem brings the “firing through” method described in PCT Document WO 89/12312, wherein the authors apply the commercially available silver paste “Ferro #3349” to “fire through” a silicon nitride ARC. A “fired through” TiO2 AR layer is described in the paper by Nunoi, et al. “High performance BSF silicon solar cell with fired through contacts printed on AR coating”, 14th IEEE PV Specialists Conference—1980, San Diego, USA, pp. 805-810.
PCT Document WO 92/22928 describes a solar cell and a method to make it wherein an antireflective coating is deposited on a semiconductor substrate before a first set of narrow elongated parallel electrodes are printed thereon and wherein finally a second set of elongated electrodes are affixed to each of the first electrodes.
It should be noted that the paste or the ink used in order to form the array of narrow elongated parallel electrodes is such that it penetrates said antireflective material and forms mechanically adherent and low electrical resistance contact with the front surface of the semiconductor substrate. This means that not all the conventional pastes can be used. Furthermore, in order to have such good contact between the semiconductor substrate and the narrow elongated parallel electrodes, a step of “firing through” is necessary.
The firing at the same time through the thermally grown silicon dioxide and antireflection coating (particularly silicon nitride) layers, although described in the technical literature, usually gives problems of high contact resistance and is difficult to achieve with commercial pastes.
E.P.O. Document EP-A-0002550 describes a method of forming a contact configuration for soldering a metal connection on a region of the surface of a semiconductor body comprising the provision by serigraphy, on at least a part of said region, of a conductive paste which comprises at least a principal metal, said paste then being vitrified thermally such that the dopant migrates into at least a surface part on the region of a surface of the semiconductor body.
OBJECTS OF THE INVENTION
The present invention has an object to provide improved semiconductor devices such as solar cells which do not have the drawbacks of the prior art.
More particularly, the present invention aims to form semiconductor devices such as solar cells wherein the electrical contacts exhibit a low series of resistance and a low metal coverage which also provides a low front surface shadowing.
Many other advantages will be mentioned hereunder in the description of the main characteristics of the present invention.
SUMMARY OF THE INVENTION
The present invention provides a method of forming the top contact pattern of a solar cell, which consists of a set of parallel narrow finger lines and wide collector lines deposited essentially at the right angles to the finger lines on a semiconductor substrate, characterized in that it comprises the following steps:
(a) screen printing and drying the set of narrow finger lines;
(b) printing and drying the wide collector lines on top of the set of finger lines in a subsequent step;
(c) firing both finger lines and collector lines in a single final step in order to form an ohmic contact between the finger lines and the semiconductor substrate and between the finger lines and the wide collector lines.
According to a first preferred embodiment, the following steps are performed before the screen printing step of the contact finger lines:
(1) screen printing a pattern of masking paste on the front surface of the semiconductor substrate, so that the printed pattern will form the pattern for the set of parallel finger lines;
(2) depositing an antireflection coating over the whole front surface;
(3) dissolving the masking paste and selectively lifting-off the portions of the antireflection coating which have been deposited on the masking paste;
(4) etching-off the oxide layers from the openings in the antireflection coating;
(5) performing the steps (a), (b), and (c) as described hereabove.
According to another possible embodiment of the present invention, an antireflection coating is deposited in an intermediate step after printing and drying the front contact finger lines and before the collector lines are printed and dried.
The several methods described hereabove can be applied to substrates already having a rear ohmic contact or a back contact can be formed during the front contact formation or after the front contact has been already fabricated.
It should be noted that according to the method of the present invention, the last step is only a co-firing step and not a step of firing through.
The screen for printing the set of narrow parallel finger lines is preferably made from a solid metal foil in which the set of parallel lines which form the finger contact pattern can be chemically etched or cut by a laser or an electron beam.
However, in some particular embodiments wherein bridges over the openings are allowed, other masks besides metal stencils can be used, such as a mesh screen.
The screen used for printing the collector lines is preferably made of a conventional mesh screen or a metal stencil screen.
Other techniques such as ink-jet printing or off-set printing can also be used in the present invention for printing the collector lines. The proposed invention results in many advantages over using conventional screen printing techniques.
Concerning Finger Lines
1. The pattern of parallel finger lines is formed in a solid metal foil which means that it has an open area equal to 100%. No meshes are present in the pattern openings. This increases the volume of the paste transferred to the substrate in the printing process. It should be noted that when using a standard wire mesh screen, the open area is only between 40%-60%.
2. The absence of the meshes in the openings reduces the requirements for good screen printability of pastes used for front contact printing. Pastes with a high solids content and high viscosity can be used.
3. Using a laser or an electron or ion beam for metal mask cutting gives the possibility of obtaining pattern definition down to a few micrometers. This depends on the metal foil thickness and the quality of the cutting system. In practice, the line width is limited by the requirement of high line thickness. The thicker the metal mask the higher is the thickness of the printed lines. On the other hand, the ratio of the cut line width to the mask thickness should be above 0.5. A lower ratio leads to difficulties in paste transfer through the mask openings during printing. It has been demonstrated that laser cutting can fabricate a finger pattern of 30 μm wide lines cut in a 50-60 μm thick stainless steel foil.
The result of the above advantages 1-3 gives the possibility of printing very narrow lines with a high aspect ratio and no interruption. Lines with width of 40 μm and up to 25-30 μm thickness have been measured after printing and drying. This corresponds to 13-16 μm thick lines after firing. A metal sheet resistance of 1-2 mohm/sq. was measured with most commercially available specialized pastes for solar cell front contacts.
4. Furthermore, using solid stainless steel stencils instead of wire mesh screens for printing the finger lines increases the durability of the screens.
5. Cutting the continuous and completely open lines by a laser or electron beam simplifies the screen fabrication process and strongly decreases the screen cost.
Concerning Collector Lines
1. A collector pattern is preferably prepared with a conventional wire mesh screen or with solid metal masks. A durable screen with a total (screen+emulsion) thickness above 100 μm can be used. A standard screen with a mesh density of 200 or 180 per inch covered with a 20 μm thick emulsion is typical for collector printing.
2. The thick collector lines with a sheet resistance below 1 mohm/sq. will be easily obtained with most of the silver pastes for front contact metallization. The width of the collector lines can be decreased, giving lower shading. Using the preferred embodiment of the present invention wherein prior to the screen printing of the finger lines, a screen printing of a masking paste is performed with the deposition of antireflection coating, the following advantages can be noted:
Concerning the Masking Paste
The role of the masking paste is to provide a selective mask for an antireflection coating (ARC) deposition at those regions of oxidized silicon substrates where the front contact finger lines are going to be printed. The masking paste after the drying or curing process should stay intact during the ARC deposition and be easily removed, later lifting off of the ARC layer deposited on top of it. Pastes containing fine metal powders or powders of silicon oxide, titanium oxide, or chalk powder mixed with an organic vehicle fulfill the task. These pastes are easily removed in organic solvents.
Concerning the Front Finger Contact Paste
Since there is no intermediate layer between the printed front finger contact and silicon substrate and since the applied laser cut stencil screens have no blocking meshes, the requirements for the front contact silver pastes specialized for the front contact formation can be applied in the present invention.
Concerning the Front Collector Paste
The paste applied for the collector lines can be the same silver paste as for the front fingers or any other high conductivity paste which gives a good adherence to an antireflection coating layer, does not penetrate completely through the ARC, and provides a perfect low resistance ohmic contact to finger lines.
Furthermore, in the case when an antireflection coating is used, the following advantage could be mentioned:
1. Both finger and collector lines are co-fired in the same firing process. As a result, the finger lines are in good electrical contact with the substrate, and the collector lines are in good electrical contact with the finger lines. In any case, the collector lines are not covered by an ARC layer. This gives no problem with soldering of collector lines during module fabrication.
2. Separation of the collector lines from the direct contact with silicon substrate reduces carrier recombination losses existing at the metal contact-silicon interface. Selection of material used for the ARC coating and of the deposition technique are crucial for achieving a separation. Most top contact silver pastes penetrate through an ARC layer of titanium dioxide deposited by Atmospheric Pressure Chemical Vapor Deposition (APCVD). In the case of using a silicon nitride AR layer deposited by Plasma Enhanced CVD, such ARC layer can be a very good barrier between silicon and most screen printed silver pastes.
3. Solar cell contacts prepared according to the present invention can have contact finger lines placed much more closely without additional shadowing. Solar cells with lightly doped emitter and a higher sheet resistance can be fabricated by a screen printing solar cell process, which results in an improvement of solar cell response to short wavelength light.
Accordingly, the solar cells having electrical contacts prepared with the method according to the present invention exhibit:
low sheet resistance of fingers;
lower sheet resistance of collectors;
lower contact resistance of finger/substrate interface;
lower series of solar cell;
lower shadowing losses caused by fingers;
lower shadowing losses caused by collector lines;
lower solar cell total shadowing losses;
lower carrier recombination losses at contact-silicon interfaces.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will be described using a solar cell contact pattern as an example, presented in the drawings wherein:
FIG. 1 is a schematic view of the top contact pattern containing both contact collector lines and contact finger lines;
FIG. 2 is a schematic view of the top contact finger pattern obtained by a separation of finger printing from collector printing;
FIGS. 3a-3i show the steps of an entire manufacturing process of a solar cell for one preferred embodiment of the invention; and
DETAILED DESCRIPTION OF THE PRESENT INVENTION
I. Preparation of Screens
1. A standard fabric screen is stretched and glued to a frame adequate to the screen printer used. Typical parameters are metal screen of 80 UT, orientation of wires to the frame at an angle of 90°, and tension of the screen 30N.
2. An emulsion typical for screen patterning is deposited over the screen and dried.
3. A solid metal foil with thickness of 40-60 μm is bonded at its peripheries to the standard fabric screen stretched to the frame. The meshes of the fabric screen are cut away from the middle region of the foil where the pattern will be formed.
4. A set of parallel lines reflecting the finger pattern of solar cell contacts is cut by a laser beam. An electron or iron beam can also be used for the cutting process. The width of the cut lines is regulated by the beam diameter, the power, and the cutting speed. A typical contact flager screen consists of lines with width of 40-50 μm and a distance between them of 1.2-1.5 mm cut in a stainless steel foil with a thickness of 50-60 μm. The area of finger lines is between 3% and 4% of the total top surface.
5. The collector lines screen is prepared by standard techniques using a wire mesh screen or by laser cutting of a metal foil. A standard screen with a mesh density of 165 is typical for this application. The metal foil bonded to a fabric screen as described in I.1 is used for the preparation of a laser cut screen. Typical collector line width is between 1-1.5 mm.
Other techniques such as ink-jet printing or off-set printing can be used in the present invention for printing the collector lines.
II. Description of the Manufacturing Processes of Solar Cells
The starting material which is represented in FIG. 3a as an “as cut” Cz monocrystalline or multicrystalline silicon substrate (1) and is subjected to the following preliminary steps:
1. Saw Damage Etching
Saw damage etching can be performed in an acid or caustic solution. Hot sodium hydroxide or potassium hydroxide is used more often for removal of a surface damaged layer. Typically a concentration of 20-30% NaOH solution in water and at a temperature of 90°-95° is used. A time of five minutes is sufficient to etch away 20 μm from each side of the wafer. This is followed by a through rinsing in DI water.
2. Texturing
Texturing is done according to the well known process used in solar cell technology:
a 2% weight solution of sodium hydroxide in 90% DI and 10% isopropanol volume solution is heated to a temperature of 75-80° C.
wafers are immersed in the solution for 15-30 minutes;
rinsing in DI water.
3. Chemical Cleaning
Phosphorus diffusion is usually preceded by chemical cleaning. In the present case, it is dipped in a 4:1 solution of sulfuric acid and hydrogen peroxide, followed by rinsing in DI water. Next, the wafers are dipped in a 1% solution of hydrofluoric acid and rinsed in DI water. Other cleaning method such as a RCA-cleaning or rinsing in HCl solution can also be used.
4. Phosphorus Diffusion (FIG. 3b)
Phosphorus diffusion can be done by any means known in microelectronics: gaseous source, or spin-on solution or screen printing on a phosphorus paste. More information concerning this step can be found in EP-B-0108065.
In the present embodiment, the diffusion is done by screen printing a phosphorus paste on the top substrate surface (1) in order to create an n+ layer (2). Diffusion was carried out in a conveyor belt furnace at a peak temperature of 910° C. Diffusion glass was removed by dipping in wafers in 10%-25% hydrofluoric acid for about 30 sec. The sheet resistance of the diffused layer is in the range of 45-50 ohm/sq.
5. Dry Silicon Dioxide Growth (FIG. 3c)
The process of dry silicon dioxide growth is well known and widely described in microelectronic literature. The thin passivation layer (3) of silicon dioxide is usually grown in an open tube furnace in a dry oxygen atmosphere at a temperature in the range from 800° C. to 900° C. In the present embodiment, a temperature of 800° C. and time of 15 minutes is used for growing a 150 Å thick silicon dioxide layer (3).
6. Masking Paste Printing and Drying (FIG. 3d)
A front contact metal stencil screen with a finger pattern as shown in FIG. 2 is used for printing of a masking paste (4). The paste is subsequently dried at a temperature of around 100°-300° C. In this embodiment of the present invention, a paste comprising 60% wt. titanium dioxide powder and 40% wt. butyl carbitol is used.
7. Antireflection Coating Deposition (FIG. 3e)
Antireflection coating (5) can be fabricated by means and use of any material known in microelectronics for antireflection coating deposition. However, the properties of the AR layer influence the next processing steps and solar cell characteristics. In this embodiment of the present invention PECVD silicon nitride is applied.
8. Masking Paste Removal and Selective ARC Lift-Off (FIG. 3f)
The substrates are then immersed in an organic solvent (isopropyl alcohol, acetone or butyl carbitol or others) which can dissolve the masking paste and leave the ARC layer intact. A solution of sulfuric acid (4 vol. parts) and hydrogen peroxide (1 vol. part) can also be used when the ARC is fabricated of silicon nitride. Dissolving the masking paste lifts-off the ARC layer deposited on its top and creates openings in the ARC layer. The ARC layer can be used now as a mask for a thermal oxide etching in the openings. This selectively uncovers the silicon surface in the areas where the front finger pattern will be printed. It should be mentioned, however, that if an applied paste fires through a thermal oxide, the etching step can be omitted.
9. Printing and Drying a Front Contact Finger Pattern (FIG. 3g)
A front metal stencil screen with the same finger pattern (6) as in step 6 is used for front contact screen printing. The silicon surface in the contact areas is not covered by any layer (oxide or ARC) so all problems related to a high contact resistance created by intermediate layers between screen printed metal layers and silicon are solved. As a result, any silver paste suitable for a solar cell front contact metallization can be applied. Modern screen printers equipped with an optical alignment system can be employed. The pattern printing is followed by drying in an IR-dryer at a temperature of 125° C.-150° C. A line width as low as 40 μm has been oriented.
10. Top Contact Collector Printing and Drying (FIG. 3h)
Top contact collector lines (7) are printed and dried in a temperature range 125°C.-150° C. A thick standard mesh screen or stencil screen can be used which in effect gives the possibility of printing very thick collector lines with a low resistance. The complete top contact pattern as shown in FIG. 1 is obtained. The collector lines (7) are not covered by an ARC layer (5), which causes no problems in soldering during module fabrication. The paste used for collector line printing can be the same silver paste as for the front finger pattern or different.
11. Back Contact Printing and Drying and All Contacts Firing (FIG. 3i)
A contact (9) is then formed on the back side of the wafer which is covered by silver-aluminum paste or aluminum paste with small apertures where silver paste slightly overlapping the adjacent aluminum layer can be later printed. The silver areas are used for tab attachment during module fabrication.
All pastes are co-fired in one step, preferably in an IR furnace. During the firing process silver finger lines (6) are sintered together with the n+ silicon surface, thereby creating a good electrical contact. At the same time, collector lines (7) and finger lines (6) are sintered together, also crating a good electrical contact. There are intermediate ARC (5) and SiO2 (3) layers between the collector lines and silicon substrate (1). Depending upon which materials are used for the ARC and collectors lines, the collector lines are in contact with silicon or isolated. The best results are obtained where the pastes do not penetrate to the silicon surface. This reduces carrier recombination losses at the metal-silicon interface. A p+ region (8) is formed in the silicon substrate adjacent the back contact (9) as a result of the firing process.
12. Edge Isolation
In the embodiment of the present invention, edge isolation is carried out by scribing and cleaving off the cell edges. There are many known techniques which can be also applied: plasma etching, chemical etching, laser scribing, etc.

Claims (13)

We claim:
1. A method of preparing a contact pattern on a semiconductor substrate of a solar cell, said patterning comprising a set of narrow finger lines and wide collector lines that intersect and that are in electrical contact, said method comprising the steps of:
(1) screen printing a masking paste on top of a front surface of said semiconductor substrate using a screen with a pattern structure, thereby forming a printed pattern;
(2) depositing a coating over said front surface;
(3) dissolving said masking paste whereby selectively lifting-off the part of the coating deposited on top of the masking paste; and thereafter
(4) etching off oxide layers from areas of said front surface exposed through openings in the coating, wherein said openings are formed through the dissolving and lift-off step (3); and thereafter
(5) screen printing the set of finger lines in said openings formed in said coating using a screen with said pattern structure and drying the set of finger lines.
2. The method of claim 1, wherein the step of depositing a coating over the front surface comprises depositing an antireflection layer.
3. The method of claim 1 further comprising the steps of:
printing and drying the collector lines on top of the set of finger lines; and
firing both the finger lines and the collector lines.
4. The method of claim 1 further comprising the steps of:
subsequently, printing and drying the collector lines on top of the set of finger lines; and
firing both the finger lines and the collector lines in a single final step.
5. The method of claim 4, wherein substrates a substrate already having a rear ohmic contact are is used.
6. The method of claim 4, wherein said step of screen printing the set of finger lines comprises the use of a screen made of a solid metal mask.
7. The method of claim 6, wherein the set of finger lines and the collector lines are made with silver paste.
8. The method of claim 4, wherein the collector lines are printed by a process selected from the group consisting of screen printing, ink-jet printing, and off-set printing.
9. The method of claim 8 wherein the set of finger lines and the collector lines are made with silver paste.
10. The method as recited in claim 1 further comprising the steps of:
forming an oxide layer on top of said substrate thereby forming said front surface;
thereafter executing steps (1) to (3),
etching of said oxide layer through openings in the coating;
and thereafter executing step (4) etching off oxide layers from areas of said front surface exposed through openings in the coating, wherein said openings are formed through the dissolving and lift-off step ( 3 ).
11. The method of claim 1, wherein said masking paste comprises metal powders or powders of silicon oxide or powders of titanium oxide or chalk powder, mixed with an organic material.
12. The method of claim 1 wherein the step of dissolving the masking paste is executed by immersing said substrate in an organic solvent.
13. The method of claim 1, wherein the step of dissolving the masking paste is executed by immersing said substrate in a solution of sulfuric acid and hydrogen peroxide.
US09/525,334 1995-02-21 2000-03-10 Method of preparing solar cell front contacts Expired - Lifetime USRE37512E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/525,334 USRE37512E1 (en) 1995-02-21 2000-03-10 Method of preparing solar cell front contacts

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP95870012 1995-02-21
EP95870012 1995-02-21
EP95870135A EP0729189A1 (en) 1995-02-21 1995-12-22 Method of preparing solar cells and products obtained thereof
EP95870135 1995-12-22
US08/604,666 US5726065A (en) 1995-02-21 1996-02-21 Method of preparing solar cell front contacts
US09/525,334 USRE37512E1 (en) 1995-02-21 2000-03-10 Method of preparing solar cell front contacts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/604,666 Reissue US5726065A (en) 1995-02-21 1996-02-21 Method of preparing solar cell front contacts

Publications (1)

Publication Number Publication Date
USRE37512E1 true USRE37512E1 (en) 2002-01-15

Family

ID=26140789

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/604,666 Ceased US5726065A (en) 1995-02-21 1996-02-21 Method of preparing solar cell front contacts
US09/525,334 Expired - Lifetime USRE37512E1 (en) 1995-02-21 2000-03-10 Method of preparing solar cell front contacts

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/604,666 Ceased US5726065A (en) 1995-02-21 1996-02-21 Method of preparing solar cell front contacts

Country Status (4)

Country Link
US (2) US5726065A (en)
EP (1) EP0729189A1 (en)
JP (1) JP3803133B2 (en)
AU (1) AU702505B2 (en)

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060102228A1 (en) * 2004-11-12 2006-05-18 Ferro Corporation Method of making solar cell contacts
US20060231133A1 (en) * 2005-04-19 2006-10-19 Palo Alto Research Center Incorporated Concentrating solar collector with solid optical element
US20060289055A1 (en) * 2005-06-03 2006-12-28 Ferro Corporation Lead free solar cell contacts
US20070107773A1 (en) * 2005-11-17 2007-05-17 Palo Alto Research Center Incorporated Bifacial cell with extruded gridline metallization
US20070108229A1 (en) * 2005-11-17 2007-05-17 Palo Alto Research Center Incorporated Extrusion/dispensing systems and methods
US20070110836A1 (en) * 2005-11-17 2007-05-17 Palo Alto Research Center Incorporated Extrusion/dispensing systems and methods
US20070117271A1 (en) * 2001-10-05 2007-05-24 Cabot Corporation Methods and compositions for the formation of recessed electrical features on a substrate
WO2007117153A2 (en) * 2006-04-12 2007-10-18 Renewable Energy Corporation Asa Solar cells and methods for manufacturing same
US20070256724A1 (en) * 2006-05-05 2007-11-08 Palo Alto Research Center Incorporated Passively Cooled Solar Concentrating Photovoltaic Device
US20070264488A1 (en) * 2006-05-15 2007-11-15 Stion Corporation Method and structure for thin film photovoltaic materials using semiconductor materials
US20070277685A1 (en) * 2006-05-31 2007-12-06 Cabot Corporation Process for printing features with smaller dimensions
US20080093422A1 (en) * 2001-10-05 2008-04-24 Cabot Corporation Low viscosity precursor compositions and methods for the deposition of conductive electronic features
US20080099952A1 (en) * 2006-11-01 2008-05-01 Palo Alto Research Center Incorporated Extrusion Head With Planarized Edge Surface
US20080099953A1 (en) * 2006-11-01 2008-05-01 Palo Alto Research Center Incorporated Extruded Structure With Equilibrium Shape
US20080186593A1 (en) * 2007-02-02 2008-08-07 Sol Focus, Inc. Metal trace fabrication for optical element
US20080300918A1 (en) * 2007-05-29 2008-12-04 Commercenet Consortium, Inc. System and method for facilitating hospital scheduling and support
US20080318757A1 (en) * 2007-06-19 2008-12-25 Cabot Corporation Nanoglass and flame spray processes for producing nanoglass
US20090142880A1 (en) * 2007-11-19 2009-06-04 Weidman Timothy W Solar Cell Contact Formation Process Using A Patterned Etchant Material
US20090148978A1 (en) * 2007-12-07 2009-06-11 Cabot Corporation Processes for forming photovoltaic conductive features from multiple inks
US20090250105A1 (en) * 2007-09-28 2009-10-08 Stion Corporation Thin film metal oxide bearing semiconductor material for single junction solar cell devices
EP1833099A3 (en) * 2006-01-20 2009-12-02 Palo Alto Research Center Incorporated Solar cell production using non-contact patterning and direct-write metallization
US20090320920A1 (en) * 2008-06-25 2009-12-31 Stion Corporation High efficiency photovoltaic cell and manufacturing method free of metal disulfide barrier material
US20100003812A1 (en) * 2006-12-12 2010-01-07 Palo Alto Research Center Incorporated Solar Cell Fabrication Using Extrusion Mask
US20100012179A1 (en) * 2008-07-17 2010-01-21 Chien-Li Cheng Solar cell with high photon utilization and method of manufacturing the same
US20100059109A1 (en) * 2008-09-09 2010-03-11 Palo Alto Research Center Incorporated Interdigitated Back Contact Silicon Solar Cells With Laser Ablated Grooves
US20100062560A1 (en) * 2008-09-10 2010-03-11 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
US20100118081A1 (en) * 2008-11-07 2010-05-13 Palo Alto Research Center Incorporated Dead Volume Removal From An Extrusion Printhead
US20100117254A1 (en) * 2008-11-07 2010-05-13 Palo Alto Research Center Incorporated Micro-Extrusion System With Airjet Assisted Bead Deflection
US20100116199A1 (en) * 2008-11-07 2010-05-13 Palo Alto Research Center Incorporated Directional Extruded Bead Control
US20100122726A1 (en) * 2008-11-20 2010-05-20 Stion Corporation Method and structure for thin film photovoltaic cell using similar material junction
US20100124619A1 (en) * 2008-11-14 2010-05-20 Palo Alto Research Center Incorporated Solar cell metallization using inline electroless plating
US20100126574A1 (en) * 2008-11-24 2010-05-27 Palo Alto Research Center Incorporated Melt Planarization Of Solar Cell Bus Bars
US20100130014A1 (en) * 2008-11-26 2010-05-27 Palo Alto Research Center Incorporated Texturing multicrystalline silicon
US20100139754A1 (en) * 2008-12-09 2010-06-10 Palo Alto Research Center Incorporated Solar Cell With Co-Planar Backside Metallization
US20100139756A1 (en) * 2008-12-10 2010-06-10 Palo Alto Research Center Incorporated Simultaneously Writing Bus Bars And Gridlines For Solar Cell
US20100143581A1 (en) * 2008-12-09 2010-06-10 Palo Alto Research Center Incorporated Micro-Extrusion Printhead With Nozzle Valves
US20100163101A1 (en) * 2007-04-25 2010-07-01 Ferro Corporation Thick Film Conductor Formulations Comprising Silver And Nickel Or Silver And Nickel Alloys And Solar Cells Made Therefrom
US20100173446A1 (en) * 2007-08-31 2010-07-08 Ferro Corporation Layered Contact Structure For Solar Cells
US20100206302A1 (en) * 2009-02-18 2010-08-19 Palo Alto Research Center Incorporated Rotational Trough Reflector Array For Solar-Electricity Generation
US20100206356A1 (en) * 2009-02-18 2010-08-19 Palo Alto Research Center Incorporated Rotational Trough Reflector Array For Solar-Electricity Generation
US20100221435A1 (en) * 2008-11-07 2010-09-02 Palo Alto Research Center Incorporated Micro-Extrusion System With Airjet Assisted Bead Deflection
US20100269634A1 (en) * 2005-01-14 2010-10-28 Cabot Corporation Production of metal nanoparticles
US20100269635A1 (en) * 2005-01-14 2010-10-28 Cabot Corporation Production of metal nanoparticles
US20110008928A1 (en) * 2009-07-13 2011-01-13 Wuxi Suntech Power Co., Ltd. Method for etching a see-through thin film solar module
US20110020564A1 (en) * 2008-06-11 2011-01-27 Stion Corporation Processing method for cleaning sulfur entities of contact regions
US20110020980A1 (en) * 2008-10-01 2011-01-27 Stion Corporation Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials
US20110070686A1 (en) * 2008-09-30 2011-03-24 Stion Corporation Thermal management and method for large scale processing of cis and/or cigs based thin films overlying glass substrates
US20110073181A1 (en) * 2008-09-30 2011-03-31 Stion Corporation Patterning electrode materials free from berm structures for thin film photovoltaic cells
US7928015B2 (en) 2006-12-12 2011-04-19 Palo Alto Research Center Incorporated Solar cell fabrication using extruded dopant-bearing materials
US20110088776A1 (en) * 2009-12-29 2011-04-21 Auria Solar Co., Ltd. Solar cell structure and manufacturing method thereof
US20110094567A1 (en) * 2009-10-26 2011-04-28 Younghyun Lee Solar cell, method of manufacturing the same, and solar cell module
US7954449B2 (en) 2007-05-08 2011-06-07 Palo Alto Research Center Incorporated Wiring-free, plumbing-free, cooled, vacuum chuck
US20110143486A1 (en) * 2008-06-26 2011-06-16 Mitsubishi Electric Corporation Solar Cell and Manufacturing Method Thereof
US20110159633A1 (en) * 2008-09-05 2011-06-30 Min-Seo Kim Paste and manufacturing method of solar cell using the same
US20110212565A1 (en) * 2008-09-30 2011-09-01 Stion Corporation Humidity Control and Method for Thin Film Photovoltaic Materials
US20110216401A1 (en) * 2010-03-03 2011-09-08 Palo Alto Research Center Incorporated Scanning System With Orbiting Objective
US8168463B2 (en) 2008-10-17 2012-05-01 Stion Corporation Zinc oxide film method and structure for CIGS cell
US8193028B2 (en) 2008-10-06 2012-06-05 Stion Corporation Sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8198122B2 (en) 2008-09-29 2012-06-12 Stion Corporation Bulk chloride species treatment of thin film photovoltaic cell and manufacturing method
US8226391B2 (en) 2006-11-01 2012-07-24 Solarworld Innovations Gmbh Micro-extrusion printhead nozzle with tapered cross-section
US8236597B1 (en) 2008-09-29 2012-08-07 Stion Corporation Bulk metal species treatment of thin film photovoltaic cell and manufacturing method
US8258000B2 (en) 2008-09-29 2012-09-04 Stion Corporation Bulk sodium species treatment of thin film photovoltaic cell and manufacturing method
US8263494B2 (en) 2010-01-25 2012-09-11 Stion Corporation Method for improved patterning accuracy for thin film photovoltaic panels
WO2011095968A3 (en) * 2010-02-03 2012-10-11 Xjet Ltd. Fabrication of contacts for semiconductor substrates
US8287942B1 (en) 2007-09-28 2012-10-16 Stion Corporation Method for manufacture of semiconductor bearing thin film material
US8314326B2 (en) 2006-05-15 2012-11-20 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
US8322025B2 (en) 2006-11-01 2012-12-04 Solarworld Innovations Gmbh Apparatus for forming a plurality of high-aspect ratio gridline structures
US8334464B2 (en) 2005-01-14 2012-12-18 Cabot Corporation Optimized multi-layer printing of electronics and displays
US8333820B2 (en) 1997-02-24 2012-12-18 Cabot Corporation Forming conductive features of electronic devices
US8383014B2 (en) 2010-06-15 2013-02-26 Cabot Corporation Metal nanoparticle compositions
US8394662B1 (en) 2008-09-29 2013-03-12 Stion Corporation Chloride species surface treatment of thin film photovoltaic cell and manufacturing method
US8425739B1 (en) 2008-09-30 2013-04-23 Stion Corporation In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials
US8435826B1 (en) 2008-10-06 2013-05-07 Stion Corporation Bulk sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8436445B2 (en) 2011-08-15 2013-05-07 Stion Corporation Method of manufacture of sodium doped CIGS/CIGSS absorber layers for high efficiency photovoltaic devices
US8461061B2 (en) 2010-07-23 2013-06-11 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment
US8476104B1 (en) 2008-09-29 2013-07-02 Stion Corporation Sodium species surface treatment of thin film photovoltaic cell and manufacturing method
US8501507B2 (en) 2007-11-14 2013-08-06 Stion Corporation Method for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
US8501521B1 (en) 2008-09-29 2013-08-06 Stion Corporation Copper species surface treatment of thin film photovoltaic cell and manufacturing method
US8617917B2 (en) 2008-06-25 2013-12-31 Stion Corporation Consumable adhesive layer for thin film photovoltaic material
US8691618B2 (en) 2008-09-29 2014-04-08 Stion Corporation Metal species surface treatment of thin film photovoltaic cell and manufacturing method
US8728200B1 (en) 2011-01-14 2014-05-20 Stion Corporation Method and system for recycling processing gas for selenization of thin film photovoltaic materials
US8772078B1 (en) 2008-03-03 2014-07-08 Stion Corporation Method and system for laser separation for exclusion region of multi-junction photovoltaic materials
US8809096B1 (en) 2009-10-22 2014-08-19 Stion Corporation Bell jar extraction tool method and apparatus for thin film photovoltaic materials
US8846431B2 (en) 2011-03-03 2014-09-30 Palo Alto Research Center Incorporated N-type silicon solar cell with contact/protection structures
US8859880B2 (en) 2010-01-22 2014-10-14 Stion Corporation Method and structure for tiling industrial thin-film solar devices
US8871305B2 (en) 2007-06-29 2014-10-28 Stion Corporation Methods for infusing one or more materials into nano-voids of nanoporous or nanostructured materials
US8916038B2 (en) * 2013-03-13 2014-12-23 Gtat Corporation Free-standing metallic article for semiconductors
US8936709B2 (en) 2013-03-13 2015-01-20 Gtat Corporation Adaptable free-standing metallic article for semiconductors
US8998606B2 (en) 2011-01-14 2015-04-07 Stion Corporation Apparatus and method utilizing forced convection for uniform thermal treatment of thin film devices
US9096930B2 (en) 2010-03-29 2015-08-04 Stion Corporation Apparatus for manufacturing thin film photovoltaic devices

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0729189A1 (en) * 1995-02-21 1996-08-28 Interuniversitair Micro-Elektronica Centrum Vzw Method of preparing solar cells and products obtained thereof
DE19522539C2 (en) * 1995-06-21 1997-06-12 Fraunhofer Ges Forschung Solar cell with an emitter having a surface texture and method for producing the same
US6278053B1 (en) * 1997-03-25 2001-08-21 Evergreen Solar, Inc. Decals and methods for providing an antireflective coating and metallization on a solar cell
EP0881694A1 (en) 1997-05-30 1998-12-02 Interuniversitair Micro-Elektronica Centrum Vzw Solar cell and process of manufacturing the same
NL1011081C2 (en) * 1999-01-20 2000-07-21 Stichting Energie Method and device for applying a metallization pattern to a substrate for a photovoltaic cell.
DE10150040A1 (en) * 2001-10-10 2003-04-17 Merck Patent Gmbh Etching passivating and antireflection layers made from silicon nitride on solar cells comprises applying a phosphoric acid and/or etching medium containing a salt of phosphoric acid the surface regions to be etched
US7732002B2 (en) * 2001-10-19 2010-06-08 Cabot Corporation Method for the fabrication of conductive electronic features
FR2831714B1 (en) * 2001-10-30 2004-06-18 Dgtec ASSEMBLY OF PHOTOVOLTAIC CELLS
US20040191488A1 (en) * 2002-04-10 2004-09-30 Thomas Berndt Component, method for coating a component, and powder
EP1378947A1 (en) * 2002-07-01 2004-01-07 Interuniversitair Microelektronica Centrum Vzw Semiconductor etching paste and the use thereof for localised etching of semiconductor substrates
US7141185B2 (en) * 2003-01-29 2006-11-28 Parelec, Inc. High conductivity inks with low minimum curing temperatures
JP4121928B2 (en) 2003-10-08 2008-07-23 シャープ株式会社 Manufacturing method of solar cell
US20070295381A1 (en) 2004-03-29 2007-12-27 Kyocera Corporation Solar Cell Module and Photovoltaic Power Generator Using This
US8106291B2 (en) * 2004-05-07 2012-01-31 Mitsubishi Electric Corporation Solar battery and manufacturing method therefor
US8319093B2 (en) * 2006-07-08 2012-11-27 Certainteed Corporation Photovoltaic module
NL2000248C2 (en) 2006-09-25 2008-03-26 Ecn Energieonderzoek Ct Nederl Process for the production of crystalline silicon solar cells with improved surface passivation.
JP2008135654A (en) * 2006-11-29 2008-06-12 Sanyo Electric Co Ltd Solar battery module
JP2008205137A (en) * 2007-02-19 2008-09-04 Sanyo Electric Co Ltd Solar cell and solar cell module
MX2009011954A (en) 2007-05-07 2010-01-29 Georgia Tech Res Inst Formation of high quality back contact with screen-printed local back surface field.
TWI449183B (en) 2007-06-13 2014-08-11 Schott Solar Ag Semiconductor component and method for producing a metal-semiconductor contact
US8253010B2 (en) 2007-11-23 2012-08-28 Big Sun Energy Technology Inc. Solar cell with two exposed surfaces of ARC layer disposed at different levels
US20100000602A1 (en) * 2007-12-11 2010-01-07 Evergreen Solar, Inc. Photovoltaic Cell with Efficient Finger and Tab Layout
CN101884113B (en) * 2007-12-11 2012-12-05 长青太阳能股份有限公司 Photovoltaic panel and cell with fine fingers and method of manufacture of the same
KR101631711B1 (en) * 2008-03-21 2016-06-17 신에쓰 가가꾸 고교 가부시끼가이샤 Phosphorus paste for diffusion and method for preparing solar cell by using the same
US20090286349A1 (en) * 2008-05-13 2009-11-19 Georgia Tech Research Corporation Solar cell spin-on based process for simultaneous diffusion and passivation
US8383450B2 (en) * 2008-09-30 2013-02-26 Stion Corporation Large scale chemical bath system and method for cadmium sulfide processing of thin film photovoltaic materials
US20110018103A1 (en) 2008-10-02 2011-01-27 Stion Corporation System and method for transferring substrates in large scale processing of cigs and/or cis devices
TW201025622A (en) * 2008-12-17 2010-07-01 Ind Tech Res Inst Electrode for solar cell and fabricating method thereof
JP5362379B2 (en) * 2009-02-06 2013-12-11 三洋電機株式会社 Method for measuring IV characteristics of solar cell
WO2010118906A2 (en) * 2009-04-16 2010-10-21 Applied Materials, Inc. Thin-film solar cell module
EP2242109A1 (en) * 2009-04-16 2010-10-20 Applied Materials, Inc. Thin-film solar cell module
US8507786B1 (en) 2009-06-27 2013-08-13 Stion Corporation Manufacturing method for patterning CIGS/CIS solar cells
US20110023952A1 (en) * 2009-07-30 2011-02-03 Evergreen Solar, Inc. Photovoltaic cell with semiconductor fingers
JP5375414B2 (en) * 2009-07-31 2013-12-25 信越化学工業株式会社 Solar cell and manufacturing method thereof
US8398772B1 (en) 2009-08-18 2013-03-19 Stion Corporation Method and structure for processing thin film PV cells with improved temperature uniformity
CN104780709B (en) * 2009-09-03 2021-07-27 应用材料公司 Printing method for printing electronic components and related control device
US9012766B2 (en) 2009-11-12 2015-04-21 Silevo, Inc. Aluminum grid as backside conductor on epitaxial silicon thin film solar cells
CN102479883A (en) * 2009-11-27 2012-05-30 无锡尚德太阳能电力有限公司 Method for forming positive electrode of solar cell
US8557688B2 (en) 2009-12-07 2013-10-15 National Yunlin University Of Science And Technology Method for fabricating P-type polycrystalline silicon-germanium structure
US20110132456A1 (en) * 2009-12-07 2011-06-09 Lin Jian-Yang Solar cell integrating monocrystalline silicon and silicon-germanium film
DE102009060014A1 (en) * 2009-12-21 2011-06-22 NB Technologies GmbH, 28359 Solar cell i.e. silicon solar cell, for directly converting radiation energy into electrical energy, has recess formed between electrically conductive lines and reducing cross-sectional area of another electrically conductive line
US8294027B2 (en) * 2010-01-19 2012-10-23 International Business Machines Corporation Efficiency in antireflective coating layers for solar cells
JP2011222585A (en) * 2010-04-05 2011-11-04 Mitsubishi Electric Corp Solar cell and method for manufacturing the same
US8524524B2 (en) * 2010-04-22 2013-09-03 General Electric Company Methods for forming back contact electrodes for cadmium telluride photovoltaic cells
US9214576B2 (en) 2010-06-09 2015-12-15 Solarcity Corporation Transparent conducting oxide for photovoltaic devices
JP5636760B2 (en) * 2010-06-21 2014-12-10 シャープ株式会社 Silicon wafer, semiconductor device, method for manufacturing silicon wafer, and method for manufacturing semiconductor device
KR101196793B1 (en) * 2010-08-25 2012-11-05 엘지전자 주식회사 Solar cell and method for manufacturing the same
FR2964250B1 (en) * 2010-08-30 2013-07-12 Commissariat Energie Atomique METHOD OF PRINTING CONDUCTORS ON A PHOTOVOLTAIC CELL
EP2612361B1 (en) 2010-08-30 2018-09-19 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Photovoltaic cell having discontinuous conductors
JP5612771B2 (en) * 2010-09-03 2014-10-22 テトラサン インコーポレイテッド Fine line metallization of photovoltaic devices by partial lift-off of optical coatings
US9773928B2 (en) 2010-09-10 2017-09-26 Tesla, Inc. Solar cell with electroplated metal grid
US8628997B2 (en) 2010-10-01 2014-01-14 Stion Corporation Method and device for cadmium-free solar cells
US9800053B2 (en) 2010-10-08 2017-10-24 Tesla, Inc. Solar panels with integrated cell-level MPPT devices
TWI431797B (en) 2010-10-19 2014-03-21 Ind Tech Res Inst Solar cell with selective emitter and fabrications thereof
TWI475707B (en) * 2010-11-05 2015-03-01 Inventec Solar Energy Corp The method for forming the contact pattern on the solar cell surface
TW201234626A (en) * 2011-01-13 2012-08-16 Intevac Inc Non-contacting bus bars for solar cells and methods of making non-contacting bus bars
JP5874011B2 (en) * 2011-01-28 2016-03-01 パナソニックIpマネジメント株式会社 Solar cell and solar cell module
CA2825141A1 (en) 2011-01-31 2012-08-09 Shin-Etsu Chemical Co., Ltd. Screen printing plate for solar cell and method for printing solar cell electrode
KR20120100698A (en) * 2011-03-02 2012-09-12 한국전자통신연구원 Conducting composition, silicon solar cell comprising the conducting composition, and its preparation for the same
CN102655030B (en) * 2011-03-02 2015-07-15 韩国电子通信研究院 Conductive composition, silicon solar cell including the same, and manufacturing method thereof
DE202011000518U1 (en) 2011-03-09 2012-01-18 Deutsche Cell Gmbh Electrically conductive contact structures on a substrate surface
EP2498296A1 (en) 2011-03-09 2012-09-12 Deutsche Solar AG Method for producing electrically conductive contact structures on a substrate surface
FR2973280B1 (en) 2011-03-29 2014-02-21 Commissariat Energie Atomique SERIGRAPHIC STENCIL FOR PRINTING ON A PHOTOVOLTAIC CELL
US9054256B2 (en) 2011-06-02 2015-06-09 Solarcity Corporation Tunneling-junction solar cell with copper grid for concentrated photovoltaic application
JP2013149815A (en) * 2012-01-20 2013-08-01 Shin Etsu Chem Co Ltd Solar battery and method of manufacturing the same
JP2015523707A (en) 2012-04-18 2015-08-13 ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー Printing method for solar cell contacts
CN102810600A (en) * 2012-08-16 2012-12-05 英利能源(中国)有限公司 Preparation method of crystalline silicon solar cell
US9461189B2 (en) 2012-10-04 2016-10-04 Solarcity Corporation Photovoltaic devices with electroplated metal grids
US9865754B2 (en) 2012-10-10 2018-01-09 Tesla, Inc. Hole collectors for silicon photovoltaic cells
US9281436B2 (en) 2012-12-28 2016-03-08 Solarcity Corporation Radio-frequency sputtering system with rotary target for fabricating solar cells
US10074755B2 (en) 2013-01-11 2018-09-11 Tesla, Inc. High efficiency solar panel
US9219174B2 (en) 2013-01-11 2015-12-22 Solarcity Corporation Module fabrication of solar cells with low resistivity electrodes
US9412884B2 (en) 2013-01-11 2016-08-09 Solarcity Corporation Module fabrication of solar cells with low resistivity electrodes
US9624595B2 (en) 2013-05-24 2017-04-18 Solarcity Corporation Electroplating apparatus with improved throughput
US20150270421A1 (en) * 2014-03-20 2015-09-24 Varian Semiconductor Equipment Associates, Inc. Advanced Back Contact Solar Cells
US20150333197A1 (en) * 2014-05-13 2015-11-19 E I Du Pont De Nemours And Company Method of manufacturing a solar cell electrode
US10309012B2 (en) 2014-07-03 2019-06-04 Tesla, Inc. Wafer carrier for reducing contamination from carbon particles and outgassing
JP2015062251A (en) * 2014-11-28 2015-04-02 信越化学工業株式会社 Solar cell and method for manufacturing the same
US9899546B2 (en) 2014-12-05 2018-02-20 Tesla, Inc. Photovoltaic cells with electrodes adapted to house conductive paste
US9947822B2 (en) 2015-02-02 2018-04-17 Tesla, Inc. Bifacial photovoltaic module using heterojunction solar cells
US11396610B2 (en) * 2015-07-03 2022-07-26 National Research Council Of Canada Method of printing ultranarrow line
US9761744B2 (en) 2015-10-22 2017-09-12 Tesla, Inc. System and method for manufacturing photovoltaic structures with a metal seed layer
US9842956B2 (en) 2015-12-21 2017-12-12 Tesla, Inc. System and method for mass-production of high-efficiency photovoltaic structures
US9496429B1 (en) 2015-12-30 2016-11-15 Solarcity Corporation System and method for tin plating metal electrodes
US10115838B2 (en) 2016-04-19 2018-10-30 Tesla, Inc. Photovoltaic structures with interlocking busbars
US10672919B2 (en) 2017-09-19 2020-06-02 Tesla, Inc. Moisture-resistant solar cells for solar roof tiles
US11190128B2 (en) 2018-02-27 2021-11-30 Tesla, Inc. Parallel-connected solar roof tile modules

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922774A (en) * 1972-05-01 1975-12-02 Communications Satellite Corp Tantalum pentoxide anti-reflective coating
EP0002550A1 (en) * 1977-12-13 1979-06-27 R.T.C. LA RADIOTECHNIQUE-COMPELEC Société anonyme dite: Process for making contacts on the surface of a semiconductor body by means of serigraphy, and device made by this process
US4240842A (en) * 1979-03-28 1980-12-23 Solarex Corporation Solar cell having contacts and antireflective coating
US4331703A (en) * 1979-03-28 1982-05-25 Solarex Corporation Method of forming solar cell having contacts and antireflective coating
US4602120A (en) * 1983-11-25 1986-07-22 Atlantic Richfield Company Solar cell manufacture
JPS62156881A (en) * 1985-12-28 1987-07-11 Sharp Corp Solar battery device
WO1992022928A1 (en) * 1991-06-11 1992-12-23 Mobil Solar Energy Corporation Improved solar cell and method of making same
EP0729189A1 (en) * 1995-02-21 1996-08-28 Interuniversitair Micro-Elektronica Centrum Vzw Method of preparing solar cells and products obtained thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922774A (en) * 1972-05-01 1975-12-02 Communications Satellite Corp Tantalum pentoxide anti-reflective coating
EP0002550A1 (en) * 1977-12-13 1979-06-27 R.T.C. LA RADIOTECHNIQUE-COMPELEC Société anonyme dite: Process for making contacts on the surface of a semiconductor body by means of serigraphy, and device made by this process
US4240842A (en) * 1979-03-28 1980-12-23 Solarex Corporation Solar cell having contacts and antireflective coating
US4331703A (en) * 1979-03-28 1982-05-25 Solarex Corporation Method of forming solar cell having contacts and antireflective coating
US4602120A (en) * 1983-11-25 1986-07-22 Atlantic Richfield Company Solar cell manufacture
JPS62156881A (en) * 1985-12-28 1987-07-11 Sharp Corp Solar battery device
WO1992022928A1 (en) * 1991-06-11 1992-12-23 Mobil Solar Energy Corporation Improved solar cell and method of making same
US5279682A (en) * 1991-06-11 1994-01-18 Mobil Solar Energy Corporation Solar cell and method of making same
EP0729189A1 (en) * 1995-02-21 1996-08-28 Interuniversitair Micro-Elektronica Centrum Vzw Method of preparing solar cells and products obtained thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
I.R. Lawrence, Conference Record, 14th IEEE PVSC (1980), pp. 541-544.*
K.F. Teng et al., Conference Record, 19th IEEE PVSC (1987), pp. 1430-1434.*
Nakatani et al., "A New Proces for High Efficiency Silicon Solar Cells," 17th IEEE Photovoltaic Specialists Conference, pp. 1352-1356, May 1, 1984.*
Nunoi et al., "High Performance BSF Silicon Solar Cell With Fire Through Contacts Printed on AR Coating," 14th IEEE Photovoltaic Specialists Conference, pp. 805-810, Jan. 7, 1980. *
Sabo et al., "Silver Thick Film Metallization for Photovoltaics Fired at 300° C", Proceedings 1985 International Symposium on Microelectronics, pp. 59-66, Nov. 11, 1985.*

Cited By (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8333820B2 (en) 1997-02-24 2012-12-18 Cabot Corporation Forming conductive features of electronic devices
US20070117271A1 (en) * 2001-10-05 2007-05-24 Cabot Corporation Methods and compositions for the formation of recessed electrical features on a substrate
US20080093422A1 (en) * 2001-10-05 2008-04-24 Cabot Corporation Low viscosity precursor compositions and methods for the deposition of conductive electronic features
US20070122932A1 (en) * 2001-10-05 2007-05-31 Cabot Corporation Methods and compositions for the formation of recessed electrical features on a substrate
US20060102228A1 (en) * 2004-11-12 2006-05-18 Ferro Corporation Method of making solar cell contacts
US8889041B2 (en) 2004-11-12 2014-11-18 Heraeus Precious Metals North America Conshohocken Llc Method of making solar cell contacts
US8668848B2 (en) 2005-01-14 2014-03-11 Cabot Corporation Metal nanoparticle compositions for reflective features
US8597397B2 (en) 2005-01-14 2013-12-03 Cabot Corporation Production of metal nanoparticles
US20100269635A1 (en) * 2005-01-14 2010-10-28 Cabot Corporation Production of metal nanoparticles
US8334464B2 (en) 2005-01-14 2012-12-18 Cabot Corporation Optimized multi-layer printing of electronics and displays
US20100269634A1 (en) * 2005-01-14 2010-10-28 Cabot Corporation Production of metal nanoparticles
US7906722B2 (en) 2005-04-19 2011-03-15 Palo Alto Research Center Incorporated Concentrating solar collector with solid optical element
US20060231133A1 (en) * 2005-04-19 2006-10-19 Palo Alto Research Center Incorporated Concentrating solar collector with solid optical element
US9105768B2 (en) 2005-06-03 2015-08-11 Heraeus Precious Metals North America Conshohocken Llc Lead free solar cell contacts
US8093491B2 (en) 2005-06-03 2012-01-10 Ferro Corporation Lead free solar cell contacts
US20060289055A1 (en) * 2005-06-03 2006-12-28 Ferro Corporation Lead free solar cell contacts
US20070107773A1 (en) * 2005-11-17 2007-05-17 Palo Alto Research Center Incorporated Bifacial cell with extruded gridline metallization
US7799371B2 (en) 2005-11-17 2010-09-21 Palo Alto Research Center Incorporated Extruding/dispensing multiple materials to form high-aspect ratio extruded structures
US7765949B2 (en) 2005-11-17 2010-08-03 Palo Alto Research Center Incorporated Extrusion/dispensing systems and methods
US20070110836A1 (en) * 2005-11-17 2007-05-17 Palo Alto Research Center Incorporated Extrusion/dispensing systems and methods
US8399283B2 (en) 2005-11-17 2013-03-19 Solarworld Innovations Gmbh Bifacial cell with extruded gridline metallization
US20100221375A1 (en) * 2005-11-17 2010-09-02 Palo Alto Research Center Incorporated Extrusion/Dispensing Systems And Methods
US20090239332A1 (en) * 2005-11-17 2009-09-24 Palo Alto Research Center Incorporated Bifacial Cell With Extruded Gridline Metallization
US20070108229A1 (en) * 2005-11-17 2007-05-17 Palo Alto Research Center Incorporated Extrusion/dispensing systems and methods
US20090314344A1 (en) * 2006-01-20 2009-12-24 Palo Alto Research Center Incorporated Solar Cell Production Using Non-Contact Patterning And Direct-Write Metallization
EP1833099A3 (en) * 2006-01-20 2009-12-02 Palo Alto Research Center Incorporated Solar cell production using non-contact patterning and direct-write metallization
WO2007117153A3 (en) * 2006-04-12 2008-08-07 Renewable Energy Corp Asa Solar cells and methods for manufacturing same
US20090283141A1 (en) * 2006-04-12 2009-11-19 Renewable Energy Corporation Asa Solar Cells and Methods for Manufacturing Same
WO2007117153A2 (en) * 2006-04-12 2007-10-18 Renewable Energy Corporation Asa Solar cells and methods for manufacturing same
US20070256724A1 (en) * 2006-05-05 2007-11-08 Palo Alto Research Center Incorporated Passively Cooled Solar Concentrating Photovoltaic Device
US7851693B2 (en) 2006-05-05 2010-12-14 Palo Alto Research Center Incorporated Passively cooled solar concentrating photovoltaic device
US8314326B2 (en) 2006-05-15 2012-11-20 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
US20070264488A1 (en) * 2006-05-15 2007-11-15 Stion Corporation Method and structure for thin film photovoltaic materials using semiconductor materials
US9105776B2 (en) 2006-05-15 2015-08-11 Stion Corporation Method and structure for thin film photovoltaic materials using semiconductor materials
US8105643B2 (en) 2006-05-31 2012-01-31 Cabot Corporation Process for printing features with smaller dimensions
US20070277685A1 (en) * 2006-05-31 2007-12-06 Cabot Corporation Process for printing features with smaller dimensions
US7780812B2 (en) 2006-11-01 2010-08-24 Palo Alto Research Center Incorporated Extrusion head with planarized edge surface
US8226391B2 (en) 2006-11-01 2012-07-24 Solarworld Innovations Gmbh Micro-extrusion printhead nozzle with tapered cross-section
US7922471B2 (en) 2006-11-01 2011-04-12 Palo Alto Research Center Incorporated Extruded structure with equilibrium shape
US20080099952A1 (en) * 2006-11-01 2008-05-01 Palo Alto Research Center Incorporated Extrusion Head With Planarized Edge Surface
US8322025B2 (en) 2006-11-01 2012-12-04 Solarworld Innovations Gmbh Apparatus for forming a plurality of high-aspect ratio gridline structures
US20080099953A1 (en) * 2006-11-01 2008-05-01 Palo Alto Research Center Incorporated Extruded Structure With Equilibrium Shape
US20110111076A1 (en) * 2006-12-12 2011-05-12 Palo Alto Research Center Incorporated Solar Cell Fabrication Using Extruded Dopant-Bearing Materials
US8168545B2 (en) 2006-12-12 2012-05-01 Solarworld Innovations Gmbh Solar cell fabrication using extruded dopant-bearing materials
US20100003812A1 (en) * 2006-12-12 2010-01-07 Palo Alto Research Center Incorporated Solar Cell Fabrication Using Extrusion Mask
US7928015B2 (en) 2006-12-12 2011-04-19 Palo Alto Research Center Incorporated Solar cell fabrication using extruded dopant-bearing materials
US7807544B2 (en) 2006-12-12 2010-10-05 Palo Alto Research Center Incorporated Solar cell fabrication using extrusion mask
US20080186593A1 (en) * 2007-02-02 2008-08-07 Sol Focus, Inc. Metal trace fabrication for optical element
US20090025784A1 (en) * 2007-02-02 2009-01-29 Sol Focus, Inc. Thermal spray for solar concentrator fabrication
US20100163101A1 (en) * 2007-04-25 2010-07-01 Ferro Corporation Thick Film Conductor Formulations Comprising Silver And Nickel Or Silver And Nickel Alloys And Solar Cells Made Therefrom
US7954449B2 (en) 2007-05-08 2011-06-07 Palo Alto Research Center Incorporated Wiring-free, plumbing-free, cooled, vacuum chuck
US20080300918A1 (en) * 2007-05-29 2008-12-04 Commercenet Consortium, Inc. System and method for facilitating hospital scheduling and support
US20080318757A1 (en) * 2007-06-19 2008-12-25 Cabot Corporation Nanoglass and flame spray processes for producing nanoglass
US8058195B2 (en) 2007-06-19 2011-11-15 Cabot Corporation Nanoglass and flame spray processes for producing nanoglass
US8871305B2 (en) 2007-06-29 2014-10-28 Stion Corporation Methods for infusing one or more materials into nano-voids of nanoporous or nanostructured materials
US20100173446A1 (en) * 2007-08-31 2010-07-08 Ferro Corporation Layered Contact Structure For Solar Cells
US8236598B2 (en) 2007-08-31 2012-08-07 Ferro Corporation Layered contact structure for solar cells
US8287942B1 (en) 2007-09-28 2012-10-16 Stion Corporation Method for manufacture of semiconductor bearing thin film material
US8759671B2 (en) 2007-09-28 2014-06-24 Stion Corporation Thin film metal oxide bearing semiconductor material for single junction solar cell devices
US20090250105A1 (en) * 2007-09-28 2009-10-08 Stion Corporation Thin film metal oxide bearing semiconductor material for single junction solar cell devices
US8501507B2 (en) 2007-11-14 2013-08-06 Stion Corporation Method for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
US8642361B2 (en) 2007-11-14 2014-02-04 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
US8512528B2 (en) 2007-11-14 2013-08-20 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using single-chamber configuration
US7888168B2 (en) 2007-11-19 2011-02-15 Applied Materials, Inc. Solar cell contact formation process using a patterned etchant material
US20090142880A1 (en) * 2007-11-19 2009-06-04 Weidman Timothy W Solar Cell Contact Formation Process Using A Patterned Etchant Material
US20110104850A1 (en) * 2007-11-19 2011-05-05 Weidman Timothy W Solar cell contact formation process using a patterned etchant material
US20090148978A1 (en) * 2007-12-07 2009-06-11 Cabot Corporation Processes for forming photovoltaic conductive features from multiple inks
US8372472B2 (en) 2007-12-07 2013-02-12 Cabot Corporation Forming photovoltaic conductive features from multiple inks
US8101231B2 (en) 2007-12-07 2012-01-24 Cabot Corporation Processes for forming photovoltaic conductive features from multiple inks
US8772078B1 (en) 2008-03-03 2014-07-08 Stion Corporation Method and system for laser separation for exclusion region of multi-junction photovoltaic materials
US20110020564A1 (en) * 2008-06-11 2011-01-27 Stion Corporation Processing method for cleaning sulfur entities of contact regions
US8642138B2 (en) 2008-06-11 2014-02-04 Stion Corporation Processing method for cleaning sulfur entities of contact regions
US20090320920A1 (en) * 2008-06-25 2009-12-31 Stion Corporation High efficiency photovoltaic cell and manufacturing method free of metal disulfide barrier material
US8617917B2 (en) 2008-06-25 2013-12-31 Stion Corporation Consumable adhesive layer for thin film photovoltaic material
US9087943B2 (en) 2008-06-25 2015-07-21 Stion Corporation High efficiency photovoltaic cell and manufacturing method free of metal disulfide barrier material
US8569100B2 (en) * 2008-06-26 2013-10-29 Mitsubishi Electric Corporation Solar cell and manufacturing method thereof
US20110143486A1 (en) * 2008-06-26 2011-06-16 Mitsubishi Electric Corporation Solar Cell and Manufacturing Method Thereof
US20100012179A1 (en) * 2008-07-17 2010-01-21 Chien-Li Cheng Solar cell with high photon utilization and method of manufacturing the same
US9640708B2 (en) * 2008-09-05 2017-05-02 Lg Chem, Ltd. Paste and manufacturing method of solar cell using the same
US20110159633A1 (en) * 2008-09-05 2011-06-30 Min-Seo Kim Paste and manufacturing method of solar cell using the same
US20140335647A1 (en) * 2008-09-05 2014-11-13 Lg Chem, Ltd. Paste and manufacturing method of solar cell using the same
US20100059109A1 (en) * 2008-09-09 2010-03-11 Palo Alto Research Center Incorporated Interdigitated Back Contact Silicon Solar Cells With Laser Ablated Grooves
US20110070676A1 (en) * 2008-09-09 2011-03-24 Palo Alto Research Center Incorporated Interdigitated Back Contact Silicon Solar Cells Fabrication Using Diffusion Barriers
US9054237B2 (en) 2008-09-09 2015-06-09 Palo Alto Research Center Incorporated Interdigitated back contact silicon solar cells fabrication using diffusion barriers
US8426724B2 (en) 2008-09-09 2013-04-23 Palo Alto Research Center Incorporated Interdigitated back contact silicon solar cells with separating grooves
US7999175B2 (en) 2008-09-09 2011-08-16 Palo Alto Research Center Incorporated Interdigitated back contact silicon solar cells with laser ablated grooves
US20110070681A1 (en) * 2008-09-09 2011-03-24 Palo Alto Research Center Incorporated Interdigitated Back Contact Silicon Solar Cells With Separating Grooves
US20110071659A1 (en) * 2008-09-10 2011-03-24 Stion Corporation Application Specific Solar Cell and Method for Manufacture Using Thin Film Photovoltaic Materials
US7855089B2 (en) * 2008-09-10 2010-12-21 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
US20100062560A1 (en) * 2008-09-10 2010-03-11 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
US8941132B2 (en) 2008-09-10 2015-01-27 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
US8476104B1 (en) 2008-09-29 2013-07-02 Stion Corporation Sodium species surface treatment of thin film photovoltaic cell and manufacturing method
US8258000B2 (en) 2008-09-29 2012-09-04 Stion Corporation Bulk sodium species treatment of thin film photovoltaic cell and manufacturing method
US8394662B1 (en) 2008-09-29 2013-03-12 Stion Corporation Chloride species surface treatment of thin film photovoltaic cell and manufacturing method
US8236597B1 (en) 2008-09-29 2012-08-07 Stion Corporation Bulk metal species treatment of thin film photovoltaic cell and manufacturing method
US8691618B2 (en) 2008-09-29 2014-04-08 Stion Corporation Metal species surface treatment of thin film photovoltaic cell and manufacturing method
US8198122B2 (en) 2008-09-29 2012-06-12 Stion Corporation Bulk chloride species treatment of thin film photovoltaic cell and manufacturing method
US8501521B1 (en) 2008-09-29 2013-08-06 Stion Corporation Copper species surface treatment of thin film photovoltaic cell and manufacturing method
US8435822B2 (en) 2008-09-30 2013-05-07 Stion Corporation Patterning electrode materials free from berm structures for thin film photovoltaic cells
US8084292B2 (en) 2008-09-30 2011-12-27 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US20110212565A1 (en) * 2008-09-30 2011-09-01 Stion Corporation Humidity Control and Method for Thin Film Photovoltaic Materials
US20110070686A1 (en) * 2008-09-30 2011-03-24 Stion Corporation Thermal management and method for large scale processing of cis and/or cigs based thin films overlying glass substrates
US20110070690A1 (en) * 2008-09-30 2011-03-24 Stion Corporation Thermal management and method for large scale processing of cis and/or cigs based thin films overlying glass substrates
US20110070687A1 (en) * 2008-09-30 2011-03-24 Stion Corporation Thermal management and method for large scale processing of cis and/or cigs based thin films overlying glass substrates
US8088640B2 (en) 2008-09-30 2012-01-03 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8084291B2 (en) 2008-09-30 2011-12-27 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US20110073181A1 (en) * 2008-09-30 2011-03-31 Stion Corporation Patterning electrode materials free from berm structures for thin film photovoltaic cells
US8673675B2 (en) 2008-09-30 2014-03-18 Stion Corporation Humidity control and method for thin film photovoltaic materials
US8318531B2 (en) 2008-09-30 2012-11-27 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US20110070685A1 (en) * 2008-09-30 2011-03-24 Stion Corporation Thermal management and method for large scale processing of cis and/or cigs based thin films overlying glass substrates
US8076176B2 (en) 2008-09-30 2011-12-13 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8071421B2 (en) 2008-09-30 2011-12-06 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8067263B2 (en) 2008-09-30 2011-11-29 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US20110070689A1 (en) * 2008-09-30 2011-03-24 Stion Corporation Thermal management and method for large scale processing of cis and/or cigs based thin films overlying glass substrates
US8425739B1 (en) 2008-09-30 2013-04-23 Stion Corporation In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials
US8741689B2 (en) 2008-10-01 2014-06-03 Stion Corporation Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials
US20110020980A1 (en) * 2008-10-01 2011-01-27 Stion Corporation Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials
US8435826B1 (en) 2008-10-06 2013-05-07 Stion Corporation Bulk sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8193028B2 (en) 2008-10-06 2012-06-05 Stion Corporation Sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8168463B2 (en) 2008-10-17 2012-05-01 Stion Corporation Zinc oxide film method and structure for CIGS cell
US20100117254A1 (en) * 2008-11-07 2010-05-13 Palo Alto Research Center Incorporated Micro-Extrusion System With Airjet Assisted Bead Deflection
US8117983B2 (en) 2008-11-07 2012-02-21 Solarworld Innovations Gmbh Directional extruded bead control
US20100221435A1 (en) * 2008-11-07 2010-09-02 Palo Alto Research Center Incorporated Micro-Extrusion System With Airjet Assisted Bead Deflection
US20100116199A1 (en) * 2008-11-07 2010-05-13 Palo Alto Research Center Incorporated Directional Extruded Bead Control
US20100118081A1 (en) * 2008-11-07 2010-05-13 Palo Alto Research Center Incorporated Dead Volume Removal From An Extrusion Printhead
US9150966B2 (en) 2008-11-14 2015-10-06 Palo Alto Research Center Incorporated Solar cell metallization using inline electroless plating
US20100124619A1 (en) * 2008-11-14 2010-05-20 Palo Alto Research Center Incorporated Solar cell metallization using inline electroless plating
US20100122726A1 (en) * 2008-11-20 2010-05-20 Stion Corporation Method and structure for thin film photovoltaic cell using similar material junction
US8344243B2 (en) 2008-11-20 2013-01-01 Stion Corporation Method and structure for thin film photovoltaic cell using similar material junction
US8080729B2 (en) 2008-11-24 2011-12-20 Palo Alto Research Center Incorporated Melt planarization of solar cell bus bars
US20100126574A1 (en) * 2008-11-24 2010-05-27 Palo Alto Research Center Incorporated Melt Planarization Of Solar Cell Bus Bars
US20100130014A1 (en) * 2008-11-26 2010-05-27 Palo Alto Research Center Incorporated Texturing multicrystalline silicon
US8960120B2 (en) 2008-12-09 2015-02-24 Palo Alto Research Center Incorporated Micro-extrusion printhead with nozzle valves
US20100139754A1 (en) * 2008-12-09 2010-06-10 Palo Alto Research Center Incorporated Solar Cell With Co-Planar Backside Metallization
US20100143581A1 (en) * 2008-12-09 2010-06-10 Palo Alto Research Center Incorporated Micro-Extrusion Printhead With Nozzle Valves
US20100139756A1 (en) * 2008-12-10 2010-06-10 Palo Alto Research Center Incorporated Simultaneously Writing Bus Bars And Gridlines For Solar Cell
US20100206302A1 (en) * 2009-02-18 2010-08-19 Palo Alto Research Center Incorporated Rotational Trough Reflector Array For Solar-Electricity Generation
US20100206356A1 (en) * 2009-02-18 2010-08-19 Palo Alto Research Center Incorporated Rotational Trough Reflector Array For Solar-Electricity Generation
US8105863B2 (en) * 2009-07-13 2012-01-31 Wuxi Suntech Power Co., Ltd. Method for etching a see-through thin film solar module
US20110008928A1 (en) * 2009-07-13 2011-01-13 Wuxi Suntech Power Co., Ltd. Method for etching a see-through thin film solar module
US8809096B1 (en) 2009-10-22 2014-08-19 Stion Corporation Bell jar extraction tool method and apparatus for thin film photovoltaic materials
US8420927B2 (en) * 2009-10-26 2013-04-16 Lg Electronics Inc. Solar cell, method of manufacturing the same, and solar cell module
US20110094567A1 (en) * 2009-10-26 2011-04-28 Younghyun Lee Solar cell, method of manufacturing the same, and solar cell module
US20110209754A1 (en) * 2009-12-29 2011-09-01 Auria Solar Co., Ltd. Solar cell structure and manufacturing method thereof
US20110088776A1 (en) * 2009-12-29 2011-04-21 Auria Solar Co., Ltd. Solar cell structure and manufacturing method thereof
US8859880B2 (en) 2010-01-22 2014-10-14 Stion Corporation Method and structure for tiling industrial thin-film solar devices
US8263494B2 (en) 2010-01-25 2012-09-11 Stion Corporation Method for improved patterning accuracy for thin film photovoltaic panels
WO2011095968A3 (en) * 2010-02-03 2012-10-11 Xjet Ltd. Fabrication of contacts for semiconductor substrates
US20110216401A1 (en) * 2010-03-03 2011-09-08 Palo Alto Research Center Incorporated Scanning System With Orbiting Objective
US9096930B2 (en) 2010-03-29 2015-08-04 Stion Corporation Apparatus for manufacturing thin film photovoltaic devices
US8383014B2 (en) 2010-06-15 2013-02-26 Cabot Corporation Metal nanoparticle compositions
US8461061B2 (en) 2010-07-23 2013-06-11 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment
US8998606B2 (en) 2011-01-14 2015-04-07 Stion Corporation Apparatus and method utilizing forced convection for uniform thermal treatment of thin film devices
US9084969B1 (en) * 2011-01-14 2015-07-21 Stion Corporation Method and system for recycling processing gas for selenization of thin film photovoltaic materials
US8728200B1 (en) 2011-01-14 2014-05-20 Stion Corporation Method and system for recycling processing gas for selenization of thin film photovoltaic materials
US8962424B2 (en) 2011-03-03 2015-02-24 Palo Alto Research Center Incorporated N-type silicon solar cell with contact/protection structures
US8846431B2 (en) 2011-03-03 2014-09-30 Palo Alto Research Center Incorporated N-type silicon solar cell with contact/protection structures
US8436445B2 (en) 2011-08-15 2013-05-07 Stion Corporation Method of manufacture of sodium doped CIGS/CIGSS absorber layers for high efficiency photovoltaic devices
US8940998B2 (en) 2013-03-13 2015-01-27 Gtat Corporation Free-standing metallic article for semiconductors
US8936709B2 (en) 2013-03-13 2015-01-20 Gtat Corporation Adaptable free-standing metallic article for semiconductors
US8916038B2 (en) * 2013-03-13 2014-12-23 Gtat Corporation Free-standing metallic article for semiconductors

Also Published As

Publication number Publication date
JP3803133B2 (en) 2006-08-02
US5726065A (en) 1998-03-10
AU702505B2 (en) 1999-02-25
AU4215496A (en) 1996-08-29
EP0729189A1 (en) 1996-08-28
JPH08335711A (en) 1996-12-17

Similar Documents

Publication Publication Date Title
USRE37512E1 (en) Method of preparing solar cell front contacts
US7144751B2 (en) Back-contact solar cells and methods for fabrication
US7998863B2 (en) High efficiency solar cell fabrication
US7883343B1 (en) Method of manufacturing solar cell
US4104084A (en) Solar cells having integral collector grids
US8293568B2 (en) Crystalline silicon PV cell with selective emitter produced with low temperature precision etch back and passivation process
EP0156366A2 (en) Buried contact solar cell
EP2460178B1 (en) Surface treatment of silicon
KR20100136462A (en) Method for the production of monocrystalline n-silicon solar cells, and solar cell produced according to such a method
JP2007235174A (en) Photovoltaic cell having selectively diffused region
JP2006156646A (en) Solar cell manufacturing method
JP2983746B2 (en) Solar cell manufacturing method
JP2000049368A (en) Manufacture of solar battery element
JPH0536998A (en) Formation of electrode
JPH03101170A (en) Manufacture of solar cell
JPH05326989A (en) Manufacture of solar cell
JP2835415B2 (en) Photoelectric conversion element
CN115132858B (en) Solar cell production method and solar cell
US20150207019A1 (en) Method for Fabricating Crystalline Silicon Solar Cell Having Passivation Layer and Local Rear Contacts
WO2009150741A1 (en) Photovoltaic device manufacturing method
JP3007734B2 (en) Solar cell manufacturing method
JPH04348569A (en) Manufacture of solar cell

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12