JPH03250671A - Semiconductor photoelectric converting device and its manufacture - Google Patents

Semiconductor photoelectric converting device and its manufacture

Info

Publication number
JPH03250671A
JPH03250671A JP2088578A JP8857890A JPH03250671A JP H03250671 A JPH03250671 A JP H03250671A JP 2088578 A JP2088578 A JP 2088578A JP 8857890 A JP8857890 A JP 8857890A JP H03250671 A JPH03250671 A JP H03250671A
Authority
JP
Japan
Prior art keywords
film
electrode
substrate
opening
surface electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2088578A
Other languages
Japanese (ja)
Inventor
Satoshi Tanaka
聡 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JPH03250671A publication Critical patent/JPH03250671A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To make contact resistivity of an electrode extremely low by providing a laser-processed opening of a specific width through an anti-reflection film formed on a light receiving face and providing a surface electrode made of metal so that it is in contact with a semiconductor layer inside the opening. CONSTITUTION:A fine line opening groove 1 of width of 100mum or less is formed on oxide films 2, 3 on the surface of a substrate 10 by means of laser beam scanning. An Ni-plated film 6 is formed by using electroless plating solution on the entire surface at the light receiving side of the substrate 10 formed with the opening groove 1. The entire substrate 10 after the treatment is put into acetone and subjected to ultrasonic vibration so as to dissolve and remove a resist film 4. After the Ni-plated film 6 on the resist film 4 is also removed by lift-off, it is subjected to heat treatment in a nitrogen atmosphere to have the Ni-plated film 6 annealed and Ni silicide formed on an interface with the substrate 10. Then electroless Cu plating solution is used to form a Cu-plated film 7 selectively only on an electrode to have a surface electrode completed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、曲線因子(FF)及び変換効率Cη)の大き
な半導体光電変換装置及びその製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a semiconductor photoelectric conversion device with a large fill factor (FF) and conversion efficiency Cη) and a method for manufacturing the same.

〈従来の技術〉 従来の太陽電池の製造方法は次のようなものである。す
なわち、第4図の構造図に示すように、P型シリコン基
板10上にPOCノ、によりN+型型数散層11形成し
、その上にパッシベーション膜としての5i02膜の酸
化膜゛3を形成し、さらにその上に反射防止膜としての
TiO2膜2を形成する。そして裏面のN 拡散層を除
去し、アルミペーストの印刷焼成によJBSFCP”)
層12を形成する。次に、TiO2膜2の表面に焼成貫
通型の金属ペースト14を印刷し、この金属ペーストを
焼成して、Ti0z膜2およびSin。
<Prior Art> A conventional method for manufacturing a solar cell is as follows. That is, as shown in the structural diagram of FIG. 4, an N+ type scattering layer 11 is formed by POC on a P type silicon substrate 10, and an oxide film 3 of 5i02 film is formed thereon as a passivation film. Further, a TiO2 film 2 as an antireflection film is formed thereon. Then, remove the N diffusion layer on the back side and print and bake the aluminum paste to create JBSFCP”)
Form layer 12. Next, a fired penetrating metal paste 14 is printed on the surface of the TiO2 film 2, and this metal paste is fired to form the Ti0z film 2 and the Sin.

膜8を貫通してN + g拡散層11に接触する受光面
側の電極を形成する。このようなヌクリーン印刷法によ
る電極形成については、例えば辻 高輝:太陽電池、パ
ワー社、昭和58年7月28日発行の75頁に記載され
ている。
An electrode on the light-receiving surface side that penetrates the film 8 and contacts the N + g diffusion layer 11 is formed. Formation of electrodes by such Nuclean printing method is described, for example, in Takateru Tsuji: Solar Cells, Power Publishing, p. 75, published July 28, 1980.

〈発明が解決しようとする課題〉 太陽電池や照度計等の半導体光電変換装置の変換効率を
向上させる手段の一つとして、その受光面に形成した表
面電極の接触面積の低減があげられる。すなわち、半導
体光電変換装置の拡散層の表面からなる受光面には、表
面電極による非受光部分ができる。非受光部分以外の表
面電極のない受光部分の表面ば5IO2等の酸化物の膜
で覆うことで、この表面部での少数キャリアの再結合率
を低下させるパシベーション処理を施すことで光電変換
効率の低下を防いでいる。一方、表面電極のある非受光
部分の電極と基板表面の拡散層との接触部分では、少数
キャリアの再結合する率が極めて高くなり、充電変換効
率を低下させていた。
<Problems to be Solved by the Invention> One way to improve the conversion efficiency of semiconductor photoelectric conversion devices such as solar cells and illumination meters is to reduce the contact area of the surface electrode formed on the light receiving surface. That is, on the light-receiving surface of the semiconductor photoelectric conversion device, which is the surface of the diffusion layer, a non-light-receiving portion is formed due to the surface electrode. The surface of the light-receiving part, which has no surface electrode other than the non-light-receiving part, is covered with a film of oxide such as 5IO2, and a passivation treatment is applied to reduce the recombination rate of minority carriers on this surface, thereby increasing the photoelectric conversion efficiency. Preventing decline. On the other hand, at the contact portion between the non-light-receiving portion of the surface electrode and the diffusion layer on the surface of the substrate, the recombination rate of minority carriers was extremely high, reducing the charge conversion efficiency.

従って、この電極の接触部分の面積を可能な限シ小さく
し、相対的にパシベーションした受光面積を増大させ、
かつ、表面電極による半導体表面への機械的悪影響を小
さくすることが必要となる。
Therefore, the area of the contact portion of this electrode is made as small as possible, and the relatively passivated light-receiving area is increased.
In addition, it is necessary to reduce the mechanical adverse effect of the surface electrode on the semiconductor surface.

また、受光面への入射光量を増やすために、表面電極の
受光面に対する占有率を小さくすることがあげられる。
Furthermore, in order to increase the amount of light incident on the light-receiving surface, it is possible to reduce the occupation rate of the surface electrode with respect to the light-receiving surface.

しかしながら一般に、金属ペーストのスクリーン印刷に
よる印刷焼成電極を表面電極にした半導体光電変換装置
では、使用されている技術による金属ペーストの粘度、
接着性等のペーストの特性と、スクリーンマスクのパタ
ーン精度から、電極の占有率を3〜4チに下げるのが限
界であ−た。
However, in general, in semiconductor photoelectric conversion devices in which surface electrodes are printed and fired electrodes by screen printing of a metal paste, the viscosity of the metal paste depends on the technology used.
Due to the characteristics of the paste such as adhesiveness and the pattern accuracy of the screen mask, the limit was to reduce the electrode occupancy to 3 to 4 inches.

従って、接触面積についても、3〜4%に下げるのが限
界であった。
Therefore, the limit was to reduce the contact area to 3 to 4%.

そこで、本出願人は半導体光電変換装置の表面に形成さ
れた反射防止膜の表面に、短波長レーザ光を照射して微
細なドツトを形成し、このドツトの部分を含む電極を形
成する予定位置に、電極材料を印刷し焼成して表面電極
を形成する方法を提案した。(平成元年5月12日出願
の特願平l−1198881’−太陽電池の製造方法」
)。
Therefore, the present applicant irradiated the surface of the anti-reflection film formed on the surface of the semiconductor photoelectric conversion device with short wavelength laser light to form fine dots, and determined the positions where electrodes were to be formed, including the portions of the dots. proposed a method of printing and firing electrode materials to form surface electrodes. (Patent application 1198881' filed on May 12, 1989 - Method for manufacturing solar cells)
).

上記の電極形成方法によれば、反射防止膜のレーザ光に
よる非加工の表面部は、金属ペーストの焼成時に、その
貫通性に対してバリアの作用をさせ電極の接触面積を減
少させて、パシベーションの効果を一層向上させるもの
である。このレーザ加工による金属ペーストの印刷、焼
成による電極製造工程を概略断面図で示したのが第3図
である。
According to the above electrode forming method, the surface portion of the anti-reflection film that has not been processed by the laser beam acts as a barrier against the penetration of the metal paste during firing, reducing the contact area of the electrode and passivating it. This further improves the effectiveness of FIG. 3 is a schematic cross-sectional view showing the electrode manufacturing process by printing and firing the metal paste by laser processing.

この第3図(alは、p型シリコン基板10は裏面にp
+拡散層12を形成し、そのほぼ全面にA)等により裏
面電極18を形成している。基板10の表面には、n十
拡散層11を形成した上に5402 などのパシベーシ
ョン酸化膜3と反射防止膜を積層して被覆している。こ
の反射防止膜はTiO2膜2とSnO,膜9の順に積層
する必要がある。この反射防止膜の表面から短波長レー
ザのスポット光を照射して少なくともSnow膜9を貫
通した微細な穴1′を開は加工を行なう。続いて第2図
[b)のように穴1′の開口加工部分を含む表面電極の
形成部に金属ベーク)14を7クリーン印刷によυ塗布
し、続いて600℃程度の焼成を行)たのが第2図(c
lである。この焼成により金属ペースト14は硬化する
と共に酸化膜層2及び3を浸透して貫通し基板10の表
面に接続する電極が形成される。
This figure 3 (al) indicates that the p-type silicon substrate 10 has a p
+ A diffusion layer 12 is formed, and a back electrode 18 is formed on almost the entire surface thereof using A) or the like. On the surface of the substrate 10, an n1 diffusion layer 11 is formed, and a passivation oxide film 3 such as 5402 and an antireflection film are laminated and coated. This anti-reflection film needs to be laminated in this order: TiO2 film 2, SnO, and film 9. A short wavelength laser spot light is irradiated from the surface of this antireflection film to form a minute hole 1' that penetrates at least the Snow film 9. Next, as shown in Fig. 2 [b], metal bake 14 was applied to the surface electrode formation area including the opening part of hole 1' by 7 clean printing, followed by baking at about 600°C). This is shown in Figure 2 (c
It is l. As a result of this firing, the metal paste 14 is hardened and an electrode is formed which penetrates through the oxide film layers 2 and 3 and connects to the surface of the substrate 10.

しかしながら、なお上記提案の方法にも以下のような問
題がある。
However, the method proposed above still has the following problems.

先ず第1に、受光面電極形成にスクリーン印刷法を用い
るため、接触面積は低減できるが、電極占有率はなお3
〜4%に下げるのが限界であること。
First of all, since the screen printing method is used to form the light-receiving surface electrode, the contact area can be reduced, but the electrode occupation rate is still 3.
The limit is to lower it to ~4%.

第2に、金属ペーストを焼成した電極と基板表面のn十
拡散層間の接触抵抗が大きく、電極面積を小さくすると
直列抵抗が大きくなってFFが低下すること。
Second, the contact resistance between the electrode made of fired metal paste and the n10 diffusion layer on the substrate surface is large, and when the electrode area is reduced, the series resistance increases and the FF decreases.

第3に、金属ペーストを焼成するとき同時に、その金属
ペーストの組成を、反射防止膜等の酸化物膜を貫通させ
て基板に接続するため約600°Cの加熱工程が必要に
なること。
Thirdly, at the same time as firing the metal paste, a heating process of approximately 600° C. is required in order to connect the composition of the metal paste to the substrate through an oxide film such as an antireflection film.

第4に、前記のように金属ペーストで、酸化物膜を貫通
させて電極の形成をするため、5n02とTiO2とい
うように貫通の特性が異なる二重の反射防止膜構造にす
る必要があることなどである。
Fourth, since the electrode is formed by penetrating the oxide film with metal paste as mentioned above, it is necessary to have a double anti-reflection film structure with different penetration characteristics, such as 5N02 and TiO2. etc.

そこで、本発明は上記問題点を解決することを目的とす
る。
Therefore, the present invention aims to solve the above problems.

く課題を解決するだめの手段〉 上記目的を達成するために、本発明は受光面上に形成さ
れた反射防止膜に幅が100μm以下のレーザー加工開
口部を上記反射防止膜を貫通して設け、該開口部内で半
導体層と接触するように金属よりなる表面電極を設けて
いることを特徴とする半導体光電変換装置を提供する。
Means for Solving the Problem> In order to achieve the above object, the present invention provides an anti-reflection film formed on a light-receiving surface with a laser-processed opening having a width of 100 μm or less penetrating the anti-reflection film. , provides a semiconductor photoelectric conversion device characterized in that a surface electrode made of metal is provided so as to be in contact with the semiconductor layer within the opening.

また、本発明は、受光面上に形成された反射防止膜の表
面に、短波長のレーザ光を照射し上記反射防止膜を貫通
する開口部を形成し、該開口部を含む表面電極形成部に
電極材料を堆積して表面電極を形成することを特徴とす
る半導体光電変換装置の製造方法を提供する。
The present invention also provides a method for forming an opening that penetrates the anti-reflection film by irradiating the surface of the anti-reflection film formed on the light-receiving surface with a short-wavelength laser beam, and forming a surface electrode forming portion including the opening. Provided is a method for manufacturing a semiconductor photoelectric conversion device, characterized in that a surface electrode is formed by depositing an electrode material on the semiconductor photoelectric conversion device.

上記短波長のレーザ光は、上記反射防止膜では表面で吸
収され、かつ、半導体基板で反射される波長のものが良
い。
It is preferable that the short wavelength laser beam has a wavelength that is absorbed by the surface of the antireflection film and reflected by the semiconductor substrate.

上記堆積は低温で行うのが良く、メ・キ法や蒸着法を用
いるのがよシ好ましい。
The above-mentioned deposition is preferably carried out at a low temperature, and it is more preferable to use a metallizing method or a vapor deposition method.

〈作 用〉 本発明の半導体光電変換装置は、レーザー加工により形
成される反射防止膜を完全に貫通した/1\ 100μm以下の微安な開口部で金属により直接電極が
形成されているため、例えば従来の銀ペーストが反射防
止膜を浸透させてn十拡散層に接続されている場合の接
触抵抗率(10”Ω・12 のオーダ〕に較べて、N1
まだはT1シリサイドとn十拡散層の接触抵抗率(10
−’Ω・−のオーダ)が極めて低いというように、表面
電極の接触抵抗率を極めて低くできるので、半導体光電
変換装置の特性、特にFF特性を向上させることができ
る。
<Function> In the semiconductor photoelectric conversion device of the present invention, electrodes are formed directly from metal through a very small opening of 1/100 μm or less that completely penetrates the antireflection film formed by laser processing. For example, compared to the contact resistivity (on the order of 10"Ω・12) when a conventional silver paste permeates an anti-reflection film and is connected to an n-diffusion layer, N1
The contact resistivity (10
Since the contact resistivity of the surface electrode can be made extremely low (on the order of -'Ω·-), the characteristics of the semiconductor photoelectric conversion device, particularly the FF characteristics, can be improved.

また、本発明の方法による短波長のレーザ光、イズにで
き、又、この短波長の光は、通常の半導体光電変換装置
の反射防止膜に使用されている材料を殆んど透過しない
で、その表面で吸収され熱に変換され、入射のレーザ光
のエネルギーによって瞬間に蒸発され、反射防止膜に直
接、微細ラノン、又は、多数のドツトを連続させた開口
部パターンを形成することができる。以上の反射防止膜
への開口の深さは、照射するレーザ光のエネルギ強度、
又は、その照射回数等による簡単な方法で制御できるの
で、電極接触面積を任意に簡単に変えることもできる。
Furthermore, the method of the present invention can produce laser light with a short wavelength, and this short wavelength light hardly transmits through the material used for the antireflection film of a typical semiconductor photoelectric conversion device. It is absorbed on the surface and converted into heat, which is instantaneously evaporated by the energy of the incident laser beam, allowing the formation of fine lanons or an opening pattern consisting of a large number of continuous dots directly on the antireflection film. The depth of the opening in the above anti-reflection film is determined by the energy intensity of the irradiated laser beam,
Alternatively, since it can be controlled by a simple method such as the number of times of irradiation, the electrode contact area can be easily changed as desired.

更に、以上のレーザ光の照射前に、反射防止膜上に表面
電極の形状にレジヌトパターンを作製しておくことで、
メ・ツキや蒸着等の堆積法で被覆したNi、Ti等の電
極金属膜をリフトオフにより加工ができ、位置合せの余
裕度を少なくでき、電極の占有率を最小にできて、短絡
電流を向上させることができる。
Furthermore, by creating a resin pattern in the shape of the surface electrode on the anti-reflection film before irradiating the laser beam,
Electrode metal films such as Ni and Ti coated by deposition methods such as plating and vapor deposition can be processed by lift-off, reducing the margin for alignment and minimizing the electrode occupancy, improving short-circuit current. can be done.

更にレーザ光を用いて開口部を作製するので、フォトエ
ツチング技術を用いて開口部を作製する場合のような問
題が生じない。すなわち、半導体の微細加工に使用され
るフォ)・エツチング技術を用いて半導体表面反射防止
膜とパシベーション膜に微細な開口部を作製して電極を
形成する場合、その反射防止膜とパシベーション膜の材
質や膜厚によりエツチング方法やエツチング時間が複雑
に変わシ適正な工・チング条件を出すのに時間かがかる
こと、及び、低価格化を目指した多結晶シリコン基板で
は基板表面に、テクスチT処理で数10μmの微細な凹
凸が形成されるためフォトエツチングにより精密なパタ
ーンを形成することが難しく実用的と言えないという問
題が生じない。
Furthermore, since the openings are created using laser light, problems that occur when the openings are created using photoetching techniques do not occur. In other words, when forming electrodes by creating minute openings in the semiconductor surface anti-reflection film and passivation film using photo-etching technology used in semiconductor microfabrication, the materials of the anti-reflection film and passivation film are The etching method and etching time vary depending on the etching and film thickness, and it takes time to find the appropriate processing and etching conditions.In addition, for polycrystalline silicon substrates aimed at lowering costs, the surface of the substrate is not coated with texture T treatment. Since fine irregularities of several tens of micrometers are formed, there is no problem that it is difficult to form a precise pattern by photoetching, making it impractical.

更に、メ・キ法や蒸着法により電極を堆積すると、堆積
工程が低温で行えて半導体層に熱による悪影響を与える
ことがない。
Furthermore, if the electrode is deposited by a metallizing method or a vapor deposition method, the deposition process can be performed at a low temperature and the semiconductor layer will not be adversely affected by heat.

〈実施例〉 実施例1 以下、本発明の第1の実施例を第1図を参照して説明す
る。
<Examples> Example 1 A first example of the present invention will be described below with reference to FIG. 1.

第1図(al、 fb)及びfc)は、本発明による半
導体光電変換装置の表面電極形成の第一実施例の各工程
を示す8略断面図である。
FIG. 1 (al, fb) and fc) are 8 schematic cross-sectional views showing each step of a first embodiment of forming a surface electrode of a semiconductor photoelectric conversion device according to the present invention.

第1図(a)は、光電変換装置を作製するp型シリコン
基板10の表面にn+拡散層11を形成してp−n接合
を形成し、続いて、そのn十拡散層11の表面に、パシ
ベーション層になる150Aの5iozからなる酸化膜
3及び反射防止膜になる500人のTiO□寮キキ右寮
牛委2を順次積層した上に、ホトレジスト膜4を形成し
、そのホトレジスト膜4に371E−間隔で幅50μm
の電極パターンを形成しくこの電極パターン部は、基板
の受光面積の1.4%になる。)、更に、以上のように
加工したシリコン基板10をX−Y方向に精密移動でき
るヌテージにセ・トして、短波長レーザ光〔例えばXe
C)で波長がs o s nmのレーザ)を25X25
μmに集光したスポットにして前記レジスト膜4の未形
成部から照射すると、前記のレーザ光源の出力が充分大
きいときは、エネルギー強度が4J/備a程度でT i
 Oz膜2と酸化膜3を同時に蒸発させて除去でき、レ
ーザビームの走査で、基板10表面の酸化膜2,8に幅
が25μmの微細ライン状の開口溝1を形成している。
FIG. 1(a) shows that a p-n junction is formed by forming an n+ diffusion layer 11 on the surface of a p-type silicon substrate 10 on which a photoelectric conversion device is to be fabricated, and then a p-n junction is formed on the surface of the n+ diffusion layer 11. , a photoresist film 4 is formed on the oxide film 3 of 150A, 5ioz, which becomes a passivation layer, and a 500-layer TiO film 2, which becomes an anti-reflection film. 371E-width 50μm at intervals
This electrode pattern portion accounts for 1.4% of the light-receiving area of the substrate. ), furthermore, the silicon substrate 10 processed as described above is set in a nutage that can be precisely moved in the X-Y direction, and a short wavelength laser beam [for example, Xe
C) with a laser with a wavelength of s o s nm) at 25X25
When irradiating the non-formed part of the resist film 4 with a spot focused to .mu.m, the energy intensity is about 4 J/a when the output of the laser light source is sufficiently large.
The Oz film 2 and the oxide film 3 can be simultaneously evaporated and removed, and a fine line-shaped opening groove 1 with a width of 25 μm is formed in the oxide films 2 and 8 on the surface of the substrate 10 by scanning with a laser beam.

この強度であれば、前記@2.8を選択的に除去できる
With this strength, @2.8 can be selectively removed.

なお、以上のシリコン基板11の裏面は、BSF層にな
るp土層12と裏面電極13が形成されている。
Note that on the back surface of the silicon substrate 11 described above, a p-soil layer 12 which becomes a BSF layer and a back electrode 13 are formed.

次の第1図(blは、I¥il記の微細ライン状の開口
溝lを形成した基板10の受光側の表面全体に、市販さ
れている無電解メッキ液を用いて、約20OAのNiメ
ッキ膜6を形成した状態を示している。
The following Fig. 1 (bl) shows that approximately 20 OA of Ni was applied to the entire surface of the light-receiving side of the substrate 10 in which fine line-shaped opening grooves l as shown in I\il were formed using a commercially available electroless plating solution. A state in which a plating film 6 has been formed is shown.

このNiメッキ膜6は前記の開口溝1及びレジスト膜4
表面の全てを被覆している。
This Ni plating film 6 covers the opening groove 1 and the resist film 4.
Covers all surfaces.

続いて、第1図(clは、以上の説明の加工工程後の基
板10全体を、アセトン中に入れて超音波振動を加え、
レジスト膜4の溶解除去を行なうと共に、そのレジスト
膜4上のNiメッキ膜6もリフトオフによ多除去した後
、その加工を行った基板10全体を、窒素宇囲気中で2
50℃、80分間の熱処理を行ない、@EN 1メッキ
膜6をアニルして基板10との界面にNiシリサイドを
形成させ電気的結合状態を改善している。続いて、更に
市販の無電界Cuメフキ液を用いることで、酊気で形成
したNiメッキ膜6の電極上のみに選択的に約5μmの
厚さのCuメ・Jキ膜7を形成して表面電極を完成した
状態を示している。
Subsequently, as shown in FIG. 1 (cl), the entire substrate 10 after the processing steps described above is placed in acetone and subjected to ultrasonic vibration.
After dissolving and removing the resist film 4 and removing the Ni plating film 6 on the resist film 4 by lift-off, the entire processed substrate 10 is placed in a nitrogen atmosphere for 2 hours.
A heat treatment is performed at 50° C. for 80 minutes to anneal the @EN 1 plating film 6 to form Ni silicide at the interface with the substrate 10 to improve the electrical bonding state. Subsequently, by using a commercially available electroless Cu coating liquid, a Cu coating/J coating film 7 with a thickness of about 5 μm was selectively formed only on the electrode of the Ni plating film 6 formed in the inebriated state. This shows the completed state of the surface electrode.

以上の本発明の方法で形成した、半導体光電変換装置の
実施例では、基板10表面のn十拡散層11と電極金属
層のN1メ・・キ@6の接触面積は全受光面積の0.7
%で、従来の表面電極よυはるかに小さい表面電極によ
る接触面積の占有率を実現している。
In the embodiment of the semiconductor photoelectric conversion device formed by the method of the present invention described above, the contact area between the n+ diffusion layer 11 on the surface of the substrate 10 and the N1...ki@6 of the electrode metal layer is 0.0% of the total light receiving area. 7
%, the surface electrode occupies a much smaller contact area than conventional surface electrodes.

実施例2 以下、本発明の第2の実施例を第2図を参照して説明す
る。
Example 2 A second example of the present invention will be described below with reference to FIG.

第1図(al、 (bl及び(c)は、本発明による半
導体光電変換装置の表面電極形成の第2の実施例の各工
程を示す概略断面図である。
FIGS. 1A, 1B, and 1C are schematic cross-sectional views showing each step of a second embodiment of forming a surface electrode of a semiconductor photoelectric conversion device according to the present invention.

第1図ia)は、幅25μmの開口溝1の形成までを実
施例1と同様にして行なっている。
In FIG. 1 ia), the steps up to the formation of the opening groove 1 having a width of 25 μm were performed in the same manner as in Example 1.

第2図(b)は、前記開口溝1を形成した基板10の受
光側の表面全体に、真空蒸着により、kg/p d /
 T iの積層の蒸着膜8を各層が5μ鋼1500A/
800Aの厚さになるように形成した状態を示している
。尚、Tiがn十拡散層11に接している。
FIG. 2(b) shows that kg/p d /
Each layer is made of 5μ steel 1500A/T i laminated vapor deposited film 8
It shows a state in which it is formed to have a thickness of 800A. Note that Ti is in contact with the n+ diffusion layer 11.

続いて第2図(clば、前記の工程の後に、アセトン中
、超音波洗浄を行なうことによ、bAg/pd/Ti蒸
着膜8をリストオフした後、415°C−30分間、窒
素零囲気中で熱処理して表面電極を完成させた状態を示
している。
Subsequently, as shown in FIG. 2, after the above steps, the bAg/pd/Ti vapor deposited film 8 was removed by ultrasonic cleaning in acetone, and then heated at 415°C for 30 minutes in a nitrogen-free environment. The surface electrode is shown completed by heat treatment in an ambient atmosphere.

本実施例において、n+拡散層11と電極金属との接触
面積の占有率は0.7チと従来法よシはるかに小さい占
有率を実現している。
In this embodiment, the occupation rate of the contact area between the n+ diffusion layer 11 and the electrode metal is 0.7 inches, which is much smaller than that of the conventional method.

尚、本実施例では表面電極を、レズストを用いたリスト
オフ法により形成したが、レジストを用いずに、メタル
マスクを用いた蒸着により表面電極を形成しても良い。
In this embodiment, the surface electrode was formed by a list-off method using a resist, but the surface electrode may be formed by vapor deposition using a metal mask without using a resist.

以上、実施例1と2により本発明の実施例を示したが、
上記2つの実施例により得られる表面電極は、共に以下
に示す同様の良い特性を示す。尚実施例1と2では下記
特性に差が生じなかったので、これらを本実施例の表面
電極として一つのデータを示した。
Examples of the present invention have been shown above using Examples 1 and 2, but
The surface electrodes obtained by the above two examples both exhibit similar good properties as shown below. Note that since there was no difference in the following characteristics between Examples 1 and 2, one data is shown using these as the surface electrodes of this example.

第1表に、本実施例による表面電極と、先に特願事1−
119888で提案した表面電極の半導体光電変換装置
について、形状及び各種の特性の比較を示す。
Table 1 shows the surface electrode according to this example and the patent application 1-
A comparison of the shape and various characteristics of the surface electrode semiconductor photoelectric conversion device proposed in No. 119888 will be shown below.

第1表 本実施例と従来例の比較表 上記の表で、JSCは短絡電流、 ηは変換効率(太陽光)である。Table 1 Comparison table between this example and conventional example In the above table, JSC is short circuit current, η is the conversion efficiency (sunlight).

第1表から、本実施例の表面電極による短絡電流と開放
電圧の増加は、受光面に対する電極占有率と、電極接触
面積との低減によるパシベーション効果の向上によるも
のであることが判る。更に電極の接触面積占有率を、先
の提案のこの占有率VOCは開放電圧、 の約半分に当る0、7係と、著しく縮小させたにもかか
わらず、本実施例による表面電極の接触抵抗率が極めて
小さく内部抵抗が減少して、この半導体光電変換装置O
FFを大きく向上させ、その結果として変換効率(η)
を1.5係も向上させることができた。
From Table 1, it can be seen that the increase in short-circuit current and open circuit voltage due to the surface electrode of this example is due to the improvement in the passivation effect due to the reduction in the electrode occupation rate with respect to the light-receiving surface and the electrode contact area. Furthermore, although the contact area occupancy rate of the electrode was significantly reduced to 0.7, which is approximately half of the open circuit voltage, the contact resistance of the surface electrode according to the present example was This semiconductor photoelectric conversion device O
Greatly improves FF, resulting in improved conversion efficiency (η)
I was able to improve this by 1.5 points.

以上の本実施例の半導体光電変換装置の表面電極は、先
の提案の表面電極のように金属ペーストを熱処理により
反射防止膜を貫通させる必要がないので電極材料を付着
させた後で、600℃程度の加熱を行なう工程が不要に
なシ、種々の材料を結合してからの熱処理工程による歪
の発生を防止することができる。更に、前記のような電
極材料を反射防止膜を貫通させて電極を接続するときは
その貫通特性が異なる5n02とTiO3を組み合わせ
た2層構造で、しかも、TiO2膜を形成した上に5n
02膜を形成しなければならないなどの反射防止膜の構
成に関する制限がなくなる。
The surface electrode of the semiconductor photoelectric conversion device of this embodiment described above does not require heat treatment of the metal paste to penetrate the anti-reflection film, unlike the surface electrode of the previous proposal, so it is possible to heat the metal paste at 600° C. after attaching the electrode material. There is no need for a process of heating to a certain extent, and it is possible to prevent the occurrence of distortion due to the heat treatment process after bonding various materials. Furthermore, when connecting the electrodes by penetrating the anti-reflection film with the electrode material described above, a two-layer structure combining 5n02 and TiO3, which have different penetration characteristics, is used.
There are no restrictions on the structure of the antireflection film, such as the need to form a 02 film.

本実施例による表面電極形成のだめの反射防止膜への開
口加工は、短波長のレーザ集光ビームを用いるので実施
例以上の微細加工の開口形成ができ電極の接触面積を更
に大幅に低減することが可能であり、しかも、以上のよ
うに電極接触面積を減少しても接触抵抗(率〕を充分小
さくできるので、これによる直列抵抗の増加や、FFの
低下を招くようなことはない。
The aperture processing in the anti-reflection film for forming the surface electrode according to this example uses a focused laser beam with a short wavelength, so the aperture can be formed with finer processing than in the example, and the contact area of the electrode can be further significantly reduced. Moreover, even if the electrode contact area is reduced as described above, the contact resistance (ratio) can be made sufficiently small, so this will not cause an increase in series resistance or a decrease in FF.

以上に於けるレーザ光による反射防止膜への微細な開口
部の形成も、適当な出力の短波長レーザ源を微小スポッ
トになるよう集光して照射すればJ/−2程度の照射エ
ネルギーで反射膜の開口が形成できるので、MEの短波
長レーザのスポ・トを早い速度(数m/秒程度)で走査
する加工ができるため処理速度が早く、又、この加工に
付随する工程も少ないので生産性を高くすることができ
る。
The formation of minute openings in the anti-reflection film using the laser beam described above can also be done with an irradiation energy of about J/-2 if a short wavelength laser source with an appropriate output is focused and irradiated into a minute spot. Since an aperture can be formed in the reflective film, it is possible to scan the ME short-wavelength laser spot at a high speed (about several meters per second), resulting in a fast processing speed and fewer steps involved in this process. Therefore, productivity can be increased.

以上は、本発明を実施例によって説明したが、本発明は
実施例によって限定されるものではなく本発明の主旨で
ある反射防止膜に微細開口部を形成して、半導体へ直接
接続する金属電極膜を堆積する表面電極であれば、はじ
めに堆積する金属はNi、Tiに限定されずW等同じ効
果をもつ金属を使用してもよく、その堆積方法も無電解
メッキのみでなく蒸着法、又は、スバ・タリング等によ
って堆積してもよい。更に、反射防止膜もS n02膜
やTiO2膜に限定されることはなく、I n03膜等
や、それらの組合せによる反射防止膜を用いてもよい。
Although the present invention has been described above with reference to examples, the present invention is not limited to the examples, and the gist of the present invention is to form fine openings in an antireflection film and to connect metal electrodes directly to a semiconductor. If it is a surface electrode for depositing a film, the metal to be deposited first is not limited to Ni or Ti, but metals with the same effect such as W may be used, and the deposition method may be not only electroless plating but also evaporation or It may also be deposited by, for example, suba-talling. Further, the anti-reflection film is not limited to the Sn02 film or the TiO2 film, and an anti-reflection film such as an In03 film or a combination thereof may also be used.

〈発明の効果〉 本発明では、半導体光電変換装置は表面の反射防止膜に
レーザ光集光スボ・ノドを照射して、効率よく微小開口
部を形成した上、基板に直接堆積する表面電極を形成す
るだめ、その電極接触抵抗率を極めて低くすることがで
きる。従−て、その充電変換装置の直列抵抗を増大する
ことなく、表面電極の、受光面に対する電極占有率と、
基板への接触面積占有率を低減することができ、従来の
装置に比し、短絡電流と開放電圧の増大を図ることがで
きて、FF及び変換効率ηを向上させることができる。
<Effects of the Invention> In the present invention, a semiconductor photoelectric conversion device efficiently forms a minute opening by irradiating the anti-reflection film on the surface with a laser beam condensing groove, and then forms a surface electrode directly deposited on the substrate. By forming the electrode, the electrode contact resistivity can be made extremely low. Therefore, without increasing the series resistance of the charging conversion device, the electrode occupation rate of the surface electrode with respect to the light receiving surface,
The area occupied by contact with the substrate can be reduced, short-circuit current and open circuit voltage can be increased compared to conventional devices, and FF and conversion efficiency η can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の表面電極製造工程を示
す概略断面図、第2図は本発明の第2の実施例の表面電
極製造工程を示す概略断面図、第3図は先の提案の表面
電極製造工程を示す概略断面図、第4図は従来の表面電
極の構造図である。 1・・・開口溝、2・・TiO□膜、3:酸化膜、4・
・・レジスト膜、6−・−N iメッキ膜、7−=Cu
メ・キ膜、8・・・Ag/pd/Ti蒸着膜、10・・
・基板、11・・n十 拡散層。
FIG. 1 is a schematic cross-sectional view showing the surface electrode manufacturing process of the first embodiment of the present invention, FIG. 2 is a schematic cross-sectional view showing the surface electrode manufacturing process of the second example of the present invention, and FIG. FIG. 4 is a schematic cross-sectional view showing the previously proposed surface electrode manufacturing process, and is a structural diagram of a conventional surface electrode. 1...Opening groove, 2...TiO□ film, 3: Oxide film, 4...
・・Resist film, 6-・-Ni plating film, 7-=Cu
Membrane film, 8...Ag/pd/Ti vapor deposited film, 10...
・Substrate, 11...n10 diffusion layer.

Claims (1)

【特許請求の範囲】 1、受光面上に形成された反射防止膜に幅が100μm
以下のレーザー加工開口部を上記反射防止膜を貫通して
設け、該開口部内で半導体層と接触するように金属より
なる表面電極を設けていることを特徴とする半導体光電
変換装置。 2、受光面上に形成された反射防止膜の表面に、短波長
のレーザ光を照射し上記反射防止膜を貫通する開口部を
形成し、該開口部を含む表面電極形成部に電極材料を堆
積して表面電極を形成することを特徴とする半導体光電
変換装置の製造方法。 3、前記堆積をメッキ法または蒸着法により行うことを
特徴とする請求項2記載の半導体光電変換装置の製造方
法。
[Claims] 1. The antireflection film formed on the light receiving surface has a width of 100 μm.
A semiconductor photoelectric conversion device characterized in that the following laser-processed opening is provided through the antireflection film, and a surface electrode made of metal is provided in the opening so as to be in contact with the semiconductor layer. 2. The surface of the anti-reflection film formed on the light-receiving surface is irradiated with short-wavelength laser light to form an opening that penetrates the anti-reflection film, and electrode material is applied to the surface electrode formation area including the opening. A method for manufacturing a semiconductor photoelectric conversion device, comprising forming a surface electrode by depositing. 3. The method of manufacturing a semiconductor photoelectric conversion device according to claim 2, wherein the deposition is performed by a plating method or a vapor deposition method.
JP2088578A 1990-01-31 1990-04-02 Semiconductor photoelectric converting device and its manufacture Pending JPH03250671A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2305790 1990-01-31
JP2-23057 1990-01-31

Publications (1)

Publication Number Publication Date
JPH03250671A true JPH03250671A (en) 1991-11-08

Family

ID=12099811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2088578A Pending JPH03250671A (en) 1990-01-31 1990-04-02 Semiconductor photoelectric converting device and its manufacture

Country Status (1)

Country Link
JP (1) JPH03250671A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4217428A1 (en) * 1991-12-09 1993-06-17 Deutsche Aerospace High performance silicon crystalline solar cell structure - has more highly doped layer integrated in lightly doped layer in area below metallic contact
WO1995009440A1 (en) * 1993-09-30 1995-04-06 Siemens Solar Gmbh Process for metallising solar cells made of crystalline silicon
JP2009231840A (en) * 2008-03-24 2009-10-08 Palo Alto Research Center Inc Method for forming multiple-layer electrode structure for silicon photovoltaic cell
WO2009150741A1 (en) * 2008-06-12 2009-12-17 三菱電機株式会社 Photovoltaic device manufacturing method
JP2011061020A (en) * 2009-09-10 2011-03-24 Sharp Corp Back contact solar cell element, and method of manufacturing the same
JP2012517690A (en) * 2009-02-09 2012-08-02 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Silicon solar cell
JPWO2013046386A1 (en) * 2011-09-29 2015-03-26 三洋電機株式会社 SOLAR CELL, SOLAR CELL MODULE, AND SOLAR CELL MANUFACTURING METHOD
JP2015142139A (en) * 2014-01-29 2015-08-03 エルジー エレクトロニクス インコーポレイティド Solar cell and manufacturing method of the same
JP2015228526A (en) * 2015-09-14 2015-12-17 パナソニックIpマネジメント株式会社 Solar cell module
JP2016508286A (en) * 2012-12-06 2016-03-17 サンパワー コーポレイション Solar cell conductive contact seed layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58220477A (en) * 1982-06-16 1983-12-22 Japan Solar Energ Kk Manufacture of solar battery
JPS6489569A (en) * 1987-09-30 1989-04-04 Sharp Kk Solar cell element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58220477A (en) * 1982-06-16 1983-12-22 Japan Solar Energ Kk Manufacture of solar battery
JPS6489569A (en) * 1987-09-30 1989-04-04 Sharp Kk Solar cell element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4217428A1 (en) * 1991-12-09 1993-06-17 Deutsche Aerospace High performance silicon crystalline solar cell structure - has more highly doped layer integrated in lightly doped layer in area below metallic contact
WO1995009440A1 (en) * 1993-09-30 1995-04-06 Siemens Solar Gmbh Process for metallising solar cells made of crystalline silicon
JP2009231840A (en) * 2008-03-24 2009-10-08 Palo Alto Research Center Inc Method for forming multiple-layer electrode structure for silicon photovoltaic cell
WO2009150741A1 (en) * 2008-06-12 2009-12-17 三菱電機株式会社 Photovoltaic device manufacturing method
JP2012517690A (en) * 2009-02-09 2012-08-02 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Silicon solar cell
JP2011061020A (en) * 2009-09-10 2011-03-24 Sharp Corp Back contact solar cell element, and method of manufacturing the same
JPWO2013046386A1 (en) * 2011-09-29 2015-03-26 三洋電機株式会社 SOLAR CELL, SOLAR CELL MODULE, AND SOLAR CELL MANUFACTURING METHOD
US9502589B2 (en) 2011-09-29 2016-11-22 Panasonic intellectual property Management co., Ltd Solar cell, solar cell module, and method for manufacturing solar cell
US9972728B2 (en) 2011-09-29 2018-05-15 Panasonic Intellectual Property Management Co., Ltd. Solar cell, solar cell module, and method for manufacturing solar cell
JP2016508286A (en) * 2012-12-06 2016-03-17 サンパワー コーポレイション Solar cell conductive contact seed layer
JP2015142139A (en) * 2014-01-29 2015-08-03 エルジー エレクトロニクス インコーポレイティド Solar cell and manufacturing method of the same
US10847663B2 (en) 2014-01-29 2020-11-24 Lg Electronics Inc. Solar cell and method for manufacturing the same
JP2015228526A (en) * 2015-09-14 2015-12-17 パナソニックIpマネジメント株式会社 Solar cell module

Similar Documents

Publication Publication Date Title
US7388147B2 (en) Metal contact structure for solar cell and method of manufacture
JP6447926B2 (en) Solar cell and method for manufacturing solar cell
US8664525B2 (en) Germanium solar cell and method for the production thereof
KR20070107660A (en) Process and fabrication methods for emitter wrap through back contact solar cells
JP2015513784A (en) Method of forming solar cell with selective emitter
JP2012525008A (en) Local metal contacts by local laser conversion of functional films in solar cells
WO1995012898A1 (en) High efficiency silicon solar cells and methods of fabrication
US20130199606A1 (en) Methods of manufacturing back surface field and metallized contacts on a solar cell device
KR20140126313A (en) Selective removal of a coating from a metal layer, and solar cell applications thereof
DE102011050089A1 (en) Method for producing electrical contacts on a solar cell, solar cell and method for producing a back-side contact of a solar cell
JP2006080450A (en) Solar battery manufacturing method
KR101283053B1 (en) Solar cell apparatus and method of fabricating the same
JPH03250671A (en) Semiconductor photoelectric converting device and its manufacture
JP6359457B2 (en) Method for forming a metal silicide layer
JP3619681B2 (en) Solar cell and manufacturing method thereof
JPH0536998A (en) Formation of electrode
DE102011086302A1 (en) Method for producing contact grid on surface of e.g. photovoltaic solar cell for converting incident electromagnetic radiation into electrical energy, involves electrochemically metalizing contact region with metal, which is not aluminum
JP4212292B2 (en) Solar cell and manufacturing method thereof
KR100446593B1 (en) Silicon solar cell and its manufacturing method
US20180320821A1 (en) Interdigitated back contact metal-insulator-semiconductor solar cell with printed oxide tunnel junctions
JPS5810872A (en) Manufacture of solar battery
JP2013135155A (en) Method for manufacturing solar cell
JP7389907B2 (en) Matched metallization for solar cells
JPS59150482A (en) Solar battery
RU2151449C1 (en) Method for producing photoelectric transducers with porous silicon film