KR100446593B1 - Silicon solar cell and its manufacturing method - Google Patents

Silicon solar cell and its manufacturing method Download PDF

Info

Publication number
KR100446593B1
KR100446593B1 KR1019970007253A KR19970007253A KR100446593B1 KR 100446593 B1 KR100446593 B1 KR 100446593B1 KR 1019970007253 A KR1019970007253 A KR 1019970007253A KR 19970007253 A KR19970007253 A KR 19970007253A KR 100446593 B1 KR100446593 B1 KR 100446593B1
Authority
KR
South Korea
Prior art keywords
silicon substrate
solar cell
layer
conductive metal
type
Prior art date
Application number
KR1019970007253A
Other languages
Korean (ko)
Other versions
KR19980072419A (en
Inventor
조은철
김동섭
조영현
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1019970007253A priority Critical patent/KR100446593B1/en
Publication of KR19980072419A publication Critical patent/KR19980072419A/en
Application granted granted Critical
Publication of KR100446593B1 publication Critical patent/KR100446593B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 후면반사효과가 우수한 실리콘 태양전지 및 그 제조방법을 제공한다. 상기 실리콘 태양전지는 p형 실리콘기판; 텍스처링된 기판 전면에 순차적으로 형성되어 있는 n+형 반도체층 및 산화막; 상기 기판 전면상에 소정간격으로 평형하게 이격되도록 형성되어 있고, 전도성 금속으로 된 복수개의 라인형 전면전극; 평탄화된 기판 후면에 형성되어 있는 p+ 반도체층; 상기 p+ 반도체층 상부에 형성된 후면전극; 및 상기 후면전극 상부에 형성된 전도성 금속층을 구비하여 이루어진다. 본 발명에 따르면, 여분의 캐리어 형성으로 전체적인 광전류가 증가함으로써 개방회로전압과 변환효율이 향상된다.The present invention provides a silicon solar cell having excellent back reflection effect and a method of manufacturing the same. The silicon solar cell is a p-type silicon substrate; An n + type semiconductor layer and an oxide film sequentially formed on the entire surface of the textured substrate; A plurality of line type front electrodes formed on the front surface of the substrate to be equally spaced apart at predetermined intervals and made of a conductive metal; P + on the back of the planarized substrate A semiconductor layer; P + type A back electrode formed on the semiconductor layer; And a conductive metal layer formed on the rear electrode. According to the present invention, the open circuit voltage and the conversion efficiency are improved by increasing the overall photocurrent due to the formation of extra carriers.

Description

실리콘 태양전지 및 그 제조방법Silicon solar cell and its manufacturing method

본 발명은 실리콘 태양전지 및 그 제조방법에 관한 것으로서, 상세하기로는 전지 후면에서의 빛의 반사효과를 개선함으로써 변환효율이 향상된 실리콘 태양전지 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon solar cell and a method of manufacturing the same, and more particularly, to a silicon solar cell and a method of manufacturing the same having improved conversion efficiency by improving light reflection effects on the back of the cell.

현재 상용화되어 있는 실리콘 태양전지는 도 1에 도시된 바와 같은 구조를 갖는다. Currently commercially available silicon solar cells have a structure as shown in FIG. 1.

이를 참조하면, 역피라미드(inverted pyramid) 구조가 형성된 p형 실리콘 기판(11) 전면 상부에는 n+ 반도체층(12) 및 산화막(13)이 순차적으로 형성되어 있다.Referring to this, n + type is formed on the front surface of the p-type silicon substrate 11 having the inverted pyramid structure formed thereon. The semiconductor layer 12 and the oxide film 13 are sequentially formed.

상기 실리콘 기판(11) 전면상에는 소정간격으로 평형하게 이격되도록 형성되어 있고, 전도성 금속으로 된 복수개의 라인형 전면전극(14)이 형성되어 있다. The front surface of the silicon substrate 11 is formed to be equally spaced apart at predetermined intervals, and a plurality of line type front electrodes 14 made of a conductive metal are formed.

그리고 복수개의 라인형 전면전극(14)과 실리콘 기판(11)간의 전기적 접촉저항을 줄이기 위한 n++ 반도체층(12')이 형성되어 있다.And n ++ type for reducing electrical contact resistance between the plurality of line type front electrodes 14 and the silicon substrate 11. The semiconductor layer 12 'is formed.

평탄화된 실리콘 기판(11) 후면에는 p+ 반도체층(미도시)과 후면전극인 알루미늄층(15)이 차례로 형성되어 있다.P + type on the back of the planarized silicon substrate 11 A semiconductor layer (not shown) and an aluminum layer 15, which is a back electrode, are sequentially formed.

상술한 바와 같은 구조를 실리콘 태양전지는 p+형 반도체층과 그 상부에 형성된 후면전극으로 이루어진 후면 구조를 갖는다. 이 때 상기 p+형 반도체층은 반도체 기판 후면에 알루미늄을 진공증착하거나 알루미늄이 포함되어 있는 페이스트 조성물을 코팅한 다음, 열처리하여 제조되며, 후면전극은 전도성 금속을 도금하여 제조된다.As described above, the silicon solar cell has a back structure consisting of a p + -type semiconductor layer and a back electrode formed thereon. At this time, the p + -type semiconductor layer is prepared by vacuum-depositing aluminum on the back of the semiconductor substrate or coating a paste composition containing aluminum, followed by heat treatment, the back electrode is prepared by plating a conductive metal.

상기한 후면구조를 갖는 실리콘 태양전지에 빛을 조사하면, 실리콘이 간접 밴드간 천이반도체(indirect interband transition semiconductor)이므로 반도체의 밴드갭(band gap)보다 높은 에너지 준위의 빛은 흡수되어 캐리어를 발생시키고, 밴드갭(band gap)보다 낮은 에너지 준위의 빛은 그대로 투과된다(도 2). When the silicon solar cell having the back structure is irradiated with light, since silicon is an indirect interband transition semiconductor, light of an energy level higher than the band gap of the semiconductor is absorbed to generate a carrier. The energy of the energy level lower than the band gap is transmitted as it is (FIG. 2).

빛의 파장에 대한 태양전지의 응답특성을 나타내는 분광학적 리스폰스(spectrall response) 또는 양자효율을 측정하는 경우, 태양전지는 400∼1200nm의 태양광에 대한 응답 효율의 향상을 위해서는 이 주파수 대역의 모든 스펙트럼에 대한 특성 개선이 요구된다. 그밖에 단파장 영역의 파장은 높은 에너지를 가지고 있어 태양전지 표면을 손상시키거나 태양전지 표면에서 캐리어의 재결합을 증가시켜 효율을 감소시키는 요인이므로 이 영역의 파장은 사용하지 않는다. When measuring spectral response or quantum efficiency, which indicates the solar cell's response to the wavelength of light, the solar cell must measure all spectra in this frequency band in order to improve the response efficiency for solar radiation between 400 and 1200 nm. Improvements in properties are required. In addition, since the wavelength of the short wavelength region has high energy, the wavelength of this region is not used because it damages the surface of the solar cell or increases the recombination of carriers on the surface of the solar cell to decrease the efficiency.

이러한 요구에 부응하여, 본 발명자들은 도 2에 도시된 바와 같이 빛을 효율적으로 반사시킬 수 있는 후면구조를 갖는 실리콘 태양전지에 관한 본원 발명을 완성하기에 이르렀다.In response to this demand, the present inventors have completed the present invention regarding a silicon solar cell having a back structure capable of reflecting light efficiently as shown in FIG.

본 발명이 이루고자 하는 기술적 과제는 실리콘 기판 후면에서의 빛 반사효과가 개선되고, 후면 금속에 의한 MOS(Metal Oxide Silicon) 구조에 의하여 인가된 후면에서의 전자들을 태양전지 상층부로 밀어냄으로써 캐리어의 표면 재결합 속도를 낮추는 태양전지를 제공하는 것이다.The technical problem to be achieved by the present invention is to improve the light reflection effect on the back of the silicon substrate, the surface of the carrier by recombining the electrons in the back of the solar cell applied by the metal oxide silicon (MOS) structure by the back metal to the upper layer of the solar cell It is to provide a solar cell that lowers the speed.

본 발명이 이루고자 하는 다른 기술적 과제는 상기 실리콘 태양전지의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method of manufacturing the silicon solar cell.

본 발명의 첫번째 과제는 p형 실리콘기판; 텍스처링된 기판 전면에 순차적으로 형성되어 있는 n+형 반도체층 및 산화막; 상기 기판 전면상에 소정간격으로 평형하게 이격되도록 형성되어 있고, 전도성 금속으로 된 복수개의 라인형 전면전극; 평탄화된 기판 후면에 형성되어 있는 p+ 반도체층; 상기 p+ 반도체층 상부에 형성된 후면전극; 및 상기 후면전극 상부에 형성된 전도성 금속층을 포함하는 것을 특징으로 하는 실리콘 태양전지에 의하여 이루어진다.The first object of the present invention is a p-type silicon substrate; An n + type semiconductor layer and an oxide film sequentially formed on the entire surface of the textured substrate; A plurality of line type front electrodes formed on the front surface of the substrate to be equally spaced apart at predetermined intervals and made of a conductive metal; P + on the back of the planarized substrate A semiconductor layer; P + type A back electrode formed on the semiconductor layer; And a conductive metal layer formed on the rear electrode.

본 발명의 두번째 과제는 (a) p형 실리콘 기판상에 산화막을 형성하는 단계; (b) 실리콘 기판 전면상의 산화막 상부에 포토레지스트 패턴을 형성하고, 이 포토레지스트 패턴을 이용하여 산화막을 에칭하는 단계; (c) 상기 포토레지스트 패턴을 제거하고 텍스처링을 실시하는 단계; (d) 실리콘 기판 전면상의 산화막을 에칭하는 단계; (e) 실리콘 기판 전면에 인(P)을 확산하여 n+`반도체층을 형성하고 나서, 실리콘 기판 전면의 n+`형 반도체층 상부에 산화막을 형성하는 단계; (f) 실리콘 기판 후면 전체에 알루미늄(Al)을 증착한 다음, 소결하여 p+ 반도체층을 형성하는 단계; (g) 실리콘 기판 전면의 소정영역에 전도성 금속을 도금하여 복수개의 라인형 전면전극을 형성하는 단계; (h) 실리콘 기판 후면에 전도성 금속으로 된 후면전극을 형성하는 단계; 및 (i) 상기 후면전극 상부에 전도성 금속층을 형성하는 단계를 포함하는 것을 특징으로 하는 실리콘 태양전지의 제조방법에 의하여 이루어진다.A second object of the present invention is to form an oxide film on a p-type silicon substrate; (b) forming a photoresist pattern on the oxide film on the entire silicon substrate and etching the oxide film using the photoresist pattern; (c) removing the photoresist pattern and performing texturing; (d) etching the oxide film on the entire surface of the silicon substrate; (e) diffusing phosphorus (P) over the entire silicon substrate to form an n + ` semiconductor layer, and then forming an oxide film over the n +` type semiconductor layer over the silicon substrate; (f) Aluminum (Al) is deposited on the entire backside of the silicon substrate, followed by sintering to form p + Forming a semiconductor layer; (g) forming a plurality of line type front electrodes by plating a conductive metal on a predetermined region of the front surface of the silicon substrate; (h) forming a rear electrode made of a conductive metal on the back surface of the silicon substrate; And (i) forming a conductive metal layer on the back electrode.

본 발명에서는 장파장영역의 빛흡수를 향상시키기 위하여 전지 후면에 도달된 빛을 반사시킬 수 있는 금속층을 부가적으로 더 형성한 것이다. 이러한 금속층은 실리콘 기판 후면에 도달된 빛중 장파장 영역의 빛의 반사를 향상시킬 뿐만 아니라 열처리된 후면의 실리콘 영역과 접촉함으로써 직렬저항을 낮추는 역할을 수행한다. In the present invention, in order to improve light absorption in the long wavelength region, a metal layer that can reflect light reaching the rear surface of the battery is additionally formed. This metal layer not only improves the reflection of light in the long wavelength region of light that reaches the rear surface of the silicon substrate but also serves to lower the series resistance by contacting the silicon region of the heat-treated rear surface.

이하, 도 4 및 도 5를 참조하여 본 발명에 따른 실리콘 태양전지의 구조를 설명하기로 한다.Hereinafter, the structure of the silicon solar cell according to the present invention will be described with reference to FIGS. 4 and 5.

이를 참조하면, 역피라미드 구조가 형성된 p형 실리콘 기판(41), (51) 전면 상부에는 n+ 반도체층(42),(52) 및 산화막(43),(53)이 순차적으로 형성되어 있다.Referring to this, n + type is formed on the upper surface of the p-type silicon substrates 41 and 51 on which the inverse pyramid structure is formed. The semiconductor layers 42 and 52 and the oxide films 43 and 53 are sequentially formed.

상기 실리콘 기판(41),(51) 전면상에는 소정간격으로 평형하게 이격되도록 형성되어 있고, 전도성 금속으로 된 복수개의 라인형 전면전극(44),(54)이 형성되어 있다. 이러한 전면전극(44),(54)은 pn 접합 실리콘 기판 내부에서 생성된 전류를 모아서 외부 단자와 접촉하는 역할을 하며, 선택적 도금이 가능한 무전해 도금방법이나 전기도금방법으로 전도성 금속을 도금함으로써 형성된다. The front surface of the silicon substrates 41 and 51 is formed to be equally spaced apart at predetermined intervals, and a plurality of line type front electrodes 44 and 54 made of a conductive metal are formed. The front electrodes 44 and 54 collect current generated in the pn junction silicon substrate and contact the external terminals. The front electrodes 44 and 54 are formed by plating a conductive metal by an electroless plating method or an electroplating method capable of selective plating. do.

그리고 복수개의 라인형 전면전극(44),(54)과 실리콘 기판(41),(51)간의 전기적 접촉저항을 줄이기 위한 n++ 반도체층(42'),(52')이 형성되어 있다.And n ++ type for reducing electrical contact resistance between the plurality of line type front electrodes 44 and 54 and the silicon substrates 41 and 51. The semiconductor layers 42 'and 52' are formed.

도 4에 도시된 태양전지에서는, 평탄화된 실리콘 기판(41) 후면에는 p+ 반도체층(미도시)과 후면전극인 알루미늄(Al)층(45), 전도성 금속층(46) 및 은(Ag)층(47)이 차례로 형성되어 있다. 여기에서 상기 전도성 금속층은 빛의 반사율이 높고 저항이 낮은 금속 즉, 티타늄(Ti), 크롬(Cr) 또는 알루미늄(Al)을 사용하여 형성하는 것이 바람직하다. 바람직한 전도성 금속층의 두께는 200 내지 600nm이며, 이 범위일 때 후면에 도달된 빛을 반사하는 효과가 극대화된다.In the solar cell shown in FIG. 4, the back side of the planarized silicon substrate 41 is p + type. A semiconductor layer (not shown), an aluminum (Al) layer 45 as a back electrode, a conductive metal layer 46 and a silver (Ag) layer 47 are sequentially formed. The conductive metal layer may be formed using a metal having high reflectance and low resistance, that is, titanium (Ti), chromium (Cr), or aluminum (Al). The preferred thickness of the conductive metal layer is 200 to 600 nm, and the effect of reflecting light reaching the rear surface is maximized when in this range.

상기 은층(47)은 전도성 금속층(46)을 보호하는 층으로서, 태양전지 모듈을 제작하기 위하여 다른 태양전지와 연결하는 경우 납땜(soldering)하기가 용이해진다. 이러한 은층은 0.5 내지 5㎛, 바람직하기로는 0.5 내지 1㎛ 두께로 형성하는 것이 바람직하다. The silver layer 47 is a layer protecting the conductive metal layer 46, and is easily soldered when connected to other solar cells to manufacture a solar cell module. Such a silver layer is preferably formed to a thickness of 0.5 to 5㎛, preferably 0.5 to 1㎛.

도 5에 도시된 태양전지에서는, 평탄화된 실리콘 기판(51) 후면에는 p+ 반도체층(미도시)과 후면전극인 알루미늄층(55), 은(Ag)층(57) 및 금속박막층(56)이 차례로 형성되어 있다. 여기에서 상기 은층(57)은 도금시 알칼리 도금액에 의하여 에칭된 알루미늄층(55)을 보상하는 역할을 수행한다.In the solar cell shown in FIG. 5, the back side of the planarized silicon substrate 51 is p + type. A semiconductor layer (not shown), an aluminum layer 55, a silver (Ag) layer 57, and a metal thin film 56, which are back electrodes, are sequentially formed. Here, the silver layer 57 serves to compensate for the aluminum layer 55 etched by the alkali plating solution during plating.

본 발명에 따른 태양전지에 있어서, 그 동작원리를 설명하기로 한다. In the solar cell according to the present invention, the operation principle will be described.

태양빛은 본래 서로 다른 파장을 갖는 빛으로 이루어져 있으며, 실리콘은 간접 밴드간 천이반도체이고 광의 흡수율이 낮은 편이다. 따라서 빛에너지를 전기에너지로 전환시키는 장치인 태양전지는 실리콘의 밴드갭 이상의 에너지를 갖는 빛만이 전자-정공 캐리어를 발생시킬 수 있으며, 실리콘의 밴드갭보다 낮은 에너지를 갖는 빛은 그대로 실리콘 기판을 투과하게 된다. Sunlight is essentially composed of light with different wavelengths. Silicon is an indirect band-to-band transition semiconductor and has a low absorption of light. Therefore, in the solar cell which converts light energy into electric energy, only light having energy above the band gap of silicon can generate electron-hole carriers, and light having energy lower than the band gap of silicon passes through the silicon substrate as it is. Done.

그러나, 본 발명에서와 같이 실리콘 기판 후면에 빛의 반사율이 높고 전기저항이 낮은 금속을 이용하여 금속층을 형성하면 후면에 도달된 빛을 반사시킬 수 있게 된다. 이렇게 기판 후면에서 반사된 빛은 여분의 캐리어를 발생시킬 수 있으며, 직렬저항을 감소시킬 수 있다. 이처럼 캐리어 발생이 많아지게 되면 양자효율이 증가되어 전류밀도가 개선된다. 이로 인하여 충진율이 향상됨으로써 전체적인 변환효율이 높아지게 된다. However, as in the present invention, when the metal layer is formed using a metal having high reflectance and low electrical resistance on the back surface of the silicon substrate, the light reaching the back surface can be reflected. Light reflected from the back of the substrate may generate extra carriers and reduce series resistance. As the carrier generation increases, the quantum efficiency is increased, and the current density is improved. This improves the filling rate, thereby increasing the overall conversion efficiency.

이하, 본 발명을 실시예를 들어 상세히 설명하기로 하되, 본 발명이 하기 실시예로만 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited only to the following Examples.

<실시예 1><Example 1>

p형 실리콘 기판의 전면과 후면에 약 1300Å 두께의 SiO2막을 형성하였다. 그리고 나서 상기 실리콘 기판의 전면의 SiO2막 상부에 포지티브 포토레지스트를 약 1㎛ 두께로 도포한 다음, 새도우마스크를 이용하여 소정부위만을 노광처리한 다음, 현상하였다.An SiO 2 film having a thickness of about 1300 μs was formed on the front and rear surfaces of the p-type silicon substrate. Then, a positive photoresist was applied on the SiO 2 film on the entire surface of the silicon substrate to a thickness of about 1 μm, and only a predetermined portion was exposed using a shadow mask and then developed.

이러한 과정을 거쳐 형성된 포토레지스트 패턴을 식각 마스크로 하고, 7:1 BHF 용액을 이용하여 SiO2막을 약 2분 30초동안 에칭한 다음, 포토레지스트를 제거하였다.The photoresist pattern formed through this process was used as an etching mask, and the SiO 2 film was etched for about 2 minutes and 30 seconds using a 7: 1 BHF solution, and then the photoresist was removed.

그 후, 약 8% 수산화칼륨(KOH) 용액을 이용하여 70℃에서 8분동안 텍스처링하였다. 이어서, 실리콘 기판 전면상의 SiO2막을 7:1 BHF용액을 이용하여 2분 30초동안 에칭하였다.Thereafter, texturing was performed at 70 ° C. for 8 minutes using about 8% potassium hydroxide (KOH) solution. The SiO 2 film on the entire silicon substrate was then etched for 2 minutes 30 seconds using a 7: 1 BHF solution.

상기 실리콘 기판 전면에 POCl3을 약 840℃에서 20분동안 확산하여 약 150 내지 240Ω/? 정도의 시트 저항을 갖는 n+` 반도체층을 형성하고 나서, 실리콘 기판 전면의 n+ 형 반도체층 상부에 SiO2막을 형성하였다.POCl 3 was diffused on the entire surface of the silicon substrate at about 840 ° C. for 20 minutes to about 150 to 240 Ω /? N + ` type with sheet resistance After the semiconductor layer was formed, a SiO 2 film was formed over the n + type semiconductor layer on the entire silicon substrate.

실리콘 기판 후면 전체에 알루미늄(Al)을 증착하고 900 내지 980℃에서 1 내지 2시간동안 소결하여 약 2㎛ 접합 두께의 p+ 반도체층을 형성하였다.Aluminum (Al) was deposited on the entire back surface of the silicon substrate and sintered at 900 to 980 ° C. for 1 to 2 hours to form a p + semiconductor layer having a thickness of about 2 μm.

리소그래피공정을 이용하여 실리콘 기판 전면의 소정영역에 약 600Å 두께의 Ti, 약 600Å 두께의 Pd 및 약 600Å 두께의 Ag을 순차적으로 증착하여 복수개의 라인형 전면전극을 형성하였다. By using a lithography process, a plurality of line-type front electrodes were formed by sequentially depositing Ti of about 600 GPa, Pd of about 600 GPa, and Ag of about 600 GPa in a predetermined region on the front surface of the silicon substrate.

이어서, 실리콘 기판 후면에 알루미늄을 증착하여 약 1㎛ 두께의 후면전극을 형성하였다. 그리고 나서, Ti과 Pd을 순차적으로 도금하여 약 50nm 두께의 전도성 금속층을 형성하였다.Subsequently, aluminum was deposited on the back surface of the silicon substrate to form a back electrode having a thickness of about 1 μm. Then, Ti and Pd were sequentially plated to form a conductive metal layer having a thickness of about 50 nm.

이어서, 상기 전면전극과 실리콘 기판 후면의 전도성 금속층 상부에 은(Ag)을 전기도금하여 약 1㎛ 두께의 은층을 형성함으로써 실리콘 태양전지를 완성하였다. Subsequently, a silicon solar cell was completed by electroplating silver (Ag) on the front electrode and the conductive metal layer on the back surface of the silicon substrate to form a silver layer having a thickness of about 1 μm.

<실시예 2><Example 2>

p형 실리콘 기판의 전면과 후면에 약 1300Å 두께의 SiO2막을 형성하였다. 그리고 나서 상기 실리콘 기판의 전면의 SiO2막 상부에 포지티브 포토레지스트를 약 1㎛ 두께로 도포한 다음, 새도우마스크를 이용하여 소정부위만을 노광처리한 다음, 현상하였다.An SiO 2 film having a thickness of about 1300 μs was formed on the front and rear surfaces of the p-type silicon substrate. Then, a positive photoresist was applied on the SiO 2 film on the entire surface of the silicon substrate to a thickness of about 1 μm, and only a predetermined portion was exposed using a shadow mask and then developed.

이러한 과정을 거쳐 형성된 포토레지스트 패턴을 식각 마스크로 하고 7:1 BHF 용액을 이용하여 SiO2막을 약 2분 30초동안 에칭한 다음, 포토레지스트를 제거하였다.The photoresist pattern formed through this process was used as an etching mask, and the SiO 2 film was etched for about 2 minutes and 30 seconds using a 7: 1 BHF solution, and then the photoresist was removed.

그 후, 약 8% 수산화칼륨(KOH) 용액을 이용하여 70℃에서 8분동안 텍스처링하였다. 이어서, 실리콘 기판 전면상의 SiO2막을 7:1 BHF용액을 이용하여 2분 30초동안 에칭하였다.Thereafter, texturing was performed at 70 ° C. for 8 minutes using about 8% potassium hydroxide (KOH) solution. The SiO 2 film on the entire silicon substrate was then etched for 2 minutes 30 seconds using a 7: 1 BHF solution.

상기 실리콘 기판 전면에 POCl3을 약 840℃에서 20분동안 확산하여 약 150 내지 240Ω/? 정도의 시트 저항을 갖는 n+ 반도체층을 형성하고 나서, 실리콘 기판 전면의 n+ 형 반도체층 상부에 SiO2막을 형성하였다.POCl 3 was diffused on the entire surface of the silicon substrate at about 840 ° C. for 20 minutes to about 150 to 240 Ω /? N + type with sheet resistance After the semiconductor layer was formed, a SiO 2 film was formed over the n + type semiconductor layer on the entire silicon substrate.

실리콘 기판 후면 전체에 알루미늄(Al)을 증착하고 900 내지 980℃에서 1 내지 2시간동안 소결하여 약 2㎛ 접합 두께의 p+ 반도체층을 형성하였다.Aluminum (Al) was deposited on the entire back surface of the silicon substrate and sintered at 900 to 980 ° C. for 1 to 2 hours to form a p + semiconductor layer having a thickness of about 2 μm.

리소그래피공정을 이용하여 실리콘 기판 전면의 소정영역에 약 600Å 두께의 Ti, 약 600Å 두께의 Pd 및 약 600Å 두께의 Ag을 순차적으로 증착하여 복수개의 라인형 전면전극을 형성하였다. By using a lithography process, a plurality of line-type front electrodes were formed by sequentially depositing Ti of about 600 GPa, Pd of about 600 GPa, and Ag of about 600 GPa in a predetermined region on the front surface of the silicon substrate.

이어서, 실리콘 기판 후면에 알루미늄을 증착하여 약 1㎛ 두께의 후면전극을 형성하였다. 그리고 나서, 은(Ag)을 전기도금하여 약 1㎛ 두께의 은층을 형성하였고, 티타늄과 팔라듐을 순차적으로 증착하여 약 50nm 두께의 전도성 금속층을 형성함으로써 실리콘 태양전지를 완성하였다. Subsequently, aluminum was deposited on the back surface of the silicon substrate to form a back electrode having a thickness of about 1 μm. Then, silver (Ag) was electroplated to form a silver layer having a thickness of about 1 μm, and titanium and palladium were sequentially deposited to form a silicon metal cell having a thickness of about 50 nm.

<비교예>Comparative Example

p형 실리콘 기판의 전면과 후면에 약 1300Å 두께의 SiO2막을 형성하였다. 그리고 나서 상기 실리콘 기판의 전면의 SiO2막 상부에 포지티브 포토레지스트를 약 1㎛ 두께로 도포한 다음, 새도우마스크를 이용하여 소정부위만을 노광처리한 다음, 현상하였다.An SiO 2 film having a thickness of about 1300 μs was formed on the front and rear surfaces of the p-type silicon substrate. Then, a positive photoresist was applied on the SiO 2 film on the entire surface of the silicon substrate to a thickness of about 1 μm, and only a predetermined portion was exposed using a shadow mask and then developed.

이러한 과정을 거쳐 형성된 포토레지스트 패턴을 식각 마스크로 하고 7:1 BHF 용액을 이용하여 SiO2막을 약 2분 30초동안 에칭한 다음, 포토레지스트를 제거하였다.The photoresist pattern formed through this process was used as an etching mask, and the SiO 2 film was etched for about 2 minutes and 30 seconds using a 7: 1 BHF solution, and then the photoresist was removed.

그 후, 약 8% 수산화칼륨(KOH) 용액을 이용하여 70℃에서 8분동안 텍스처링하였다. 이어서, 실리콘 기판 전면상의 SiO2막을 7:1 BHF용액을 이용하여 2분 30초동안 에칭하였다.Thereafter, texturing was performed at 70 ° C. for 8 minutes using about 8% potassium hydroxide (KOH) solution. The SiO 2 film on the entire silicon substrate was then etched for 2 minutes 30 seconds using a 7: 1 BHF solution.

상기 실리콘 기판 전면에 POCl3을 약 840℃에서 20분동안 확산하여 약 150 내지 240Ω/? 정도의 시트 저항을 갖는 n+ 반도체층을 형성하고 나서, 실리콘 기판 전면의 n+ 형 반도체층 상부에 SiO2막을 형성하였다.POCl 3 was diffused on the entire surface of the silicon substrate at about 840 ° C. for 20 minutes to about 150 to 240 Ω /? N + type with sheet resistance After the semiconductor layer was formed, a SiO 2 film was formed over the n + type semiconductor layer on the entire silicon substrate.

실리콘 기판 후면 전체에 알루미늄(Al)을 증착하고 900 내지 980℃에서 1 내지 2시간동안 소결하여 약 2㎛ 접합 두께의 p+ 반도체층을 형성하였다.Aluminum (Al) was deposited on the entire back surface of the silicon substrate and sintered at 900 to 980 ° C. for 1 to 2 hours to form a p + semiconductor layer having a thickness of about 2 μm.

리소그래피공정을 이용하여 실리콘 기판 전면의 소정영역에 약 600Å 두께의 Ti, 약 600Å 두께의 Pd 및 약 600Å 두께의 Ag을 순차적으로 증착하여 복수개의 라인형 전면전극을 형성하였다.By using a lithography process, a plurality of line-type front electrodes were formed by sequentially depositing Ti of about 600 GPa, Pd of about 600 GPa, and Ag of about 600 GPa in a predetermined region on the front surface of the silicon substrate.

그 후, 리프트 오프(lift off) 공정을 실시하여 레지스트와 불필요한 Ti, Pd 및 Ag층을 제거하였다. 이어서 실리콘 기판 후면에 알루미늄을 증착하여 후면전극을 형성하였다.Thereafter, a lift off process was performed to remove the resist and unnecessary Ti, Pd and Ag layers. Subsequently, aluminum was deposited on the back of the silicon substrate to form a back electrode.

상기 실시예 2에 따라 제조된 태양전지에 있어서, 개방회로전압(Voc), 단락회로전류밀도(JSC), 충진율(fill factor: FF) 및 전체변환효율(Eff)을 측정하였다. 이 때 측정은 실리콘 기판 후면에 은(Ag)을 전기도금한 후(No. 1)와 전도성 금속층을 형성한 후(No. 2) 2차례에 걸쳐 각각 실시하였으며, 그 결과를 하기 표 1에 나타내었다.In the solar cell manufactured according to Example 2, the open circuit voltage (V oc ), the short circuit current density (J SC ), the fill factor (FF) and the total conversion efficiency (E ff ) were measured. In this case, the measurement was performed two times after electroplating silver (Ag) on the back surface of the silicon substrate (No. 1) and after forming a conductive metal layer (No. 2), and the results are shown in Table 1 below. It was.

[표 1]TABLE 1

구분division Voc (mV)V oc (mV) JSC (mA/㎠)J SC (mA / ㎠) FF(%)FF (%) Eff(%)E ff (%) No. 1No. One 655655 37.737.7 74.474.4 18.418.4 No. 2No. 2 654654 37.937.9 76.876.8 19.119.1

상기 표 1로부터, 실시예 2에 따른 태양전지는 비교예에 따라 제조된 태양전지의 경우보다 변환효율이 향상된다는 것을 알 수 있었다.From Table 1, it can be seen that the solar cell according to Example 2 has improved conversion efficiency than that of the solar cell manufactured according to the comparative example.

또한 도 6에는 실시예 2에 따라 제조된 실리콘 태양전지(점선)와 비교예에 따라 제조된 태양전지(실선)에 있어서, 빛의 파장에 따른 양자효율 변화를 비교분석하여 나타냈다.In addition, Fig. 6 shows the comparative analysis of the quantum efficiency change according to the wavelength of light in the silicon solar cell (dotted line) manufactured according to Example 2 and the solar cell (solid line) manufactured according to the comparative example.

이를 참조하면, 실시예에 따라 제조된 태양전지에서는 후면에 반사막 역할을 하는 금속층의 형성으로 여분의 전자-정공 캐리어를 생성시킴으로써 비교예의 경우에 비하여 양자효율이 향상됨을 알 수 있었다.Referring to this, it can be seen that in the solar cell manufactured according to the embodiment, the quantum efficiency was improved compared to the comparative example by generating an extra electron-hole carrier by forming a metal layer serving as a reflective film on the rear surface.

본 발명에 따른 실리콘 태양전지는 기판 후면에 도달된 빛을 효율적으로 반사시킬 수 있는 후면구조를 가지고 있다. 따라서 여분의 캐리어 형성으로 전체적인 광전류가 증가함으로써 개방회로전압과 변환효율이 향상된다. 또한, 후면 금속에 의한 MOS(Metal Oxide Silicon) 구조에 의하여 인가된 후면에서의 전자들을 태양전지 상층부로 밀어냄으로써 캐리어의 표면 재결합 속도를 낮춘다. Silicon solar cell according to the present invention has a back structure that can efficiently reflect the light reached to the back of the substrate. Therefore, the open circuit voltage and the conversion efficiency are improved by increasing the overall photocurrent by forming an extra carrier. In addition, the surface recombination rate of the carrier is lowered by pushing electrons from the rear surface applied by the metal oxide silicon (MOS) structure by the rear metal to the upper portion of the solar cell.

도 1은 종래의 실리콘 태양전지의 구조를 나타낸 도면이고,1 is a view showing the structure of a conventional silicon solar cell,

도 2는 실리콘 기판에 빛이 투과되는 상태를 나타낸 도면이고.2 is a view showing a state in which light is transmitted to the silicon substrate.

도 3은 실리콘 기판 후면에서 빛이 반사되는 상태를 나타낸 도면이고,3 is a view showing a state in which light is reflected from the back of the silicon substrate,

도 4 및 도 5는 본 발명에 따른 실리콘 태양전지의 구조를 도시한 도면들이고,4 and 5 are views showing the structure of a silicon solar cell according to the present invention,

도 6은 실시예 및 비교예에 따라 제조된 태양전지에 있어서, 빛의 파장변화에 따른 양자효율의 변화를 나타낸 그래프이다.6 is a graph showing a change in quantum efficiency according to the wavelength change of light in the solar cells manufactured according to the Examples and Comparative Examples.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

11, 41, 51... p형 실리콘기판 12, 42, 52... n+ 형 반도체층11, 41, 51 ... p-type silicon substrate 12, 42, 52 ... n + type semiconductor layer

12', 42', 52'... n++ 반도체층 13, 43, 53... 산화막12 ', 42', 52 '... n ++ type Semiconductor layers 13, 43, 53 ... oxide film

14, 44, 54... 라인형 전면전극 15, 45, 55... 후면전극14, 44, 54 ... Line front electrode 15, 45, 55 ... Rear electrode

46, 56... 금속박막층 47, 57... 은(Ag)층46, 56 ... metal thin layer 47, 57 ... silver (Ag) layer

Claims (8)

p형 실리콘 기판;p-type silicon substrate; 텍스처링된 기판 전면에 순차적으로 형성되어 있는 n+형 반도체층 및 산화막;An n + type semiconductor layer and an oxide film sequentially formed on the entire surface of the textured substrate; 상기 기판 전면상에 순차적으로 평형하게 이격되도록 형성되어 있고, 전도성 금속으로 된 복수개의 라인형 전면전극;A plurality of line type front electrodes formed on the front surface of the substrate to be sequentially spaced apart in equilibrium and made of a conductive metal; 평탄화된 기판 후면에 형성되어 있는 p+ 반도체층;P + on the back of the planarized substrate A semiconductor layer; 상기 p+ 반도체층 하부에 형성된 알루미늄(Al)으로 이루어진 후면전극;P + type A back electrode made of aluminum (Al) formed under the semiconductor layer; 상기 후면전극 하부에 형성되며, 크롬(Cr), 티타늄(Ti), 티타늄(Ti)/팔라늄(Pd)으로 이루어진 군으로부터 선택된 물질로 이루어진 전도성 금속층을 포함하며,It is formed under the back electrode, and includes a conductive metal layer made of a material selected from the group consisting of chromium (Cr), titanium (Ti), titanium (Ti) / palladium (Pd), 상기 후면전극과 전도성 금속층 사이에 은(Ag)층이 형성된 것을 특징으로 하는 실리콘 태양전지.The silicon solar cell, characterized in that a silver (Ag) layer is formed between the back electrode and the conductive metal layer. 제1항에 있어서, 상기 전도성 금속층 하부에 은(Ag)층이 더 형성되어 있는 것을 특징으로 하는 실리콘 태양전지.The silicon solar cell of claim 1, further comprising a silver layer under the conductive metal layer. 제1항에 있어서, 상기 전도성 금속층의 두께가 60 내지 100nm인 것을 특징으로 하는 실리콘 태양전지.The silicon solar cell of claim 1, wherein the conductive metal layer has a thickness of 60 nm to 100 nm. 제1항 또는 제2항에 있어서, 상기 은(Ag)층의 두께가 0.5 내지 5 ㎛인 것을 특징으로 하는 실리콘 태양전지.The silicon solar cell of claim 1 or 2, wherein the silver (Ag) layer has a thickness of 0.5 to 5 µm. (a) p형 실리콘 기판상에 산화막을 형성하는 단계;(a) forming an oxide film on the p-type silicon substrate; (b) 실리콘 기판 전면상의 산화막 상부에 포토레지스트 패턴을 형성하고 이 포토레지스트 패턴을 이용하여 산화막을 에칭하는 단계;(b) forming a photoresist pattern over the oxide film on the entire silicon substrate and etching the oxide film using the photoresist pattern; (c) 상기 포토레지스트 패턴을 제거하고 텍스처링을 실시하는 단계;(c) removing the photoresist pattern and performing texturing; (d) 실리콘 기판 상의 산화막을 에칭하는 단계;(d) etching the oxide film on the silicon substrate; (e) 실리콘 기판 전면상에 인(P)을 확산하여 n+형 반도체층을 형성하고 나서 실리콘 기판 전면의 n+형 반도체층 상부에 산화막을 형성하는 단계;(e) diffusing phosphorus (P) on the entire surface of the silicon substrate to form an n + -type semiconductor layer, and then forming an oxide film on the n + -type semiconductor layer over the silicon substrate; (f) 실리콘 기판 후면 전체에 알루미늄을 증착한 다음, 소결하여 p+ 반도체층을 형성하는 단계;(f) Aluminum was deposited on the entire backside of the silicon substrate, followed by sintering to form p + Forming a semiconductor layer; (g) 실리콘 기판 전면의 소정영역에 전도성 금속을 도금하여 복수개의 라인형 전면전극을 형성하는 단계;(g) forming a plurality of line type front electrodes by plating a conductive metal on a predetermined region of the front surface of the silicon substrate; (h) 실리콘 기판 후면에 알루미늄(Al)으로 된 후면전극을 형성하는 단계;(h) forming a rear electrode made of aluminum (Al) on the back surface of the silicon substrate; (i) 상기 후면 전극 하부에 은을 도금하여 은(Ag)층을 형성한 다음, 은(Ag)층 하부에 크롬(Cr), 티타늄(Ti), 티타늄(Ti)/팔라듐(Pd)으로 이루어진 군으로부터 선택된 물질로 이루어진 전도성 금속층을 형성하는 단계를 포함하는 것을 특징으로 하는 실리콘 태양전지의 제조방법.(i) forming a silver (Ag) layer by plating silver under the rear electrode, and then chromium (Cr), titanium (Ti), and titanium (Ti) / palladium (Pd) below the silver (Ag) layer. Forming a conductive metal layer made of a material selected from the group comprising the method of manufacturing a silicon solar cell. 상기 실리콘 기판 후면의 전도성 금속층 하부에 은(Ag)을 도금하는 단계를 더 포함하는 것을 특징으로 하는 실리콘 태양전지의 제조방법.The method of manufacturing a silicon solar cell further comprising the step of plating silver (Ag) on the lower conductive metal layer on the back of the silicon substrate. 상기 전도성 금속층의 두께가 60 내지 100nm인 것을 특징으로 하는 실리콘 태양전지의 제조방법.The method of manufacturing a silicon solar cell, characterized in that the thickness of the conductive metal layer is 60 to 100nm. 제6항에 있어서, 상기 은(Ag)층의 두께가 0.5 내지 5 ㎛인 것을 특징으로 하는 실리콘 태양전지의 제조방법.The method of claim 6, wherein the silver (Ag) layer has a thickness of 0.5 to 5 μm.
KR1019970007253A 1997-03-05 1997-03-05 Silicon solar cell and its manufacturing method KR100446593B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970007253A KR100446593B1 (en) 1997-03-05 1997-03-05 Silicon solar cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970007253A KR100446593B1 (en) 1997-03-05 1997-03-05 Silicon solar cell and its manufacturing method

Publications (2)

Publication Number Publication Date
KR19980072419A KR19980072419A (en) 1998-11-05
KR100446593B1 true KR100446593B1 (en) 2005-07-04

Family

ID=37303177

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970007253A KR100446593B1 (en) 1997-03-05 1997-03-05 Silicon solar cell and its manufacturing method

Country Status (1)

Country Link
KR (1) KR100446593B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100852689B1 (en) * 2002-05-14 2008-08-19 삼성에스디아이 주식회사 Solar cell and fabrication method thereof
KR101168589B1 (en) * 2008-03-26 2012-07-30 엘지전자 주식회사 Method for texturing of silicon solar cell using surfactant
KR101295552B1 (en) * 2011-11-16 2013-08-12 엘지전자 주식회사 Solar cell and method for manufacturing the same
KR101406882B1 (en) * 2012-04-09 2014-06-16 한국과학기술원 Organic thin-film photovoltaic cell using transparent texturing film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196772A (en) * 1984-10-17 1986-05-15 Toshiba Corp Surface treating method of semiconductor substrate for solar battery
JPS62237765A (en) * 1986-04-09 1987-10-17 Hitachi Ltd Solar cell
JPH02143467A (en) * 1988-11-24 1990-06-01 Sharp Corp Manufacture of solar cell
JPH03218684A (en) * 1990-01-24 1991-09-26 Hitachi Ltd Solar cell element and manufacture thereof
JPH05160420A (en) * 1991-12-04 1993-06-25 Sharp Corp Solar cell
KR960009237A (en) * 1994-08-29 1996-03-22 김광호 Manufacturing method of automatic alignment solar cell and its solar cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196772A (en) * 1984-10-17 1986-05-15 Toshiba Corp Surface treating method of semiconductor substrate for solar battery
JPS62237765A (en) * 1986-04-09 1987-10-17 Hitachi Ltd Solar cell
JPH02143467A (en) * 1988-11-24 1990-06-01 Sharp Corp Manufacture of solar cell
JPH03218684A (en) * 1990-01-24 1991-09-26 Hitachi Ltd Solar cell element and manufacture thereof
JPH05160420A (en) * 1991-12-04 1993-06-25 Sharp Corp Solar cell
KR960009237A (en) * 1994-08-29 1996-03-22 김광호 Manufacturing method of automatic alignment solar cell and its solar cell

Also Published As

Publication number Publication date
KR19980072419A (en) 1998-11-05

Similar Documents

Publication Publication Date Title
US7388147B2 (en) Metal contact structure for solar cell and method of manufacture
US4773942A (en) Flexible photovoltaic device
KR101144810B1 (en) Electrode paste for solar cell, solar cell using the paste, and manufacturing method of the solar cell
EP1650812B1 (en) Method for making a silicon based thin film solar cell
US9093590B2 (en) Solar cell and solar cell manufacturing method
US8664525B2 (en) Germanium solar cell and method for the production thereof
JP2008512858A (en) Manufacturing process and manufacturing method of emitter wrap through back contact solar cell
WO1995012898A1 (en) High efficiency silicon solar cells and methods of fabrication
JP4963866B2 (en) Method for manufacturing photoelectric conversion element
US4956023A (en) Integrated solar cell device
JP3781600B2 (en) Solar cell
JPH05315628A (en) Manufacture of photoelectric conversion device
KR100446593B1 (en) Silicon solar cell and its manufacturing method
KR100416740B1 (en) Method for fabricating rear locally sintered silicon solar cell
KR20200036780A (en) Solar cell and method for manufacturing the same
JP2001257371A (en) Method for manufacturing solar cell, solar cell and condensing type solar cell module
KR100322708B1 (en) Method for fabricating self-voltage applying solar cell
KR20190079622A (en) Method for manufacturing high photoelectric conversion efficiency solar cell and high photoelectric conversion efficiency solar cell
CN108389928B (en) Solar cell and preparation method thereof
KR100374811B1 (en) Process for preparing buried contact solar cell
KR100322709B1 (en) Self-voltage applying solar cell and module using the same
KR950003951B1 (en) Manufacturing method of solar cell
KR810001712B1 (en) Fabrication method of sollar-cell by diffusing sillicon
KR101151413B1 (en) Solar cell having multimple anti-reflection film and manufacturing method thereof
KR940003430B1 (en) Manufacturing method of solar cell forming antireflection film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080729

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee