JPH0528912B2 - - Google Patents

Info

Publication number
JPH0528912B2
JPH0528912B2 JP61034801A JP3480186A JPH0528912B2 JP H0528912 B2 JPH0528912 B2 JP H0528912B2 JP 61034801 A JP61034801 A JP 61034801A JP 3480186 A JP3480186 A JP 3480186A JP H0528912 B2 JPH0528912 B2 JP H0528912B2
Authority
JP
Japan
Prior art keywords
semiconductor film
distribution
laser beam
film
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61034801A
Other languages
Japanese (ja)
Other versions
JPS62193182A (en
Inventor
Seiichi Kyama
Keisho Yamamoto
Hideki Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61034801A priority Critical patent/JPS62193182A/en
Priority to US07/015,691 priority patent/US4755475A/en
Publication of JPS62193182A publication Critical patent/JPS62193182A/en
Publication of JPH0528912B2 publication Critical patent/JPH0528912B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はレーザビームの如きエネルギビームを
利用した光起電力装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a method for manufacturing a photovoltaic device using an energy beam such as a laser beam.

(ロ) 従来の技術 第1図は米国特許第4281208号に開示されてい
ると共に、既に実用化されている光起電力装置の
基本構造を示し、1はガラス、耐熱プラスチツク
等の絶縁性且つ透光性を有する基板、2a,2
b,2c…は基板1上に一定間隔で被着された透
明電極膜、3a,3b,3c…は各透明電極膜上
に重畳被着された非晶質シリコン等の非晶質半導
体膜、4a,4b,4c…は各非晶質半導体膜上
に重畳被着され、かつ各右隣りの透明電極膜2
b,2c…に部分的に重畳せる裏面電極膜で、斯
る透明電極膜2a,2b,2c…乃至裏面電極膜
4a,4b,4c…の各積層体により光電変換素
子5a,5b,5c…が構成されている。
(b) Prior art Figure 1 shows the basic structure of a photovoltaic device that is disclosed in U.S. Pat. No. 4,281,208 and has already been put into practical use. Substrate with optical properties, 2a, 2
b, 2c... are transparent electrode films deposited at regular intervals on the substrate 1, 3a, 3b, 3c... are amorphous semiconductor films such as amorphous silicon deposited on each transparent electrode film, 4a, 4b, 4c... are superimposed and deposited on each amorphous semiconductor film, and are adjacent to each transparent electrode film 2 on the right.
photoelectric conversion elements 5a, 5b, 5c... by each laminate of transparent electrode films 2a, 2b, 2c... or back electrode films 4a, 4b, 4c... is configured.

各非晶質半導体膜3a,3b,3c…は、その
内部に例えば膜面に平行なPIN接合を含み、従つ
て透光性基板1及び透明電極膜2a,2b,2c
…を順次介して光入射があると、光起電力を発生
する。各非晶質半導体膜3a,3b,3c…内で
発生した光起電力は裏面電極膜4a,4b,4c
…での接続により直列的に相加される。
Each amorphous semiconductor film 3a, 3b, 3c... includes, for example, a PIN junction parallel to the film surface inside thereof, and therefore the transparent substrate 1 and the transparent electrode film 2a, 2b, 2c...
When light is incident sequentially through..., a photovoltaic force is generated. The photovoltaic force generated within each amorphous semiconductor film 3a, 3b, 3c... is the back electrode film 4a, 4b, 4c.
... are added in series by connection.

通常、斯る構成の光起電力装置にあつては細密
加工性に優れている写真蝕刻技術が用いられてい
る。この技術による場合、基板1上全面への透明
電極膜の被着工程と、フオトレジスト及びエツチ
ングによる各個別の透明電極膜2a,2b,2c
…の分離、即ち、各透明電極膜2a,2b,2c
…の隣接間隔部分の除去工程と、これら各透明電
極膜上を含む基板1上全面への非晶質半導体膜の
被着工程と、フオトレジスト及びエツチングによ
る各個別の非晶質半導体膜3a,3b,3c…の
分離、即ち、各非晶質半導体膜3a,3b,3c
…の隣接間隔部分の除去工程とを順次経ることに
なる。
Photo-etching technology, which has excellent precision machinability, is usually used in photovoltaic devices having such a configuration. In the case of this technique, a step of depositing a transparent electrode film on the entire surface of the substrate 1, and each individual transparent electrode film 2a, 2b, 2c by photoresist and etching are performed.
Separation of..., that is, each transparent electrode film 2a, 2b, 2c
..., the step of depositing an amorphous semiconductor film on the entire surface of the substrate 1 including on each of these transparent electrode films, and the step of removing each individual amorphous semiconductor film 3a, by photoresist and etching. 3b, 3c..., that is, each amorphous semiconductor film 3a, 3b, 3c
. . . The steps of removing the adjacent spaced portions are sequentially performed.

然し乍ら、写真蝕刻技術は細密加工の上で優れ
てはいるが、蝕刻パターンを規定するフオトレジ
ストのピンホールや周縁での剥れによる非晶質半
導体膜に欠陥を生じさせやすい。
However, although the photo-etching technique is excellent in terms of fine processing, it tends to cause defects in the amorphous semiconductor film due to pinholes or peeling at the periphery of the photoresist that defines the etching pattern.

特開昭57−12568号公報に開示された先行技術
は、レーザビームの照射による膜の焼き切りで上
記隣接間隔を設けるものであり、写真蝕刻技術で
必要なフオトレジスト、即ちウエツトプロセスを
一切使わず細密加工性に富むその技法は上記の課
題を解決する上で極めて有効である。
The prior art disclosed in Japanese Unexamined Patent Publication No. 12568/1985 creates the above-mentioned adjacent spacing by burning out the film by laser beam irradiation, and does not use any photoresist, that is, a wet process, which is necessary for photolithography. This technique, which has excellent precision processing properties, is extremely effective in solving the above problems.

然し乍ら、上述の如くウエツトプロセスを一切
使わないレーザ加工は細密加工性の点に於いて極
めて有効である反面、第2図a〜cに夫々要部を
拡大して示す如き問題点を含んでいる。即ち、既
に各光電変換素子5a,5b…毎に分割配置され
た透明電極膜2a,2b…上に、非晶質半導体膜
を連続的に跨がつて形成し、その半導体膜を各光
電変換素子毎に分割すべくレーザビームLBの照
射により隣接間隔部に位置する半導体膜を除去す
ると、第2図aの如く、レーザビームLBの周縁
部が照射された半導体膜部分は、該レーザビーム
LBの周縁部が除去するに足りる十分なエネルギ
を持たないためにアニーリングされ微結晶化、或
いは結晶化されてその結果、低抵抗層6a,6b
を形成したり、第2図bのように除去部分界面に
半導体膜の溶融物の残留物7が残存したりして予
め定められたパターンに正確に除去することがで
きない。斯る除去部分界面に残存する残留物7や
低抵抗層6a,6bの形成はレーザビームLBに
於けるエネルギ密度の分布が正規分布、即ちガウ
ス分布するために、除去すべき隣接間隔部の両側
面に照射される周縁部が中心部に較べ低エネルギ
分布となり、その結果発生するものと考えられ
る。更に、照射せしめられるレーザビームLBが
上述の如き中心部に較べ周縁部が低エネルギ分布
となるガエウス分布を呈すると、除去される半導
体膜は光電変換素子5a,5b…毎に半導体膜3
a,3b…を分割せしめるのみならずこれら隣接
光電変換素子5a,5b…同士を電気的に直列接
続すべく透明電極膜2b…を露出せしめる働きも
あり、斯る露出長は直列抵抗成分の増加を招かな
いために可及的に減少せしめることができず、従
つて幅広なレーザビームを必要とし、その結果中
心部は極めて高エネルギ状態となり、第2図cの
如く熱的ダメージ8を与えてしまう。
However, as mentioned above, although laser machining that does not use any wet process is extremely effective in terms of precision machining, it also has some problems, as shown in enlarged views of the main parts in Figures 2 a to c. There is. That is, an amorphous semiconductor film is formed continuously over the transparent electrode films 2a, 2b, which have already been divided and arranged for each photoelectric conversion element 5a, 5b, and the semiconductor film is applied to each photoelectric conversion element. When the semiconductor film located at adjacent intervals is removed by irradiation with the laser beam LB in order to divide the semiconductor film into two parts, as shown in FIG.
Since the periphery of the LB does not have enough energy to remove it, it is annealed and microcrystallized or crystallized, resulting in low resistance layers 6a and 6b.
It is not possible to accurately remove the semiconductor film in a predetermined pattern because of the formation of a molten semiconductor film or the residue 7 of the molten semiconductor film remaining at the interface of the removed portion as shown in FIG. 2b. The formation of the residue 7 and the low resistance layers 6a and 6b remaining at the interface of the removed portion is caused by the formation of the residual material 7 and the low resistance layers 6a and 6b on both sides of the adjacent gap portion to be removed because the energy density distribution in the laser beam LB is a normal distribution, that is, a Gaussian distribution. This is thought to occur as a result of a lower energy distribution at the periphery where the surface is irradiated than at the center. Furthermore, when the irradiated laser beam LB exhibits a Gaussian distribution in which the energy distribution is lower at the periphery than at the center as described above, the semiconductor film to be removed is the semiconductor film 3 for each photoelectric conversion element 5a, 5b...
It not only divides the photoelectric conversion elements 5a, 3b... but also exposes the transparent electrode film 2b to electrically connect these adjacent photoelectric conversion elements 5a, 5b... in series, and such exposed length increases the series resistance component. Therefore, a wide laser beam is required, resulting in an extremely high energy state at the center, causing thermal damage 8 as shown in Figure 2c. Put it away.

特に、上記半導体膜の低抵抗層6a,6bの形
成は、レーザビームLBの照射により半導体膜3
a,3b…を物理的に分離できたとしても、この
低抵抗層6bを介して同一光電変換素子5b…の
透明電極膜2b…と裏面電極膜4b…と結合する
ために当該光電変換素子5b…を短絡せしめる原
因となる。
In particular, the formation of the low resistance layers 6a and 6b of the semiconductor film is performed by irradiating the semiconductor film 3 with the laser beam LB.
Even if it is possible to physically separate a, 3b..., the photoelectric conversion element 5b... is coupled to the transparent electrode film 2b... and the back electrode film 4b... of the same photoelectric conversion element 5b via the low resistance layer 6b. It causes a short circuit.

(ハ) 発明が解決しようとする問題点 本発明は上述の如き短絡事故の原因となる半導
体膜の除去部分界面に於ける低抵抗層の形成を解
決すると共に、斯る除去部分界面の残留物の残存
や下層への熱的ダメージを解決しようとするもの
である。
(c) Problems to be Solved by the Invention The present invention solves the formation of a low resistance layer at the interface of the removed portion of the semiconductor film, which causes short circuit accidents as described above, and also solves the problem of forming a low resistance layer at the interface of the removed portion of the semiconductor film, which causes the short circuit accident as described above. This is an attempt to solve the problem of residual heat and thermal damage to the underlying layer.

(ニ) 問題点を解決するための手段 本発明は上記問題点を解決するために、複数の
光電変換素子を基板の絶縁表面で電気的に直列接
続せしめた光起電力装置の製造方法であつて、上
記複数の光電変換素子を構成する複数の基板側電
極膜上に連続的に跨つて配置された非晶質半導体
膜に、エネルギ分布が照射領域に対して略均一な
エネルギビームを照射することで、当該照射領域
の半導体膜を、残留物を形成させることなく除去
し、該半導体膜を複数の光電変換素子毎に分割す
ると共に、当該除去にあつては、上記照射領域下
の上記電極膜への熱的ダメージを抑圧し、且つ該
照射領域の周縁部の半導体膜に実質的に低抵抗層
を形成させないことを特徴とする。
(d) Means for Solving the Problems In order to solve the above problems, the present invention provides a method for manufacturing a photovoltaic device in which a plurality of photoelectric conversion elements are electrically connected in series on an insulating surface of a substrate. Then, an energy beam having a substantially uniform energy distribution over the irradiation area is irradiated onto the amorphous semiconductor film disposed continuously over the plurality of substrate-side electrode films constituting the plurality of photoelectric conversion elements. By doing so, the semiconductor film in the irradiation area is removed without forming a residue, the semiconductor film is divided into a plurality of photoelectric conversion elements, and during the removal, the semiconductor film under the irradiation area is removed. It is characterized by suppressing thermal damage to the film and substantially not forming a low-resistance layer on the semiconductor film at the peripheral portion of the irradiation area.

(ホ) 作用 上述の如く、エネルギ分布が照射領域に対して
略均一なエネルギビームを、基板側電極膜上に配
置された半導体膜の予定箇所に照射することによ
つて、当該照射領域の半導体膜部分のみを実質的
に低抵抗層を形成することなく除去すると共に、
下層に位置する基板側電極膜への熱的ダメージを
低減し得る。
(e) Effect As described above, by irradiating a predetermined location of the semiconductor film disposed on the substrate-side electrode film with an energy beam whose energy distribution is substantially uniform over the irradiation region, the semiconductor film in the irradiation region is While only the film portion is removed without substantially forming a low resistance layer,
Thermal damage to the underlying substrate-side electrode film can be reduced.

(ヘ) 実施例 第3図乃至第8図は本発明方法の実施例を工程
順に示している。
(f) Examples FIGS. 3 to 8 show examples of the method of the present invention in the order of steps.

第3図の工程では、厚さ1mm〜3mm面積10cm×
10cm〜1m×1m程度の透明なガラス等の基板10
上全面に、厚さ2000Å〜5000Åの酸化錫(SnO2
からなる透明電極膜11が被着される。
In the process shown in Figure 3, the thickness is 1 mm to 3 mm, the area is 10 cm x
Substrate 10 of transparent glass, etc., approximately 10cm to 1m x 1m
Tin oxide (SnO 2 ) with a thickness of 2000 Å to 5000 Å on the entire top surface
A transparent electrode film 11 consisting of the following is deposited.

第4図の工程では、隣接間隔部11′がレーザ
ビームの照射により除去されて、個別の各透明電
極膜11a,11b,11c…が分離形成され
る。使用されるレーザは基板10にほとんど吸収
されることのない波長が適当であり、上記ガラス
に対しては0.35μm〜2.5μmの波長のパルス発振型
が好ましい。斯る好適な実施例は、波長約
1.06μmエネルギ密度13J/cm2、パルス周波数3K
HzのNd:YAGレーザであり、隣接間隔部11′
の間隔L1は約100μmに設定される。
In the process shown in FIG. 4, the adjacent spacing portions 11' are removed by laser beam irradiation, and individual transparent electrode films 11a, 11b, 11c, . . . are formed separately. It is appropriate for the laser used to have a wavelength that is hardly absorbed by the substrate 10, and for the above-mentioned glass, a pulse oscillation type laser with a wavelength of 0.35 μm to 2.5 μm is preferable. Such a preferred embodiment has a wavelength of approximately
1.06μm energy density 13J/cm 2 , pulse frequency 3K
Hz Nd:YAG laser, adjacent interval part 11'
The interval L 1 is set to about 100 μm.

第5図の工程では、各透明電極膜11a,11
b,11c…の表面を含んで基板10上全面に光
電変換に有効に寄与する厚さ5000Å〜7000Åの非
晶質シリコン(a−Si)等の非晶質半導体膜12
が被着される。斯る半導体膜12はその内部に膜
面に平行なPIN接合を含み、従つてより具体的に
は、まずP型の非晶質シリコンカーバイドが被着
され、次いでI型及びN型の非晶質シリコンが順
次積層被着される。
In the process shown in FIG. 5, each transparent electrode film 11a, 11
An amorphous semiconductor film 12 such as amorphous silicon (a-Si) with a thickness of 5000 Å to 7000 Å that effectively contributes to photoelectric conversion is spread over the entire surface of the substrate 10 including the surfaces of
is deposited. Such a semiconductor film 12 includes a PIN junction parallel to the film surface within it, and therefore, more specifically, P-type amorphous silicon carbide is first deposited, and then I-type and N-type amorphous silicon carbide is deposited. The high quality silicone is deposited in successive layers.

第6図の工程では、隣接間隔部12′がレーザ
ビームの照射により除去されて、個別の各非晶質
半導体膜12a,12b,12c…が分離形成さ
れる。斯る工程での特徴点は使用されるレーザビ
ームのエネルギ分布が照射領域に対して略均一な
分布を持つていることである。第9図は上記照射
領域に対して略均一なエネルギ分布を持ち照射領
域の形状が半径40μmの円形状レーザビームを照
射したときの照射表面に於ける温度分布を、上記
円形状レーザビームの中心部を起点としその半径
方向について描いたものである。斯る第9図から
明らかな如く、略均一なエネルギ分布を持つレー
ザビームの温度分布は、照射領域に対してエネル
ギ分布に応じた略一定の高温分布となり、照射領
域の界面にあつては僅かな被照射媒体の熱伝導に
よる温度こう配は見られるものの非照射領域の室
温にまで急峻に立下がり、全体としては略矩形状
の分布を呈する。
In the process shown in FIG. 6, the adjacent spacing portions 12' are removed by laser beam irradiation, and individual amorphous semiconductor films 12a, 12b, 12c, . . . are formed separately. A feature of this process is that the energy distribution of the laser beam used has a substantially uniform distribution over the irradiation area. Figure 9 shows the temperature distribution on the irradiated surface when the irradiated area is irradiated with a circular laser beam with a substantially uniform energy distribution and the irradiated area has a radius of 40 μm, and the temperature distribution at the center of the circular laser beam. The diagram is drawn in the radial direction starting from the point. As is clear from FIG. 9, the temperature distribution of a laser beam with a substantially uniform energy distribution results in a substantially constant high temperature distribution corresponding to the energy distribution over the irradiation area, and a slight temperature distribution at the interface of the irradiation area. Although a temperature gradient due to heat conduction of the irradiated medium is observed, the temperature drops sharply to the room temperature of the non-irradiated area, and the overall distribution is approximately rectangular.

一方、第10図は従来のガウス分布を持つ半径
50μmのレーザビームを使用したときの照射表面
に於ける温度分布を、第9図と同じく中心部を起
点としてその半径方向について描いてある。そし
て、中心部に於ける到達温度は第9図及び第10
図共に等しく、例えば斯るレーザビームの照射に
より被加工物である膜厚5000Åの非晶質半導体を
除去することができると共に、下層の透明電極膜
11a,11b,11cへの熱的ダメージを回避
し得る絶対温度約1400Kに設定されている。
On the other hand, Fig. 10 shows a radius with a conventional Gaussian distribution.
The temperature distribution on the irradiated surface when a 50 μm laser beam is used is plotted in the radial direction starting from the center, similar to FIG. 9. The temperature reached at the center is shown in Figures 9 and 10.
Both figures are the same, for example, by irradiating with such a laser beam, an amorphous semiconductor with a thickness of 5000 Å that is a workpiece can be removed, and thermal damage to the underlying transparent electrode films 11a, 11b, and 11c can be avoided. The possible absolute temperature is set to approximately 1400K.

第11図は、エネルギ分布が略均一分布を持ち
照射表面、即ち非晶質半導体膜12の表面に於け
る温度分布が第9図の略矩形状分布を呈するとき
の深さ(厚み)方向の温度分布を100K毎の等温
線を用いてシユミレーシヨンしたものである。シ
ユミレーシヨンの対象となつた試料はガラス基板
10上に膜厚2000ÅのSnO2からなる透明電極膜
11と、膜厚5000Åの非晶質シリコンの半導体膜
12を積層した構造を持つ。斯るシユミレーシヨ
ンの結果、半導体膜12の表面に約1400Kの温度
を与えたとき、上記半導体膜12の深さ方向であ
る厚み方向の等温分布幅は広く、SnO2透明電極
膜11との界面にあつても該半導体膜12を除去
し得る約1200K以上の温度状態にある。一方、半
径方向、即ち表面方向の等温分布幅は、照射表面
に於於ける界面温度こう配が急峻に立下つている
ために極めて狭い。
FIG. 11 shows the temperature distribution in the depth (thickness) direction when the energy distribution is approximately uniform and the temperature distribution on the irradiated surface, that is, the surface of the amorphous semiconductor film 12, exhibits the approximately rectangular distribution shown in FIG. This is a simulation of the temperature distribution using isotherms every 100K. The sample to be simulated has a structure in which a transparent electrode film 11 made of SnO 2 with a thickness of 2000 Å and a semiconductor film 12 of amorphous silicon with a thickness of 5000 Å are laminated on a glass substrate 10. As a result of such simulation, when a temperature of about 1400 K is applied to the surface of the semiconductor film 12, the isothermal distribution width in the thickness direction, which is the depth direction of the semiconductor film 12, is wide, and the temperature is increased at the interface with the SnO 2 transparent electrode film 11. Even if the temperature is about 1200 K or higher, the semiconductor film 12 can be removed. On the other hand, the isothermal distribution width in the radial direction, that is, in the surface direction, is extremely narrow because the interfacial temperature gradient at the irradiated surface falls steeply.

ところで、非晶質シリコンの半導体膜12を除
去し得る温度は該半導体膜12の形成方法や形成
条件等より多少変動するものの、概して上述の如
く約1200K以上であり、一方アニーリングされ低
抵抗層に変換される温度は約1000Kから除去温度
の約1200Kまでの間である。従つて、上記第11
図のシユミレーシヨンに於いて1200K以上の温度
領域の半導体膜12が除去され、1000K〜1200K
の温度領域の半導体膜が低抵抗層に変換されると
仮定すると、半導体膜12は中心から半径約
38μmの領域が除去されると共に、その除去界面
に実質的に無視し得る程度の低抵抗層を形成する
に止まる。
Incidentally, the temperature at which the amorphous silicon semiconductor film 12 can be removed varies somewhat depending on the method and conditions for forming the semiconductor film 12, but is generally about 1200 K or higher as mentioned above. The temperature to be converted is between about 1000 K and the removal temperature of about 1200 K. Therefore, the above 11th
In the simulation shown in the figure, the semiconductor film 12 in the temperature range of 1200K or higher is removed, and the temperature range of 1000K to 1200K is
Assuming that the semiconductor film in the temperature range of is converted into a low resistance layer, the semiconductor film 12 is approximately
A region of 38 μm is removed and a substantially negligible low resistance layer is formed at the removed interface.

一方、従来のガウス分布を持つレーザビームを
使用したときの照射表面に於ける温度分布は第1
0図に示した通りエネルギ分布と等価なガウス分
布を呈しており、このがウシアンビームを用いた
ときの100K毎の等温線を用いた深さ方向の温度
分布をシユミレーシヨンすると第12図のように
なる。即ち、照射領域の中心部に於ける深さ方向
の温度分布は第11図に示した均一分布と等しい
ものの、半径方向の等温分布幅は照射表面に於け
る温度こう配がなだらかなために、1200K〜
1000Kのアニーリング温度範囲に於いて表面部分
で約8μm、SnO2透明電極膜との界面部分で約
11μmの幅を持つ。従つて、従来のガウシアンレ
ーザビームを用いた加工にあつては、1200K以上
の温度領域の半導体膜が除去されたとしても、半
導体膜はその除去界面から半径方向に約8μm〜
11μmの広範囲に亘つて低抵抗層に変換されてい
たのである。更に、従来の加工にあつては半導体
膜の除去幅は半径にして10μm以下と、第11図
の加工の約38μmに比して狭い。その結果、隣接
した光電変換素子同士を斯る半導体膜の除去によ
り露出した透明電極膜の露出部分を介して電気的
に直列接続するために、上記半導体膜の除去幅を
広くしようとすれば、(a)レーザビームの強度を高
め中心部を高温度状態にして1200K以上の等温分
布幅を拡幅する方法と、(b)レーザビームの強度を
高める代わりにレーザビームの走査回数を増加さ
せる方法、2の2通りの方法が考えられる。
On the other hand, when using a conventional laser beam with a Gaussian distribution, the temperature distribution on the irradiated surface is
As shown in Figure 0, it exhibits a Gaussian distribution equivalent to the energy distribution, and when this temperature distribution in the depth direction is simulated using isotherms every 100K when using a Uthian beam, it becomes as shown in Figure 12. . That is, although the temperature distribution in the depth direction at the center of the irradiation area is equal to the uniform distribution shown in Fig. 11, the width of the isothermal distribution in the radial direction is 1200K because the temperature gradient at the irradiation surface is gentle. ~
In the annealing temperature range of 1000K, the surface area is approximately 8μm, and the interface area with the SnO 2 transparent electrode film is approximately 8μm.
It has a width of 11μm. Therefore, in conventional processing using a Gaussian laser beam, even if a semiconductor film in a temperature range of 1200K or higher is removed, the semiconductor film will be removed approximately 8 μm or more in the radial direction from the removed interface.
A wide range of 11 μm was converted into a low resistance layer. Furthermore, in conventional processing, the width of semiconductor film removal is less than 10 μm in radius, which is narrower than about 38 μm in the processing shown in FIG. As a result, in order to electrically connect adjacent photoelectric conversion elements in series through the exposed portion of the transparent electrode film exposed by the removal of the semiconductor film, if the removal width of the semiconductor film is increased, (a) A method of increasing the intensity of the laser beam and bringing the center into a high temperature state to widen the isothermal distribution width above 1200K; (b) A method of increasing the number of scans of the laser beam instead of increasing the intensity of the laser beam. There are two possible methods.

然し乍ら、この両者の方法にあつても低抵抗層
の形成は免れず、また(a)の方法にあつてはレーザ
ビームの中心部が極めて高エネルギ状態となり下
層の透明電極膜部分に熱的ダメージを与えたり、
(b)の方法にあつては走査回数が増加するために作
業性が低下する。それに反し、照射領域に対して
略均一なエネルギ分布のレーザビームを利用する
本実施例にあつては実質的に低抵抗層を形成する
ことなく、下層の膜に熱的ダメージを与えず、ま
た加工幅を広げることができる。
However, in both of these methods, the formation of a low resistance layer is inevitable, and in method (a), the center of the laser beam is in an extremely high energy state, causing thermal damage to the underlying transparent electrode film. give or
In method (b), the number of scans increases, resulting in a decrease in work efficiency. On the other hand, in this embodiment, which uses a laser beam with a substantially uniform energy distribution over the irradiation area, there is no substantial formation of a low-resistance layer, no thermal damage to the underlying film, and The processing range can be expanded.

上述の如き照射領域に対して略均一なエネルギ
分布を持つレーザビームは、第15図に示す如
く、エネルギ分布がガウス分布する通常のレーザ
ビームLB1Aの光路中に、上記レーザビームLB1
の中心部を起点に入射径に対して約25%の開口径
を有する角穴或いは丸穴20を持つアイリス21
を配置し、そのアイリス21の丸穴20を通過し
たレーザビームLB2を集光レンズ22に導き、該
集光レンズ22により集光したレーザビームLB3
を下記の条件に基づき被加工表面に照射すること
により得られる。即ち、アイリス21から集光レ
ンズ22の中心までの距離をa、集光レンズ22
の中心から被加工表面までの距離をb、集光レン
ズ22の焦点距離をfとすると、 1/a+1/b=1/f を満足するとき、上記被加工表面に照射されるレ
ーザビームLB3のエネルギ分布は略均一な分布と
なる。
As shown in FIG . 15, the laser beam having a substantially uniform energy distribution over the irradiation area as described above is placed in the optical path of the normal laser beam LB 1 A having a Gaussian energy distribution.
An iris 21 having a square or round hole 20 having an aperture diameter of about 25% of the incident diameter starting from the center of the
The laser beam LB 2 passing through the round hole 20 of the iris 21 is guided to the condenser lens 22, and the laser beam LB 3 is condensed by the condenser lens 22.
It can be obtained by irradiating the surface of the workpiece under the following conditions. That is, the distance from the iris 21 to the center of the condensing lens 22 is a, and the distance from the condensing lens 22 is
Let b be the distance from the center of the surface to the surface to be processed, and f be the focal length of the condenser lens 22. When 1/a+1/b=1/f is satisfied, the laser beam LB 3 irradiated onto the surface to be processed is The energy distribution is approximately uniform.

第7図の工程では、上述の如くエネルギ分布が
照射領域に対して略均一なレーザビームを非晶質
半導体膜12の隣接間隔部に照射して、上記非晶
質半導体膜12を各個別に分離した非晶質半導体
膜12a,12b,12c…及び透明電極膜11
a,11b,11c…の各露出部分を含んで基板
10上全面に約2000Å以上の厚さのアルミニウム
単層構造、或いは該アルミニウムにチタン又はチ
タ銀を積層した二層構造、更には斯る二層構造を
二重に積み重ねた裏面電極膜13が被着される。
In the process shown in FIG. 7, as described above, a laser beam having a substantially uniform energy distribution over the irradiation area is irradiated onto the adjacent spaced parts of the amorphous semiconductor film 12, so that the amorphous semiconductor film 12 is individually separated. Separated amorphous semiconductor films 12a, 12b, 12c... and transparent electrode film 11
a, 11b, 11c... The entire surface of the substrate 10, including the exposed portions, has a single-layer aluminum structure with a thickness of about 2000 Å or more, or a two-layer structure in which titanium or titanium-silver is laminated on the aluminum, or even such a two-layer structure. A back electrode film 13 having a double stacked layer structure is deposited.

第8図の最終工程では、上記裏面電極膜13が
各非晶質半導体膜12a,12b,12c…上の
端面近傍に於いて、第6図の非晶質半導体膜12
の分離工程と同じくエネルギ分布が照射領域に対
して略均一なレーザビームの照射により各個別の
裏面電極膜13a,13b,13c…に分割され
る。その結果、各個別に分割された透明電極膜1
1a,11b,11c…、非晶質半導体膜12
a,12b,12c…及び裏面電極膜13a,1
3b,13c…の積層体からなる光電変換素子1
4a,14b,14c…は基板10上に於いて電
気的に直列接続される。
In the final step shown in FIG. 8, the back electrode film 13 is attached to the amorphous semiconductor film 12 shown in FIG.
As in the separation step, the irradiation area is divided into individual back electrode films 13a, 13b, 13c, . . . by irradiation with a laser beam having a substantially uniform energy distribution. As a result, each individually divided transparent electrode film 1
1a, 11b, 11c..., amorphous semiconductor film 12
a, 12b, 12c... and back electrode films 13a, 1
Photoelectric conversion element 1 consisting of a laminate of 3b, 13c...
4a, 14b, 14c, . . . are electrically connected in series on the substrate 10.

第13図は、第9図に示した如き照射領域に対
して略均一なエネルギ分布を持ち照射領域の形状
が円形状のレーザビームを照射したときの照射表
面に於ける中心部を起点とし、その半径方向の温
度分布が略矩形状の分布を呈するレーザビームを
用いて裏面電極膜13を分割するときの深さ(厚
み)方向の温度分布を、200K毎の等温線を用い
てシユミレーシヨンしたものである。シユミレー
シヨンの対象となつた試料は先のシユミレーシヨ
ンに用いたガラス基板10上に膜厚2000Åの
SnO2透明電極膜11と、膜厚5000Åの非晶質半
導体膜12との積層体に、更に膜厚5000Åのアル
ミニウム単層構造の裏面電極膜13を重畳した。
このシユミレーシヨンの結果、アルミニウムの融
点は絶縁温度にして約930Kであり、この930K以
上の温度分布の中心から半径約38μmのアルミニ
ウム単層構造の裏面電極膜部分が除去される。一
方、斯るシユミレーシヨンによると、1000K以上
の温度分布が上記裏面電極膜部分と当接する非晶
質シリコン半導体膜12側にも僅かに存在する。
上記1000K以上の温度分布は斯る領域の非晶質シ
リコン半導体膜12が微結晶化或いは結晶化され
低抵抗層に変換されることを意味するものの、上
記低抵抗層の形成は表面から極めて浅い領域に止
まるために、実質的に無視し得る程度に過ぎな
い。
FIG. 13 shows a laser beam starting from the center of the irradiation surface when irradiating the irradiation area with a laser beam having a substantially uniform energy distribution and a circular irradiation area as shown in FIG. The temperature distribution in the depth (thickness) direction when dividing the back electrode film 13 using a laser beam whose temperature distribution in the radial direction exhibits a substantially rectangular distribution is simulated using isotherms at intervals of 200K. It is. The sample targeted for simulation was a film with a thickness of 2000 Å on the glass substrate 10 used in the previous simulation.
A back electrode film 13 having a single layer aluminum structure and having a thickness of 5000 Å was further superimposed on the laminate of the SnO 2 transparent electrode film 11 and the amorphous semiconductor film 12 having a thickness of 5000 Å.
As a result of this simulation, the melting point of aluminum is about 930K in terms of insulation temperature, and the back electrode film portion of the aluminum single-layer structure with a radius of about 38 μm from the center of the temperature distribution above 930K is removed. On the other hand, according to this simulation, a temperature distribution of 1000 K or more slightly exists on the side of the amorphous silicon semiconductor film 12 that is in contact with the back electrode film portion.
Although the temperature distribution above 1000K means that the amorphous silicon semiconductor film 12 in such a region is microcrystallized or crystallized and converted into a low resistance layer, the formation of the low resistance layer is extremely shallow from the surface. Since it remains in the area, it is of virtually negligible magnitude.

第14図は従来のガウス分布を持つレーザビー
ムを使用し、上記第13図のレーザ加工と略同じ
裏面電極膜13の除去幅を得ようとしたときの、
200K毎の等温線を用いた深さ方向の温度分布シ
ユミレーシヨンである。斯るシユミレーシヨンの
結果、第13図のレーザ加工と略同じ裏面電極膜
13の除去幅が得られるものの、温度こう配がな
だらかなために裏面電極膜13の融点近傍の温度
分布幅が広く裏面電極膜の除去界面に於いて該電
極膜形成材の溶融垂れが発生したり、また非晶質
シリコン半導体膜12の1200K以上の領域を除去
するのみならずその除去界面の1200K〜1000Kの
領域を低抵抗層に変換していたことが判る。
FIG. 14 shows an attempt to obtain approximately the same removal width of the back electrode film 13 as in the laser processing shown in FIG. 13 using a conventional laser beam with a Gaussian distribution.
This is a temperature distribution simulation in the depth direction using isotherms every 200K. As a result of such simulation, although the removal width of the back electrode film 13 is approximately the same as that of the laser processing shown in FIG. 13, the temperature gradient is gentle and the temperature distribution near the melting point of the back electrode film 13 is wide. melting of the electrode film forming material may occur at the removed interface, and not only the region of the amorphous silicon semiconductor film 12 with a temperature of 1200K or more is removed, but also the region of 1200K to 1000K at the removed interface with a low resistance It can be seen that it has been converted to a layer.

従つて、第8図の最終工程に於いて分割された
裏面電極膜13a,13b,13c…は物理的に
も電気的にも分離され、隣接光電変換素子14
a,14b,14c…を確実に直列接続せしめ
る。
Therefore, the back electrode films 13a, 13b, 13c, . . . , which are divided in the final step of FIG.
a, 14b, 14c... are reliably connected in series.

尚、上記第8図の最終工程に於いて裏面電極膜
13a,13b,13c…は各非晶質半導体膜1
2a,12b,12c…上で略均一なエネルギ分
布のレーザビームの照射により除去されているた
めに、斯る除去部分に於いて露出した非晶質半導
体膜の表面部分には上述の如き若干の低抵抗層が
形成されるものの、この低抵抗層は光起電力装置
が太陽光の下で使用されたときや室内光であつて
も通常の照度(400Lux以上)であれば実質的に
問題はない。ただ約200Lux未満の低照度下では
上記低抵抗層によるリーク等の悪影響を発生する
こともある。このようなときは、上記低抵抗層を
上記裏面電極膜13a,13b,13c…を耐エ
ツチングマスクとして例えばCF4を用いた反応性
イオンエツチング(プラズマエツチング)を施し
てエツチング除去するか、第16図に示す如く裏
面電極膜13の除去工程に於いて該裏面電極膜の
みを選択的に除去することなく下層の非晶質半導
体膜12も同時に除去すれば良い。
In the final step shown in FIG. 8, the back electrode films 13a, 13b, 13c, . . .
2a, 12b, 12c... are removed by irradiation with a laser beam with a substantially uniform energy distribution, the surface portion of the amorphous semiconductor film exposed in such removed portions has some of the above-mentioned Although a low-resistivity layer is formed, this low-resistance layer is practically non-existent when the photovoltaic device is used in sunlight or under normal illuminance (400 Lux or higher) even in indoor light. do not have. However, under low illuminance of less than about 200 Lux, negative effects such as leakage due to the above-mentioned low resistance layer may occur. In such a case, the low-resistance layer may be etched away by reactive ion etching (plasma etching) using, for example, CF 4 using the back electrode films 13a, 13b, 13c, . . . as an etching-resistant mask; As shown in the figure, in the step of removing the back electrode film 13, the underlying amorphous semiconductor film 12 may be removed simultaneously without selectively removing only the back electrode film.

更に、上述の実施例に於ける第8図の最終工程
にあつても、使用されるレーザビームのエネルギ
分布は第6図の工程と同じく照射領域に対して略
均一であつたが、従来と同じガウス分布を持つレ
ーザビームを使用しても良い。ただこの場合、下
層の非晶質半導体膜部分に隣接光電変換素子14
a,14b,14c…の短絡原因となる低抵抗層
を形成するので、該低抵抗層については分割され
た裏面電極膜13a,13b,13c…を耐エツ
チングマスクとしてCF4を用いて反応性イオンエ
ツチングを施し、除去してやらなければならない
ために、若干の作業性の欠如は免れない。
Furthermore, even in the final step shown in FIG. 8 in the above embodiment, the energy distribution of the laser beam used was approximately uniform over the irradiation area as in the step shown in FIG. Laser beams with the same Gaussian distribution may also be used. However, in this case, the photoelectric conversion element 14 adjacent to the lower amorphous semiconductor film portion
A, 14b, 14c, etc. are formed with a low resistance layer that may cause a short circuit, so the divided back electrode films 13a, 13b, 13c,... are etched using CF4 as an anti-etching mask to form a low resistance layer. Since etching must be applied and removed, a slight lack of workability is inevitable.

(ト) 発明の効果 本発明製造方法は以上の説明から明らかな如
く、エネルギ分布が照射領域に対して略均一なエ
ネルギビームを、基板側電極膜上に配置された半
導体膜の予定箇所に照射するので、当該照射領域
の半導体膜部分のみを実質的に低抵抗層を形成す
ることなく除去することができ、隣接した光電変
換素子同士や当該一つの光電変換素子の短絡事故
を防止することができると共に、斯る除去界面の
残留物の残存や下層への熱的ダメージの発生を回
避し得る。
(G) Effects of the Invention As is clear from the above description, the manufacturing method of the present invention irradiates a predetermined location of a semiconductor film disposed on a substrate-side electrode film with an energy beam whose energy distribution is substantially uniform over the irradiation area. Therefore, only the semiconductor film portion in the irradiated area can be removed without substantially forming a low resistance layer, and short-circuit accidents between adjacent photoelectric conversion elements or one photoelectric conversion element can be prevented. At the same time, it is possible to avoid the residual residue at the removed interface and the occurrence of thermal damage to the underlying layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光起電力装置の基本構造を示す断面
図、第2図a〜cは従来方法の欠点を説明するた
めの要部拡大断面図、第3図〜第8図は本発明方
法を工程別に示す断面図、第9図は本発明方法に
用いられるレーザビームのエネルギ分布を説明す
る温度分布特性図、第10図は従来方法のエネル
ギ分布を説明する温度分布特性図、第11図及び
第12図は夫々第9図と第10図のエネルギ分布
を持つレーザビームを非晶質シリコン半導体膜に
照射したときの等温分布特性図、第13図及び第
14図は夫々第9図と第10図のエネルギ分布を
持つレーザビームをアルミニウム裏面電極膜に照
射したときの等温分布特性図、第15図は本発明
方法に用いられるレーザビームの作成方式を原理
的に示す模式図、第16図は本発明方法の最終工
程の他の実施例を示す断面図、である。 10…基板、11,11a,11b,11c…
透明電極膜、12,12a,12b,12c…非
晶質半導体膜、13,13a,13b,13c…
裏面電極膜、14a,14b,14c…光電変換
素子、21…アイリス、22…集光レンズ。
Fig. 1 is a sectional view showing the basic structure of a photovoltaic device, Figs. 2 a to c are enlarged sectional views of main parts to explain the drawbacks of the conventional method, and Figs. 3 to 8 are sectional views showing the method of the present invention. 9 is a temperature distribution characteristic diagram illustrating the energy distribution of the laser beam used in the method of the present invention; FIG. 10 is a temperature distribution characteristic diagram illustrating the energy distribution of the conventional method; FIGS. Fig. 12 is an isothermal distribution characteristic diagram when an amorphous silicon semiconductor film is irradiated with a laser beam having the energy distribution shown in Figs. 9 and 10, respectively, and Figs. Figure 10 is an isothermal distribution characteristic diagram when an aluminum back electrode film is irradiated with a laser beam having the energy distribution shown in Figure 10. Figure 15 is a schematic diagram showing the principle of the laser beam creation method used in the method of the present invention, Figure 16. FIG. 2 is a cross-sectional view showing another embodiment of the final step of the method of the present invention. 10...Substrate, 11, 11a, 11b, 11c...
Transparent electrode film, 12, 12a, 12b, 12c...Amorphous semiconductor film, 13, 13a, 13b, 13c...
Back electrode film, 14a, 14b, 14c...photoelectric conversion element, 21...iris, 22...condensing lens.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の光電変換素子を基板の絶縁表面で電気
的に直列接続せしめた光起電力装置の製造方法で
あつて、上記複数の光電変換素子を構成する複数
の基板側電極膜上に連続的に跨つて配置された非
晶質半導体膜に、エネルギ分布が照射領域に対し
て略均一なエネルギビームを照射することで、当
該照射領域の半導体膜を、残留物を形成させるこ
となく除去し、該半導体膜を複数の光電変換素子
毎に分割すると共に、当該除去にあつては、上記
照射領域下の上記電極膜への熱的ダメージを抑圧
し、且つ該照射領域の周縁部の半導体膜に実質的
に低抵抗層を形成させないことを特徴とする光起
電力装置の製造方法。
1. A method for manufacturing a photovoltaic device in which a plurality of photoelectric conversion elements are electrically connected in series on an insulating surface of a substrate, the method comprising continuously forming a photovoltaic device on a plurality of substrate-side electrode films constituting the plurality of photoelectric conversion elements. By irradiating the amorphous semiconductor film disposed across the straddling region with an energy beam whose energy distribution is substantially uniform over the irradiation region, the semiconductor film in the irradiation region is removed without forming any residue. The semiconductor film is divided into a plurality of photoelectric conversion elements, and during the removal, thermal damage to the electrode film under the irradiation area is suppressed, and the semiconductor film at the periphery of the irradiation area is substantially removed. A method for manufacturing a photovoltaic device, characterized in that a low resistance layer is not formed.
JP61034801A 1986-02-18 1986-02-18 Manufacture of photovoltaic device Granted JPS62193182A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61034801A JPS62193182A (en) 1986-02-18 1986-02-18 Manufacture of photovoltaic device
US07/015,691 US4755475A (en) 1986-02-18 1987-02-17 Method of manufacturing photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61034801A JPS62193182A (en) 1986-02-18 1986-02-18 Manufacture of photovoltaic device

Publications (2)

Publication Number Publication Date
JPS62193182A JPS62193182A (en) 1987-08-25
JPH0528912B2 true JPH0528912B2 (en) 1993-04-27

Family

ID=12424342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61034801A Granted JPS62193182A (en) 1986-02-18 1986-02-18 Manufacture of photovoltaic device

Country Status (1)

Country Link
JP (1) JPS62193182A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831774A (en) * 1994-07-12 1996-02-02 Sanyo Electric Co Ltd Metal film removing and processing method and manufacture of photoelectromotive element

Also Published As

Publication number Publication date
JPS62193182A (en) 1987-08-25

Similar Documents

Publication Publication Date Title
US4755475A (en) Method of manufacturing photovoltaic device
JP3436858B2 (en) Manufacturing method of thin film solar cell
US4970369A (en) Electronic device manufacturing methods
US4542578A (en) Method of manufacturing photovoltaic device
JP3414738B2 (en) Integrated laser patterning method for thin film solar cells
US4680855A (en) Electronic device manufacturing methods
JPH0560674B2 (en)
JP2005515639A (en) Method for manufacturing thin film photovoltaic module
JPH0447466B2 (en)
JP3676202B2 (en) Method for manufacturing photovoltaic device
JPH0799335A (en) Removal and processing of semiconductor film and manufacture of photovoltaic element
JPH0528912B2 (en)
JPH0528911B2 (en)
JPS60227484A (en) Manufacture of photoelectric conversion semiconductor device
JPS6233477A (en) Manufacture of photovoltaic device
JPS6213829B2 (en)
JP2517226B2 (en) Method for manufacturing semiconductor device
JPS61280680A (en) Manufacture of semiconductor device
JPS59220978A (en) Manufacture of photovoltaic device
JPH0558676B2 (en)
JPH06163959A (en) Isolation forming method of transparent conductive
JP2594113B2 (en) Method for forming tin oxide film
JPH06314807A (en) Manufacture of photovoltaic device
JPH0650781B2 (en) Method for manufacturing semiconductor device
JPS61280679A (en) Manufacture of photo-voltaic device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term