JPH0528911B2 - - Google Patents

Info

Publication number
JPH0528911B2
JPH0528911B2 JP61034800A JP3480086A JPH0528911B2 JP H0528911 B2 JPH0528911 B2 JP H0528911B2 JP 61034800 A JP61034800 A JP 61034800A JP 3480086 A JP3480086 A JP 3480086A JP H0528911 B2 JPH0528911 B2 JP H0528911B2
Authority
JP
Japan
Prior art keywords
electrode film
semiconductor film
film
laser beam
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61034800A
Other languages
Japanese (ja)
Other versions
JPS62193181A (en
Inventor
Seiichi Kyama
Keisho Yamamoto
Hideki Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61034800A priority Critical patent/JPS62193181A/en
Priority to US07/015,691 priority patent/US4755475A/en
Publication of JPS62193181A publication Critical patent/JPS62193181A/en
Publication of JPH0528911B2 publication Critical patent/JPH0528911B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Drying Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はレーザビームの如きエネルギビームを
利用した光起電力装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a method for manufacturing a photovoltaic device using an energy beam such as a laser beam.

(ロ) 従来の技術 第1図は米国特許第4281208号に開示されてい
ると共に、既に実用化されている光起電力装置の
基本構造を示し、1はガラス、耐熱プラスチツク
等の絶縁性且つ透光性を有する基板、2a,2
b,2c…は基板1上に一定間隔で被着された透
明電極膜、3a,3b,3c…は各透明電極膜上
に重畳被着された非晶質シリコン等の非晶質半導
体膜、4a,4b,4c…は各非晶質半導体膜上
に重畳被着され、かつ各右隣りの透明電極膜2
a,2b,2c…に部分的に重畳せる裏面電極膜
で、斯る透明電極膜2a,2b,2c…乃至裏面
電極膜4a,4b,4c…の各積層体により光電
変換素子5a,5b,5c…が構成されている。
(b) Prior art Figure 1 shows the basic structure of a photovoltaic device that is disclosed in U.S. Pat. No. 4,281,208 and has already been put into practical use. Substrate with optical properties, 2a, 2
b, 2c... are transparent electrode films deposited at regular intervals on the substrate 1, 3a, 3b, 3c... are amorphous semiconductor films such as amorphous silicon deposited on each transparent electrode film, 4a, 4b, 4c... are superimposed and deposited on each amorphous semiconductor film, and are adjacent to each transparent electrode film 2 on the right.
A, 2b, 2c, etc. are back electrode films that can be partially overlapped, and the photoelectric conversion elements 5a, 5b, 5c... are configured.

各非晶質半導体膜3a,3b,3c…は、その
内部に例えば膜面に平行なPIN接合を含み、従つ
て透光性基板1及び透明電極膜2a,2b,2c
…を順次介して光入射があると、光起電力を発生
する。各非晶質半導体膜3a,3b,3c…内で
発生した光起電力は裏面電極膜4a,4b,4c
…での接続により直列的に相加される。
Each amorphous semiconductor film 3a, 3b, 3c... includes, for example, a PIN junction parallel to the film surface inside thereof, and therefore the transparent substrate 1 and the transparent electrode film 2a, 2b, 2c...
When light is incident sequentially through..., a photovoltaic force is generated. The photovoltaic force generated within each amorphous semiconductor film 3a, 3b, 3c... is the back electrode film 4a, 4b, 4c.
... are added in series by connection.

通常、斯る構成の光起電力装置にあつては細密
加工性に優れている写真蝕刻技術が用いられてい
る。この技術による場合、基板1上全面への透明
電極膜の被着工程と、フオトレジスト及びエツチ
ングによる各個別の透明電極膜2a,2b,2c
…の分離、即ち、各透明電極膜2a,2b,2c
…の隣接間隔部の除去工程と、これら各透明電極
膜上を含む基板1上全面への非晶質半導体膜の被
着工程と、フオトレジスト及びエツチングによる
各個別の非晶質半導体膜3a,3b,3c…の分
離、即ち、各非晶質半導体膜3a,3b,3c…
の隣接間隔部の除去工程とを順次経ることにな
る。
Photo-etching technology, which has excellent precision machinability, is usually used in photovoltaic devices having such a configuration. In the case of this technique, a step of depositing a transparent electrode film on the entire surface of the substrate 1, and each individual transparent electrode film 2a, 2b, 2c by photoresist and etching are performed.
Separation of..., that is, each transparent electrode film 2a, 2b, 2c
..., the process of depositing an amorphous semiconductor film on the entire surface of the substrate 1 including on each of these transparent electrode films, and the process of removing each individual amorphous semiconductor film 3a by photoresist and etching. 3b, 3c..., that is, each amorphous semiconductor film 3a, 3b, 3c...
The step of removing the adjacent spaced portions is sequentially performed.

然し乍ら、写真蝕刻技術は細密加工の上で優れ
てはいるが、蝕刻パターンを規定するフオトレジ
ストのピンホールや周縁での剥れにより非晶質半
導体膜に欠陥を生じさせやすい。
However, although the photo-etching technique is excellent in fine processing, it tends to cause defects in the amorphous semiconductor film due to pinholes or peeling at the periphery of the photoresist that defines the etching pattern.

特開昭57−12568号公報に開示された先行技術
は、レーザビームの照射による膜の焼き切りで上
記隣接間隔を設けるものであり、写真蝕刻技術で
必要なフオトレジスト、即ちウエツトプロセスを
一切使わず細密加工性に富むその技法は上記の課
題を解決する上で極めて有効である。
The prior art disclosed in Japanese Unexamined Patent Publication No. 12568/1985 creates the above-mentioned adjacent spacing by burning out the film by laser beam irradiation, and does not use any photoresist, that is, a wet process, which is necessary for photolithography. This technique, which has excellent precision processing properties, is extremely effective in solving the above problems.

然し乍ら、上述の如くウエツトプロセスを一切
使わないレーザ加工は細密加工性の点に於いて極
めて有効である反面、第2図a〜dに夫々要部を
拡大して示す如き問題点を含んでいる。即ち、既
に各光電変換素子5a,5b…毎に分割配置され
た透明電極膜2a,2b…及び非晶質半導体膜3
a,3b…上に、裏面電極膜を連続的に跨がつて
形成し、その裏面電極膜を各光電変換素子5a,
5b…毎に分割して、それら光電変換素子5a,
5b…を電気的に直列接続すべくレーザビーム
LBの照射により隣接間隔部に位置する裏面電極
膜或いは裏面電極膜及び半導体膜を除去すると、
第2図a及びbの如くレーザビームLBの周縁部
が照射された半導体膜部分は、該レーザビームの
周縁部が除去するに足りる十分なエネルギを持た
ないために、アニーリングされ微結晶化、或いは
結晶化されてその結果、低抵抗層6,6a,6b
を形成したり、第2図c及びdの如く裏面電極膜
4a,4b…が半導体膜3a,3b…とオーミツ
ク接触すべくアルミニウム(Al)、チタン(Ti)、
銀(Ag)或いはそれらを含む合金等のオーミツ
ク金属からなる単層或いは多層構造をとる場合、
それらオーミツク金属は照射されるレーザビーム
に対して反射率が高く、熱伝導性が良いために、
除去部分に裏面電極膜の溶融物が流出する溶融垂
れ7,7a,7bが発生する。
However, as mentioned above, although laser machining that does not use any wet process is extremely effective in terms of precision machining, it also has problems as shown in the enlarged views of the main parts in Figures 2a to d. There is. That is, the transparent electrode films 2a, 2b, etc. and the amorphous semiconductor film 3, which have already been divided and arranged for each photoelectric conversion element 5a, 5b,...
A back electrode film is formed continuously over the photoelectric conversion elements 5a, 3b, .
5b... are divided into photoelectric conversion elements 5a,
A laser beam is used to electrically connect 5b... in series.
When the back electrode film or the back electrode film and the semiconductor film located in the adjacent interval are removed by LB irradiation,
As shown in FIGS. 2a and 2b, the semiconductor film portion irradiated by the peripheral edge of the laser beam LB is annealed and microcrystallized or As a result, the low resistance layers 6, 6a, 6b are crystallized.
Aluminum (Al), titanium (Ti),
In the case of a single layer or multilayer structure made of ohmic metals such as silver (Ag) or alloys containing silver,
These ohmic metals have a high reflectance to the laser beam and have good thermal conductivity, so
Melt drips 7, 7a, and 7b from which the melted material of the back electrode film flows out are generated in the removed portions.

斯る半導体膜の低抵抗層6,6a,6bの形成
は、レーザビームLBの照射により裏面電極膜4
a,4b…を物理的に分離できたとしても、電気
的に分離したことにならず、また裏面電極膜4b
の溶融垂れ7,7bは、同一光電変換素子5b…
の透明電極膜2b…と裏面電極膜4b…とを結合
するために短絡事故の原因となる。
The formation of the low resistance layers 6, 6a, 6b of the semiconductor film is performed by irradiating the back electrode film 4 with the laser beam LB.
Even if it is possible to physically separate a, 4b..., it does not mean that they are electrically separated, and the back electrode film 4b...
The molten drips 7, 7b of the same photoelectric conversion element 5b...
Since the transparent electrode films 2b... and the back electrode films 4b... are combined, it causes a short circuit accident.

(ハ) 発明が解決しようとする問題点 本発明は上述の如く、除去しようとする電極膜
の下層に位置する半導体膜部分に対する低抵抗層
の形成及び/または上記電極膜の溶融垂れの発生
を解決しようとするものである。
(c) Problems to be Solved by the Invention As described above, the present invention solves the problem of forming a low resistance layer on the semiconductor film portion located below the electrode film to be removed and/or preventing the occurrence of melt dripping of the electrode film. This is what we are trying to solve.

(ニ) 問題点を解決するための手段 本発明は上記問題点を解決するために、複数の
光電変換素子を基板の絶縁表面で電気的に直列接
続せしめた光起電力装置の製造方法であつて、上
記複数の光電変換素子を構成する非晶質半導体膜
上に配置された電極膜に、エネルギ分布が照射領
域に対して略均一なエネルギビームを照射するこ
とで、当該照射領域に於ける当該電極膜下の半導
体膜に、低抵抗層が形成されるのを抑圧しつつ上
記電極膜を除去すると共に、該照射領域の電極膜
に容融垂れを発生させることなく、上記電極膜を
複数の光電変換素子毎に分割したことを特徴とす
る。
(d) Means for Solving the Problems In order to solve the above problems, the present invention provides a method for manufacturing a photovoltaic device in which a plurality of photoelectric conversion elements are electrically connected in series on an insulating surface of a substrate. By irradiating the electrode film disposed on the amorphous semiconductor film constituting the plurality of photoelectric conversion elements with an energy beam having a substantially uniform energy distribution over the irradiation area, The electrode film is removed while suppressing the formation of a low resistance layer on the semiconductor film under the electrode film, and a plurality of the electrode films are removed without causing melt sag in the electrode film in the irradiated area. It is characterized by being divided for each photoelectric conversion element.

(ホ) 作用 上述の如くエネルギ分布が照射領域に対して略
均一なエネルギビームを、半導体膜上に配置され
た電極膜の予定箇所に照射することによつて、当
該照射領域の電極膜を、実質的に溶融垂れを発生
させることなく除去すると共に、下層に位置する
半導体膜部分の低抵抗層の形成も低減することが
できる。
(E) Effect As described above, by irradiating a predetermined location of an electrode film disposed on a semiconductor film with an energy beam whose energy distribution is substantially uniform over the irradiation area, the electrode film in the irradiation area is It is possible to remove the melt without substantially causing melt sag, and also to reduce the formation of a low resistance layer in the underlying semiconductor film portion.

(ヘ) 実施例 第3図乃至第8図は本発明方法の実施例を工程
順に示している。
(f) Examples FIGS. 3 to 8 show examples of the method of the present invention in the order of steps.

第3図の工程では、厚さ1mm〜3mm面積10cm×
10cm〜1m×1m程度の透明なガラス等の基板10
上全面に、厚さ2000Å〜5000Åの酸化錫(SnO2
からなる透明電極膜11が被着される。
In the process shown in Figure 3, the thickness is 1 mm to 3 mm, the area is 10 cm x
Substrate 10 of transparent glass, etc., approximately 10cm to 1m x 1m
Tin oxide (SnO 2 ) with a thickness of 2000 Å to 5000 Å on the entire top surface
A transparent electrode film 11 consisting of the following is deposited.

第4図の工程では、隣接間隔部11′がレーザ
ビームの照射による除去されて、個別の各透明電
極膜11a,11b,11c…が分離形成され
る。使用されるレーザは基板10にほとんど吸収
されることのない波長が適当であり、上記ガラス
に対しては0.35μm〜2.5μmの波長のパルス発振型
が好ましい。斯る好適な実施例は、波長約
1.06μmエネルギ密度13T/cm2、パルス周波数3KHz
のNd:YAGレーザであり、隣接間隔部11′の
間隔L1は約100μmに設定される。
In the process shown in FIG. 4, the adjacent spacing portions 11' are removed by laser beam irradiation, and individual transparent electrode films 11a, 11b, 11c, . . . are formed separately. It is appropriate for the laser used to have a wavelength that is hardly absorbed by the substrate 10, and for the above-mentioned glass, a pulse oscillation type laser with a wavelength of 0.35 μm to 2.5 μm is preferable. Such a preferred embodiment has a wavelength of approximately
1.06μm energy density 13T / cm2 , pulse frequency 3KHz
is a Nd:YAG laser, and the interval L1 between adjacent interval parts 11' is set to about 100 μm.

第5図の工程では、各透明電極膜11a,11
b,11c…の表面を含んで基板10上全面に光
電変換に有効に寄与する厚さ5000Å〜7000Åの非
晶質シリコン(a−Si)等の非晶質半導体膜12
が被着される。斯る半導体膜12はその内部に膜
面に平行なPIN接合を含み、従つてより具体的に
は、まずP型の非晶質シリコンカーバイドが被着
され、次いでI型及びN型の非晶質シリコンが順
次積層被着される。
In the process shown in FIG. 5, each transparent electrode film 11a, 11
An amorphous semiconductor film 12 such as amorphous silicon (a-Si) with a thickness of 5000 Å to 7000 Å that effectively contributes to photoelectric conversion is spread over the entire surface of the substrate 10 including the surfaces of
is deposited. Such a semiconductor film 12 includes a PIN junction parallel to the film surface within it, and therefore, more specifically, P-type amorphous silicon carbide is first deposited, and then I-type and N-type amorphous silicon carbide is deposited. The high quality silicone is deposited in successive layers.

第6図の工程では、隣接間隔部12′がレーザ
ビームの照射により除去されて、個別の各非晶質
半導体膜12a,12b,12c…が分離形成さ
れる。斯る工程での特徴点は使用されるレーザビ
ームのエネルギ分布が照射領域に対して略均一な
分布を持つていることである。第9図は上記照射
領域に対して略均一なエネルギ分布を持ち照射領
域の形状が半径40μmの円形状レーザビームを照
射したときの照射表面に於ける温度分布を、上記
円形状レーザビームの中心部を起点としその半径
方向について描いたものである。斯る第9図から
明らかな如く、略均一なエネルギ分布を持つレー
ザビームの温度分布は、照射領域に対してエネル
ギ分布に応じた略一定の高温分布となり、照射領
域の界面にあつては僅かな被照射媒体の熱伝導に
よる温度こう配は見られるものの非照射領域の室
温にまで急峻に立下がり、全体としては略矩形状
の分布を呈する。
In the process shown in FIG. 6, the adjacent spacing portions 12' are removed by laser beam irradiation, and individual amorphous semiconductor films 12a, 12b, 12c, . . . are formed separately. A feature of this process is that the energy distribution of the laser beam used has a substantially uniform distribution over the irradiation area. Figure 9 shows the temperature distribution on the irradiated surface when the irradiated area is irradiated with a circular laser beam with a substantially uniform energy distribution and the irradiated area has a radius of 40 μm, and the temperature distribution at the center of the circular laser beam. The diagram is drawn in the radial direction starting from the point. As is clear from FIG. 9, the temperature distribution of a laser beam with a substantially uniform energy distribution results in a substantially constant high temperature distribution corresponding to the energy distribution over the irradiation area, and a slight temperature distribution at the interface of the irradiation area. Although a temperature gradient due to heat conduction of the irradiated medium is observed, the temperature drops sharply to the room temperature of the non-irradiated area, and the overall distribution is approximately rectangular.

一方、第10図は従来のガウス分布を持つ半径
50μmのレーザビームを使用したときの照射表面
に於ける温度分布を、第9図と同じく中心部を起
点としてその半径方向について描いてある。そし
て、中心部に於ける到達温度は第9図及び第10
図共に等しく、例えば斯るレーザビームの照射に
より被加工物である膜厚5000Åの非晶質半導体を
除去することができると共に、下層の透明電極膜
11a,11b,11cへの熱的ダメージを回避
し得る絶対温度約1400Kに設定されている。
On the other hand, Fig. 10 shows a radius with a conventional Gaussian distribution.
The temperature distribution on the irradiated surface when a 50 μm laser beam is used is plotted in the radial direction starting from the center, similar to FIG. 9. The temperature reached at the center is shown in Figures 9 and 10.
Both figures are the same, for example, by irradiating with such a laser beam, an amorphous semiconductor with a thickness of 5000 Å that is a workpiece can be removed, and thermal damage to the underlying transparent electrode films 11a, 11b, and 11c can be avoided. The possible absolute temperature is set to approximately 1400K.

第11図は、エネルギ分布が略均一分布を持ち
照射表面、即ち非晶質半導体膜12の表面に於け
る温度分布が第9図の略矩形状分布を呈するとき
の深さ(厚み)方向の温度分布を100K毎の等温
線を用いてシユミレーシヨンしたものである。シ
ユミレーシヨンの対象となつた試料はガラス基板
10上に膜厚2000ÅのSnO2からなる透明電極膜
11と、膜厚5000Åの非晶質シリコンの半導体膜
12を積層した構造を持つ。斯るシユミレーシヨ
ンの結果、半導体膜12の表面に約1400Kの温度
を与えたとき、上記半導体膜12の深さ方向であ
る厚み方向の等温分布幅は広く、SnO2透明電極
膜11との界面にあつても該半導体膜12を除去
し得る約1200K以上の温度状態にある。一方、半
径方向、即ち表面方向の等温分布幅は、照射表面
に於ける界面温度こう配が急峻に立下つているた
めに極めて狭い。
FIG. 11 shows the temperature distribution in the depth (thickness) direction when the energy distribution is approximately uniform and the temperature distribution on the irradiated surface, that is, the surface of the amorphous semiconductor film 12, exhibits the approximately rectangular distribution shown in FIG. This is a simulation of the temperature distribution using isotherms every 100K. The sample to be simulated has a structure in which a transparent electrode film 11 made of SnO 2 with a thickness of 2000 Å and a semiconductor film 12 of amorphous silicon with a thickness of 5000 Å are laminated on a glass substrate 10. As a result of such simulation, when a temperature of about 1400 K is applied to the surface of the semiconductor film 12, the isothermal distribution width in the thickness direction, which is the depth direction of the semiconductor film 12, is wide, and the temperature is increased at the interface with the SnO 2 transparent electrode film 11. Even if the temperature is about 1200 K or higher, the semiconductor film 12 can be removed. On the other hand, the isothermal distribution width in the radial direction, that is, in the surface direction, is extremely narrow because the interfacial temperature gradient at the irradiated surface falls steeply.

ところで、非晶質シリコンの半導体膜12を除
去し得る温度は該半導体膜12の形成方法や形成
条件等より多少変動するものの、概して上述の如
く約1200K以上であり、一方アニーリングされ低
抵抗層に変換される温度は約1000Kから除去温度
の約1200Kまでの間である。従つて、上記第11
図のシユミレーシヨンに於いて1200K以上の温度
領域の半導体膜12が除去され、1000K〜1200K
の温度領域の半導体膜が低抵抗層に変換されると
仮定すると、半導体膜12は中心から半径約
38μmの領域が除去されると共に、その除去界面
に実質的に無視し得る程度の低抵抗層を形成する
に止まる。
Incidentally, the temperature at which the amorphous silicon semiconductor film 12 can be removed varies somewhat depending on the method and conditions for forming the semiconductor film 12, but is generally about 1200 K or higher as mentioned above. The temperature to be converted is between about 1000 K and the removal temperature of about 1200 K. Therefore, the above 11th
In the simulation shown in the figure, the semiconductor film 12 in the temperature range of 1200K or higher is removed, and the temperature range of 1000K to 1200K is
Assuming that the semiconductor film in the temperature range of is converted into a low resistance layer, the semiconductor film 12 is approximately
A region of 38 μm is removed and a substantially negligible low resistance layer is formed at the removed interface.

一方、従来のガウス分布を持つレーザビームを
使用したときの照射表面に於ける温度分布は第1
0図に示した通りエネルギ分布と等価なガウス分
布を呈しており、このガウシアンビームを用いた
ときの100K毎の等温線を用いた深さ方向の温度
分布をシユミレーシヨンすると第12図のように
なる。即ち、照射領域の中心部に於ける深さ方向
の温度分布は第11図に示した均一分布と等しい
ものの、半径方向の等温分布幅は照射表面に於け
る温度こう配がなだらかなために、1200K〜
1000Kのアニーリング温度範囲に於いて表面部分
で約8μm、SnO2透明電極膜との界面部分で約
11μmの幅を持つ。従つて、従来のガウシアンレ
ーザビームを用いた加工にあつては、1200K以上
の温度領域の半導体膜が除去されたとしても、半
導体膜はその除去界面から半径方向に約8μm〜
11μmの広範囲に亘つて低抵抗層に変換されてい
たのである。更に、従来の加工にあつては半導体
膜の除去幅は半径にして10μm以下と、第11図
の加工の約38μmに比して狭い。その結果、隣接
した光電変換素子同士を斯る半導体膜の除去によ
り露出した透明電極膜の露出部分を介して電気的
に直列接続するために、上記半導体膜の除去幅を
広くしようとすれば、(a)レーザビームの強度を高
め中心部を高温度状態にして1200K以上の等温分
布幅を拡幅する方法と、(b)レーザビームの強度を
高める代わりにレーザビームの走査回数を増加さ
せる方法、の2通りの方法が考えられる。
On the other hand, when using a conventional laser beam with a Gaussian distribution, the temperature distribution on the irradiated surface is
As shown in Figure 0, it exhibits a Gaussian distribution equivalent to the energy distribution, and when this Gaussian beam is used, the temperature distribution in the depth direction using isotherms every 100 K is simulated as shown in Figure 12. . That is, although the temperature distribution in the depth direction at the center of the irradiation area is equal to the uniform distribution shown in Fig. 11, the width of the isothermal distribution in the radial direction is 1200K because the temperature gradient at the irradiation surface is gentle. ~
In the annealing temperature range of 1000K, the surface area is approximately 8μm, and the interface area with the SnO 2 transparent electrode film is approximately 8μm.
It has a width of 11μm. Therefore, in conventional processing using a Gaussian laser beam, even if a semiconductor film in a temperature range of 1200K or higher is removed, the semiconductor film will be removed approximately 8 μm or more in the radial direction from the removed interface.
A wide range of 11 μm was converted into a low resistance layer. Furthermore, in conventional processing, the width of semiconductor film removal is less than 10 μm in radius, which is narrower than about 38 μm in the processing shown in FIG. As a result, in order to electrically connect adjacent photoelectric conversion elements in series through the exposed portion of the transparent electrode film exposed by the removal of the semiconductor film, if the removal width of the semiconductor film is increased, (a) A method of increasing the intensity of the laser beam and bringing the center into a high temperature state to widen the isothermal distribution width above 1200K; (b) A method of increasing the number of scans of the laser beam instead of increasing the intensity of the laser beam. There are two possible methods.

然し乍ら、この両者の方法にあつても低抵抗層
の形成は免れず、また(a)の方法にあつてはレーザ
ビームの中心部が極めて高エネルギ状態となり下
層の透明電極膜部分に熱的ダメージを与えたり、
(b)の方法にあつては走査回数が増加するために作
業性が低下する。それに反し、照射領域に対して
略均一なエネルギ分布のレーザビームを利用する
本実施例にあつては実質的に低抵抗層を形成する
ことなく、下層の膜に熱的ダメージを与えず、ま
た加工幅を広げることができる。
However, in both of these methods, the formation of a low resistance layer is inevitable, and in method (a), the center of the laser beam is in an extremely high energy state, causing thermal damage to the underlying transparent electrode film. or give
In method (b), the number of scans increases, resulting in a decrease in work efficiency. On the other hand, in this embodiment, which uses a laser beam with a substantially uniform energy distribution over the irradiation area, there is no substantial formation of a low-resistance layer, no thermal damage to the underlying film, and The processing range can be expanded.

上述の如き照射領域に対して略均一なエネルギ
分布を持つレーザビームは、第15図に示す如
く、エネルギ分布がカウス分布する通常のレーザ
ビームLB1の光路中に、上記レーザビームLB1
中心部を起点に入射径に対して約25%の開口径を
有する角穴或いは丸穴20を持つアイリス21を
配置し、そのアイリス21の丸穴20を通過した
レーザビームLB2を集光レンズ22に導き、該集
光レンズ22により集光したレーザビームLB3
下記の条件に基づき被加工表面に照射することに
より得られる。即ち、アイリス21から集光レン
ズ22の中心までの距離をa、集光レンズ22の
中心から被加工表面までの距離をb、集光レンズ
22の焦点距離をfとすると、 1/a+1/b=1/f を満足するとき、上記被加工表面に照射されるレ
ーザビームLB3のエネルギ分布は略均一な分布と
なる。
As shown in FIG. 15, the laser beam having a substantially uniform energy distribution over the irradiation area as described above is located at the center of the laser beam LB 1 in the optical path of the normal laser beam LB 1 having a Cousian energy distribution. An iris 21 having a square or round hole 20 having an aperture diameter of about 25% of the incident diameter is arranged starting from the iris 21, and the laser beam LB 2 passing through the round hole 20 of the iris 21 is focused on a condensing lens 22. It is obtained by irradiating the surface to be processed with a laser beam LB 3 that is guided by the laser beam LB 3 and focused by the condenser lens 22 under the following conditions. That is, if the distance from the iris 21 to the center of the condensing lens 22 is a, the distance from the center of the condensing lens 22 to the surface to be processed is b, and the focal length of the condensing lens 22 is f, then 1/a+1/b =1/f, the energy distribution of the laser beam LB 3 irradiated onto the surface to be processed becomes a substantially uniform distribution.

第7図の工程では、上述の如くエネルギ分布が
照射領域に対して略均一なレーザビームを非晶質
半導体膜12の隣接間隔部に照射して、上記非晶
質半導体膜12を各個別に分離した非晶質半導体
膜12a,12b,12c…及び透明電極膜11
a,11b,11c…の各露出部分を含んで基板
10上全面に約2000Å以上の厚さのアルミニウム
単層構造、或いは該アルミニウムにチタン又はチ
タ銀を積層した二層構造、更には斯る二層構造を
二重に積み重ねた裏面電極膜13が被着される。
In the process shown in FIG. 7, as described above, a laser beam having a substantially uniform energy distribution over the irradiation area is irradiated onto the adjacent spaced parts of the amorphous semiconductor film 12, so that the amorphous semiconductor film 12 is individually separated. Separated amorphous semiconductor films 12a, 12b, 12c... and transparent electrode film 11
a, 11b, 11c... The entire surface of the substrate 10, including the exposed portions, has a single-layer aluminum structure with a thickness of about 2000 Å or more, or a two-layer structure in which titanium or titanium-silver is laminated on the aluminum, or even such a two-layer structure. A back electrode film 13 having a double stacked layer structure is deposited.

第8図の最終工程では、上記裏面電極膜13が
各非晶質半導体膜12a,12b,12c…上の
端面近傍に於いて、第6図の非晶質半導体膜12
の分離工程と同じくエネルギ分布が照射領域に対
して略均一なレーザビームの照射により各個別の
裏面電極膜13a,13b,13c…に分割され
る。その結果、各個別に分割された透明電極膜1
1a,11b,11c…、非晶質半導体膜12
a,12b,12c…及び裏面電極膜13a,1
3b,13c…の積層体からなる光電変換素子1
4a,14b,14c…は基板10上に於いて電
気的に直列接続される。
In the final step shown in FIG. 8, the back electrode film 13 is attached to the amorphous semiconductor film 12 shown in FIG.
As in the separation step, the irradiation area is divided into individual back electrode films 13a, 13b, 13c, . . . by irradiation with a laser beam having a substantially uniform energy distribution. As a result, each individually divided transparent electrode film 1
1a, 11b, 11c..., amorphous semiconductor film 12
a, 12b, 12c... and back electrode films 13a, 1
Photoelectric conversion element 1 consisting of a laminate of 3b, 13c...
4a, 14b, 14c, . . . are electrically connected in series on the substrate 10.

第13図は、第9図に示した如き照射領域に対
して略均一なエネルギ分布を持ち照射領域の形状
が円形状のレーザビームを照射したときの照射表
面に於ける中心部を起点とし、その半径方向の温
度分布が略矩形状の分布を呈するレーザビームを
用いて裏面電極膜13を分割するときの深さ(厚
み)方向の温度分布を、200K毎の等温線を用い
てシユミレーシヨンしたものである。シユミレー
シヨンの対象となつた試料は先のシユミレーシヨ
ンに用いたガラス基板10上に膜厚2000Åの
SnO2透明電極膜11と、膜厚5000Åの非晶質半
導体膜12との積層体に、更に膜厚5000Åのアル
ミニウム単層構造の裏面電極膜13を重畳した。
このシユミレーシヨンの結果、アルミニウムの融
点は絶縁温度にして約930Kであり、この930K以
上の温度分布の中心から半径約38μmのアルミニ
ウム単層構造の裏面電極膜部分が除去される。一
方、斯るシユミレーシヨンによると、1000K以上
の温度分布が上記裏面電極膜部分と当接する非晶
質シリコン半導体膜12側にも僅かに存在する。
上記1000K以上の温度分布は斯る領域の非晶質シ
リコン半導体膜12が微結晶化或いは結晶化され
低抵抗層に変換されることを意味するものの、上
記低抵抗層の形成は表面から極めて浅い領域に止
まるために、実質的に無視し得る程度に過ぎな
い。
FIG. 13 shows a laser beam starting from the center of the irradiation surface when irradiating the irradiation area with a laser beam having a substantially uniform energy distribution and a circular irradiation area as shown in FIG. The temperature distribution in the depth (thickness) direction when dividing the back electrode film 13 using a laser beam whose temperature distribution in the radial direction exhibits a substantially rectangular distribution is simulated using isotherms at intervals of 200K. It is. The sample targeted for simulation was a film with a thickness of 2000 Å on the glass substrate 10 used in the previous simulation.
A back electrode film 13 having a single layer aluminum structure and having a thickness of 5000 Å was further superimposed on the laminate of the SnO 2 transparent electrode film 11 and the amorphous semiconductor film 12 having a thickness of 5000 Å.
As a result of this simulation, the melting point of aluminum is about 930K in terms of insulation temperature, and the back electrode film portion of the aluminum single-layer structure with a radius of about 38 μm from the center of the temperature distribution above 930K is removed. On the other hand, according to this simulation, a temperature distribution of 1000 K or more slightly exists on the side of the amorphous silicon semiconductor film 12 that is in contact with the back electrode film portion.
Although the temperature distribution above 1000K means that the amorphous silicon semiconductor film 12 in such a region is microcrystallized or crystallized and converted into a low resistance layer, the formation of the low resistance layer is extremely shallow from the surface. Since it remains in the area, it is of virtually negligible magnitude.

第14図は従来のガウス分布を持つレーザビー
ムを使用し、上記第13図のレーザ加工と略同じ
裏面電極膜13の除去幅を得ようとしたときの、
200K毎の等温線を用いた深さ方向の温度分布シ
ユミレーシヨンである。斯るシユミレーシヨンの
結果、第13図のレーザ加工と略同じ裏面電極膜
13の除去幅が得られるものの、温度こう配がな
だらかなために裏面電極膜13の融点近傍の温度
分布幅が広く裏面電極膜の除去界面に於いて該電
極膜形成材の溶融垂れが発生したり、また非晶質
シリコン半導体膜12の1200K以上の領域を除去
するのみならずその除去界面の1200K〜1000Kの
領域を低抵抗層に変換していたことが判る。
FIG. 14 shows an attempt to obtain approximately the same removal width of the back electrode film 13 as in the laser processing shown in FIG. 13 using a conventional laser beam with a Gaussian distribution.
This is a temperature distribution simulation in the depth direction using isotherms every 200K. As a result of such simulation, although the removal width of the back electrode film 13 is approximately the same as that of the laser processing shown in FIG. 13, the temperature gradient is gentle and the temperature distribution near the melting point of the back electrode film 13 is wide. melting of the electrode film forming material may occur at the removed interface, and not only the region of the amorphous silicon semiconductor film 12 with a temperature of 1200K or more is removed, but also the region of 1200K to 1000K at the removed interface with a low resistance It can be seen that it has been converted to a layer.

従つて、第8図の最終工程に於いて分割された
裏面電極膜13a,13b,13c…は物理的に
も電気的にも分離され、隣接光電変換素子14
a,14b,14c…を確実に直列接続せしめ
る。
Therefore, the back electrode films 13a, 13b, 13c, . . . , which are divided in the final step of FIG.
a, 14b, 14c... are reliably connected in series.

尚、上記第8図の最終工程に於いて裏面電極膜
13a,13b,13c…は各非晶質半導体膜1
2a,12b,12c…上で略均一なエネルギ分
布のレーザビームの照射により除去されているた
めに、斯る除去部分に於いて露出した非晶質半導
体膜の表面部分には上述の如き若干の低抵抗層が
形成されるものの、この低抵抗層は光起電力装置
が太陽光の下で使用されたときや室内光であつて
も通常の照度(400Lux以上)であれば実質的に
問題はない。ただ約200Lux未満の低照度下では
上記低抵抗層によるリーク等の悪影響を発生する
こともある。このようなときは、上記低抵抗層を
上記裏面電極膜13a,13b,13c…を耐エ
ツチングマスクとして例えばCF4を用いた反応性
イオンエツチング(プラズマエツチング)を施し
てエツチング除去するか、第16図に示す如く裏
面電極膜13の除去工程に於いて該裏面電極膜の
みを選択的に除去することなく下層の非晶質半導
体膜12も同時に除去すれば良い。
In the final step shown in FIG. 8, the back electrode films 13a, 13b, 13c, . . .
2a, 12b, 12c... are removed by irradiation with a laser beam with a substantially uniform energy distribution, the surface portion of the amorphous semiconductor film exposed in such removed portions has some of the above-mentioned Although a low-resistivity layer is formed, this low-resistance layer is practically non-existent when the photovoltaic device is used in sunlight or under normal illuminance (400 Lux or higher) even in indoor light. do not have. However, under low illuminance of less than about 200 Lux, negative effects such as leakage due to the above-mentioned low resistance layer may occur. In such a case, the low-resistance layer may be etched away by reactive ion etching (plasma etching) using, for example, CF 4 using the back electrode films 13a, 13b, 13c, . . . as an etching-resistant mask; As shown in the figure, in the step of removing the back electrode film 13, the underlying amorphous semiconductor film 12 may be removed simultaneously without selectively removing only the back electrode film.

(ト) 発明の効果 本発明製造方法は以上の説明から明らかな如
く、エネルギ分布が照射領域に対して略均一なエ
ネルギビームを、半導体膜上に配置された電極膜
の予定箇所に照射するので、当該照射領域の電極
膜を、実質的に溶融垂れを発生させることなく除
去することができ、同一の光電変換素子の短絡事
故を防止することができると共に、下層に位置す
る半導体膜部分の低抵抗層の形成を低減せしめ得
る。
(G) Effects of the Invention As is clear from the above description, the manufacturing method of the present invention irradiates a predetermined location of an electrode film disposed on a semiconductor film with an energy beam whose energy distribution is substantially uniform over the irradiation area. , it is possible to remove the electrode film in the irradiated area without substantially causing melt sag, and it is possible to prevent short-circuit accidents of the same photoelectric conversion element, as well as to reduce the thickness of the underlying semiconductor film. The formation of a resistive layer can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光起電力装置の基本構造を示す断面
図、第2図a〜dは従来方法の欠点を説明するた
めの要部拡大断面図、第3図〜第8図は本発明方
法を工程別に示す断面図、第9図は本発明方法に
用いられるレーザビームのエネルギ分布を説明す
る温度分布特性図、第10図は従来方法のエネル
ギ分布を説明する温度分布特性図、第11図及び
第12図は夫々第9図と第10図のエネルギ分布
を持つレーザビームを非晶質シリコン半導体膜に
照射したときの等温分布特性図、第13図及び第
14図は夫々第9図と第10図のエネルギ分布を
持つレーザビームをアルミニウム裏面電極膜に照
射したときの等温分布特性図、第15図は本発明
方法に用いられるレーザビームの作成方式を原理
的に示す模式図、第16図は本発明方法の最終工
程の他の実施例を示す断面図、である。 10…基板、11,11a,11b,11c…
透明電極膜、12,12a,12b,12c…非
晶質半導体膜、13,13a,13b,13c…
裏面電極膜、14a,14b,14c…光電変換
素子、21…アイリス、22…集光レンズ。
FIG. 1 is a sectional view showing the basic structure of a photovoltaic device, FIGS. 2 a to d are enlarged sectional views of main parts to explain the drawbacks of the conventional method, and FIGS. 3 to 8 are sectional views showing the method of the present invention. 9 is a temperature distribution characteristic diagram illustrating the energy distribution of the laser beam used in the method of the present invention; FIG. 10 is a temperature distribution characteristic diagram illustrating the energy distribution of the conventional method; FIGS. Fig. 12 is an isothermal distribution characteristic diagram when an amorphous silicon semiconductor film is irradiated with a laser beam having the energy distribution shown in Figs. 9 and 10, respectively, and Figs. Figure 10 is an isothermal distribution characteristic diagram when an aluminum back electrode film is irradiated with a laser beam having the energy distribution shown in Figure 10. Figure 15 is a schematic diagram showing the principle of the laser beam creation method used in the method of the present invention, Figure 16. FIG. 2 is a cross-sectional view showing another embodiment of the final step of the method of the present invention. 10...Substrate, 11, 11a, 11b, 11c...
Transparent electrode film, 12, 12a, 12b, 12c...Amorphous semiconductor film, 13, 13a, 13b, 13c...
Back electrode film, 14a, 14b, 14c...photoelectric conversion element, 21...iris, 22...condensing lens.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の光電変換素子を基板の絶縁表面で電気
的に直列接続せしめた光起電力装置の製造方法で
あつて、上記複数の光電変換素子を構成する非晶
質半導体膜上に配置された電極膜に、エネルギ分
布が照射領域に対して略均一なエネルギビームを
照射することで、当該照射領域に於ける当該電極
膜下の半導体膜に、低抵抗層が形成されるのを抑
圧しつつ上記電極膜を除去すると共に、該照射領
域の電極膜に溶融垂れを発生させることなく、上
記電極膜を複数の光電変換素子毎に分割したこと
を特徴とする光起電力装置の製造方法。
1. A method for manufacturing a photovoltaic device in which a plurality of photoelectric conversion elements are electrically connected in series on an insulating surface of a substrate, the electrodes being arranged on an amorphous semiconductor film constituting the plurality of photoelectric conversion elements. By irradiating the film with an energy beam whose energy distribution is substantially uniform over the irradiation area, the above-mentioned method can be achieved while suppressing the formation of a low resistance layer on the semiconductor film under the electrode film in the irradiation area. A method for manufacturing a photovoltaic device, characterized in that the electrode film is removed and the electrode film is divided into a plurality of photoelectric conversion elements without causing melt sag in the electrode film in the irradiation area.
JP61034800A 1986-02-18 1986-02-18 Manufacture of photovoltaic device Granted JPS62193181A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61034800A JPS62193181A (en) 1986-02-18 1986-02-18 Manufacture of photovoltaic device
US07/015,691 US4755475A (en) 1986-02-18 1987-02-17 Method of manufacturing photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61034800A JPS62193181A (en) 1986-02-18 1986-02-18 Manufacture of photovoltaic device

Publications (2)

Publication Number Publication Date
JPS62193181A JPS62193181A (en) 1987-08-25
JPH0528911B2 true JPH0528911B2 (en) 1993-04-27

Family

ID=12424316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61034800A Granted JPS62193181A (en) 1986-02-18 1986-02-18 Manufacture of photovoltaic device

Country Status (1)

Country Link
JP (1) JPS62193181A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5168428B2 (en) * 2010-03-18 2013-03-21 富士電機株式会社 Method for manufacturing thin film solar cell

Also Published As

Publication number Publication date
JPS62193181A (en) 1987-08-25

Similar Documents

Publication Publication Date Title
US4755475A (en) Method of manufacturing photovoltaic device
US4542578A (en) Method of manufacturing photovoltaic device
JP3436858B2 (en) Manufacturing method of thin film solar cell
US4668840A (en) Photovoltaic device
US5332680A (en) Method of making photoelectric conversion device
US20170236969A1 (en) Laser irradiation aluminum doping for monocrystalline silicon substrates
US20150140721A1 (en) Patterning of silicon oxide layers using pulsed laser ablation
US20080105303A1 (en) Method and Manufacturing Thin Film Photovoltaic Modules
JPH0560674B2 (en)
JP2005515639A (en) Method for manufacturing thin film photovoltaic module
EP2819181A1 (en) Laser annealing applications in high-efficiency solar cells
JPH0447466B2 (en)
EP0130847B1 (en) Semiconductor device manufacturing method
KR20100115193A (en) Method of fabricating the same
JP2680582B2 (en) Method for manufacturing photovoltaic device
JPH0528911B2 (en)
JPS6233477A (en) Manufacture of photovoltaic device
JPH0799335A (en) Removal and processing of semiconductor film and manufacture of photovoltaic element
JPH0528912B2 (en)
JPS61280680A (en) Manufacture of semiconductor device
JPH0558676B2 (en)
JPS6114769A (en) Photovoltaic device
JP2517226B2 (en) Method for manufacturing semiconductor device
JPS59220978A (en) Manufacture of photovoltaic device
JP2009072831A (en) Apparatus for forming laser scribes

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term