JPS6114769A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPS6114769A
JPS6114769A JP59135824A JP13582484A JPS6114769A JP S6114769 A JPS6114769 A JP S6114769A JP 59135824 A JP59135824 A JP 59135824A JP 13582484 A JP13582484 A JP 13582484A JP S6114769 A JPS6114769 A JP S6114769A
Authority
JP
Japan
Prior art keywords
electrode film
film
layer
exposed
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59135824A
Other languages
Japanese (ja)
Inventor
Seiichi Kiyama
木山 精一
Hitoshi Kihara
均 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59135824A priority Critical patent/JPS6114769A/en
Priority to US06/749,888 priority patent/US4668840A/en
Publication of JPS6114769A publication Critical patent/JPS6114769A/en
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To divide electric extension of the second electrode film coated on a photoactive layer at every photoelectric conversion region without thermal damage to the first electrode film by coating the exposed boundary from the photoactive layer of the first electrode film with an insulating heat adibatic layer. CONSTITUTION:An insulating heat adiabatic layer 8 for coating exposed boundaries 2a'', 2b'', 2c'',... are formed from the left side edges of photoactive layers 3a, 3b, 3c,... in the exposed ports 2a', 2b', 2c',... of transparent electrode films 2a, 2b, 2c,.... The layer 8 operates as a heat adiabatic layer when a back surface electrode film 4 of the second electrode film is divided at every photoelectric conversion regions 5a, 5b, 5c,... are emitted with a laser beam. Since the layer 8 of SiO2 is inserted to the boundary between the film 4 of aluminum and the film 2 of the SiO2 or the boundary between a photoactive layer 3 of a-Si and the film 2 of SnO2, the surface temperature of the film 2 becomes room temperature, thereby providing very large heat adiabatic operation.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は光照射により起電力を発生する光起電力装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a photovoltaic device that generates electromotive force by irradiation with light.

←)従来技術 第1図は米国特許第4281208号に開示されている
と共に、既に実用化されている光起電力装置の基本構造
を示し、(1)はガラス・耐熱プラスチック等の絶縁性
且つ透光性を有する基板、(21(2b)(20)・・
・は該基板(1)の表面に分割配置された8n02、I
TO等の透光性酸化物導電体の透明電極膜で、第1電極
膜を司どる。(6B)(3b)(3o)、、、は上記透
明電極膜(2B)(2b)(20)・・・上に被着され
た非晶質シリコン、非晶質シリコンカーバイド、非晶質
シリコンゲルマニウム及びそれ等の微結晶とを含む膜状
非晶質半導体の光活性層、(4m)(4b)(4o )
 ・−は該光活性#(3a )(3b)(5G)・・・
上に重畳被着された第2電極膜を司どるオーミック金属
から成る裏面WL電極膜、該裏面電極膜(4a)(4b
)(40)・・・の各々は隣接せる光活性1i1(3a
)(5b)(30)・2>=ら11出り、l!明電電極
膜2b)(20)・・・の露出部(2b’)(20′)
・・・に向って直接的に延出し1つの光活性N(3&)
(3b)(3c)・・・と、その光活性Ml(5a)(
3b)(3o)、、、を挾む透明電極膜(2a)(2b
)(2C)及び裏面電極膜(4111)(4b)(40
)・・・とから成る複数の光重変換領域(5a)(5b
)(50)・・・は電気的に直列接続されている。
←) Prior art Figure 1 shows the basic structure of a photovoltaic device that is disclosed in U.S. Pat. No. 4,281,208 and has already been put into practical use. A substrate having optical properties, (21 (2b) (20)...
・8n02, I dividedly arranged on the surface of the substrate (1)
A transparent electrode film made of a transparent oxide conductor such as TO controls the first electrode film. (6B) (3b) (3o), . . . are amorphous silicon, amorphous silicon carbide, amorphous silicon deposited on the transparent electrode film (2B) (2b) (20)... Photoactive layer of film-like amorphous semiconductor containing germanium and microcrystals thereof, (4m) (4b) (4o)
・- is the photoactive #(3a)(3b)(5G)...
A back WL electrode film made of an ohmic metal that controls a second electrode film superimposed on the back electrode film (4a) (4b);
)(40)... each of adjacent photoactive 1i1(3a
)(5b)(30)・2>=ra11 exit, l! Exposed portions (2b') (20') of Meiden electrode film 2b) (20)...
One photoactive N(3&) extending directly toward...
(3b) (3c)... and its photoactive Ml (5a) (
Transparent electrode films (2a) (2b) sandwiching 3b) (3o), .
) (2C) and back electrode film (4111) (4b) (40
)... A plurality of light weight conversion regions (5a) (5b
)(50)... are electrically connected in series.

上記光活性1(3a)(3b)(30)・=はその内部
に例えば膜面に平行なPIN接合、或いはその多重構造
、所謂タンデム構造等の半導体接合を含み、従って、基
板(1)及び透明%I電極膜2a)(2b)(20)・
・・順次介して光照射があると起電力を発生し、その起
電力は一気的1こ相加されて取り出される。
The above-mentioned photoactive materials 1 (3a) (3b) (30), etc. contain semiconductor junctions such as, for example, PIN junctions parallel to the film surface, or multiple structures thereof, so-called tandem structures, and therefore, the substrate (1) and Transparent %I electrode film 2a) (2b) (20)・
...When light is irradiated sequentially, an electromotive force is generated, and the electromotive force is added at once and taken out.

通常期る構成の光起電力装置にあっては、l1llIv
!!加工性に優れている写真蝕刻技術が用いられている
。この技術による場合、基板(1)上全面への透明電極
膜の被着工程と、フォトレジスト及びエツチングによる
各個別の透明電極膜(21(2b)(20)・・・の分
離、即ち、各透明電極Jll(2B)(2b)(20)
・・・の隣接間隔部分の除去工程と、これら各透明電極
膜上を含む基板(1)上全面への非晶質半導体膜の被着
工程と、フォトレジスト及びエツチングによる各個別の
光活性!fIJ(3B)(3b)(3c)・・・の分離
、即ち、各光活性層(3a)(3b)(31・・・の隣
接間隔部分の除去工程とを順次経ることになる。
In a photovoltaic device with a normal configuration, l1llIv
! ! Photo-etching technology, which has excellent processability, is used. In the case of this technique, the process of depositing a transparent electrode film on the entire surface of the substrate (1), and the separation of each individual transparent electrode film (21 (2b) (20)...) by photoresist and etching. Transparent electrode Jll (2B) (2b) (20)
. . . . . . . . . . . . . . . . . . . . . ) . . . . fIJ (3B) (3b) (3c) . . . are separated, that is, the adjacent spaced portions of each photoactive layer (3a) (3b) (31 . . .) are removed in sequence.

然し乍ら、写真蝕刻技術は細密加工の上で優れているが
、蝕刻パターンを規定するフォトレジストのピンホール
や周縁での剥れにより非晶質半導体膜に欠陥を生じさせ
やすい。
However, although photo-etching technology is excellent in terms of fine processing, it tends to cause defects in the amorphous semiconductor film due to pinholes or peeling at the periphery of the photoresist that defines the etching pattern.

特開昭57−1257!18号公報に開示された先行技
術は、レーザビームの照射による膜の焼き切りで上記隣
接間隔を設けるものであり、写真蝕刻技術で必要なフォ
トレジスト、即ちウェットプロセスを一切使わず細密加
工性に富むその技法は上記の課題を解決する上で極めて
有効である。
The prior art disclosed in Japanese Patent Application Laid-Open No. 57-1257!18 provides the above-mentioned adjacent spacing by burning out the film by laser beam irradiation, and does not require any photoresist, that is, a wet process, which is necessary for photolithography. This technique, which allows for fine processing without the use of metal, is extremely effective in solving the above-mentioned problems.

レーザ使用の際に第1に留意すべきことは、斯るレーザ
加工は本質的に熱加工であシ、加工せんとする膜部分の
下に他の膜が存在しておれば、それに損傷を与えないこ
とである。さもなければ、目的の膜部分を焼き切った上
、必要としない下の膜まで焼き切ってしまったり、或い
は焼き切らないまでも熱的なダメージを与えてしまう。
The first thing to keep in mind when using a laser is that such laser processing is essentially thermal processing, and if there is another film under the film to be processed, it may be damaged. It's about not giving. Otherwise, not only the desired film portion but also the unnecessary lower film may be burned off, or thermal damage may occur even if the film is not burnt out.

上記先行技術は、この要求を満すために、レーザ出力や
パルス周波数を各層に対して選択することを提案してい
る。
The above-mentioned prior art proposes selecting the laser power and pulse frequency for each layer in order to meet this requirement.

然し乍ら、光活性1(3a)(3b)(30)・・・の
N3層上に形成される裏面電極膜(4a)(4b)(4
C)・・・は上記N型層とオーミック接触すべくアルミ
ニウム、チタン、金、銀等の周知のオーミック金属から
選択されるが、その内特にアルミニウムが上記N型層を
透過しようとする光を再び光wL変換に寄与するI型(
ノンドープ)層に反射せしめることができる点及びコス
ト的にも安価である点等から有利な材料である反面、上
述の如くレーザビームの照射によるバターニング加工は
、使用するレーザの種類にも左右されるが一般的なレー
ザビームに対する反射率は高く、例えば波長1.06μ
mのYAGレーザに於いては約90%以上でちゃ、熱伝
導性が良いために下層の透明電極膜(2B)(2b)(
20)−17)III出部(2a’) (21)’) 
(2G’)・・・に熱的なダメージを与えることなく加
工することは難しい。上記レーザバターニングを開示せ
る特開昭57−12568号公報に於いても、裏面[極
材料としてアルミニウムを用いた実施例にあっては、斯
るアルミニウムを既にレーザバターニングされた光活性
層(6&)(3b)(30)・・・及び透明導電膜(2
a)(2b)(20)・・・に対して斜め方向から蒸着
し、レーザ加工することなく直接パターン形成する方法
を採用している。
However, the back electrode films (4a) (4b) (4) formed on the N3 layer of photoactive 1 (3a) (3b) (30)...
C)... is selected from well-known ohmic metals such as aluminum, titanium, gold, silver, etc. in order to make ohmic contact with the N-type layer, and among them, aluminum is particularly effective in preventing light from passing through the N-type layer. Type I (which again contributes to optical wL conversion)
Although it is an advantageous material because it can reflect light on the non-doped (non-doped) layer and is inexpensive, on the other hand, as mentioned above, the patterning process by laser beam irradiation depends on the type of laser used. However, the reflectance for general laser beams is high, for example, at a wavelength of 1.06μ.
In the YAG laser of m, the lower layer transparent electrode film (2B) (2b) (
20)-17) III exit part (2a') (21)')
(2G')... is difficult to process without causing thermal damage. JP-A-57-12568, which discloses the laser patterning described above, also discloses that the back surface [in the embodiments using aluminum as the electrode material, the photoactive layer which has already been laser patterned with such aluminum ( 6&) (3b) (30)... and transparent conductive film (2
A method is adopted in which vapor deposition is performed obliquely to a), (2b), (20), etc., and a pattern is directly formed without laser processing.

更に、レーザビームの照射によp熱的に加工を施す際に
第2に留意すべきことは、第2図に示す如く裏面電極膜
(4b)・・・のレーザ加工時、裏面電極膜(4b)・
・・はオーミック金属製故に一般に熱伝導性が良く、除
去すべき隣接間隔部(6)の裏面電極膜エッヂ(7)・
・・が溶融により垂れ下がると、その下方には当該光電
変換領域(5b)・・・の透明電極J[(2b)・・・
の露出部(2b′)・・・が露出しているために、両者
が接触し、この様な裏面電極膜(4b)・・・と透明v
l極膜(2b)とが接触した1つの光重変換領域(5b
)・・・がt![的に短絡することである。
Furthermore, the second thing to keep in mind when carrying out p-thermal processing by laser beam irradiation is that when laser processing the back electrode film (4b)... as shown in FIG. 4b)・
Since it is made of ohmic metal, it generally has good thermal conductivity, and the back electrode film edge (7) of the adjacent gap part (6) to be removed.
When ... hangs down due to melting, the transparent electrode J [(2b) ... of the photoelectric conversion region (5b) ... is below it.
Since the exposed part (2b')... of the transparent v
One light weight conversion region (5b) in contact with the l-pole film (2b)
)... is t! [This is to short-circuit.]

(ハ)発明の目的 本発明は斯る点に鑑みて為されたものであって、その目
的とするところは、下層への熱的なダメージを回避し得
ると共に短絡事故を招くことなく、第211r極膜を司
どる上記裏面N極膜の重置的延長部をレーザビームの如
きエネルギビームの照射により分割可能な光起電力製前
を提供することにある。
(c) Purpose of the Invention The present invention has been made in view of the above points, and its purpose is to avoid thermal damage to the lower layers and to avoid short-circuit accidents. The object of the present invention is to provide a photovoltaic device in which the overlapping extension of the back N-pole film that controls the 211r polar film can be divided by irradiation with an energy beam such as a laser beam.

に)発明の構成 本発明光起電力装置は、絶縁表面を有する基板と、該基
板の絶縁表面に分割配置された第1t1′極膜と、該第
1W極膜上にその一部を露出せしめて分割配置された光
活性層と、該光活性層上に分割配置されfc第2電極膜
と、し第2電極膜から延出し隣接する光活性層から露出
した第1電極膜の露出部と電気的に連なる第2N極膜の
亀°慨的延長部と、上記第1電極膜の露出部に於いて上
記光活性層から露出する露出界面を被覆する絶縁断熱層
と、全備え、上記第2[極膜のN剣的延長部は少なくと
も第1[極膜の露出部及び絶縁断熱層を越えて瞬接する
光活性層上に被着された後、上記絶縁断熱層上に於いて
エネルギビームの照射により除去されて分割される構成
にある。
B) Structure of the Invention The photovoltaic device of the present invention comprises a substrate having an insulating surface, a first t1' polar film dividedly arranged on the insulating surface of the substrate, and a part thereof exposed on the first W polar film. an fc second electrode film divided and arranged on the photoactive layer; and an exposed portion of the first electrode film extending from the second electrode film and exposed from the adjacent photoactive layer. the electrically connected schematic extension of the second N electrode film; an insulating heat-insulating layer covering the exposed interface exposed from the photoactive layer in the exposed part of the first electrode film; 2. The N-shaped extension of the polar film is deposited on at least the first photoactive layer in instantaneous contact across the exposed portion of the polar film and the insulating and heat-insulating layer, and then an energy beam is applied onto the insulating and heat-insulating layer. The structure is such that it is removed and divided by irradiation.

(ホ)実施例 第6図は本発明光起電力装置の一実施例を示し、第1図
の従来装置と同じものについては同番号が付してあシ説
明を割愛する。即ち、本発明の構造的特徴は、透明電極
膜(21(2b)(20)−(D露出部(2a’) (
2b’) (2o’)−c於イテ各光活性層(3B)(
3b)(30)・・・の左側縁から露出界面(2a)(
2b“)(2C“)・・・を被覆すべく絶縁断熱層(8
1f8++8)・・・が設けられ、斯る絶縁断熱層(8
1+81(81・・・は、第2電極膜である裏面1極膜
が各光活性層(3B ) (31) ) (30) ・
・・、jll出部(2a’) (2b’) (20’)
 ”・及ヒ該絶mi熱5(81(81+81・・・に跨
って一面に被着後、該裏面電極膜を各光電変換領域(5
B)(5b)(50)・・・毎に分割すべきレーザビー
ムの照射時断熱層として作用する。
(E) Embodiment FIG. 6 shows an embodiment of the photovoltaic device of the present invention. Components that are the same as the conventional device shown in FIG. That is, the structural feature of the present invention is that the transparent electrode film (21 (2b) (20) - (D exposed part (2a')
2b') (2o')-c for each photoactive layer (3B) (
3b) (30)...Exposed interface from the left edge of (2a) (
2b") (2C")...
1f8++8)... is provided, and such an insulating and heat-insulating layer (8
1+81 (81... means that the back monopolar film which is the second electrode film is each photoactive layer (3B) (31) ) (30) ・
..., jll exit part (2a') (2b') (20')
After coating the back electrode film over the entire surface of the photoelectric conversion area (5 (81 + 81...),
B)(5b)(50)... It acts as a heat insulating layer during irradiation with the laser beam to be divided.

第4図は上記裏面電極膜(4)が−面に被着された後の
レーザビーム(L)の照射工程を示している。
FIG. 4 shows the laser beam (L) irradiation process after the back electrode film (4) is deposited on the negative side.

図中、(9)ハレーザビーム(L)のビーム径を調整す
る対物レンズであり、該対物レンズ(9)によシ集光さ
れたレーザビーム(L)は一点鎖線で規定された照射領
域A、Bを照射すべく走査される。斯る第4図及び第5
図乃至第8図の温度分布図を用いてレーザビーム(L)
の照射時に於ける絶縁断熱層+81(81+81・・・
の断熱作用を説明する。
In the figure, (9) is an objective lens for adjusting the beam diameter of the laser beam (L), and the laser beam (L) focused by the objective lens (9) is directed to an irradiation area A defined by a dashed line. It is scanned to irradiate B. Such figures 4 and 5
Laser beam (L) is
The insulation and heat insulation layer +81 (81+81...
Explain the insulation effect of

レーザビーム(L)が照射される裏面電極膜(4)具体
的材料は、第5図乃至第8図に示す如くアルミニウム<
kl)、非晶質シリコン(a−8i)、二酸化シリコン
(8i02 )、酸化Xズ(Sn02)及びガラスであ
り、基板(1)の材料であるガラスを除き他の膜厚は一
律5000Aとした。また、レーザとして波長1.06
μm、パルス幅100n冠のQスイッチ付YAGレーザ
を用いた。尚、斯るYAGレーザに対するAIの反射率
は約92%であり、裏面電極膜(4)であるAll!出
面の温度が一律該Alの融点である933°にとなるべ
くレーザビームの出力IOを制御した。即ち、第5図及
び第6図は照射領域Aに於ける温度分布を示し、第5図
は本発明装置であシ、第6図は8 iozの絶縁断熱P
iIi(8Jの存在しない従来装置である。1fC1第
7図及び第8図は照射領域Bに於ける温度分布であり、
第7図は本発明装置であり、第8図は従来装置である。
The specific material of the back electrode film (4) to which the laser beam (L) is irradiated is aluminum <
kl), amorphous silicon (a-8i), silicon dioxide (8i02), tin oxide (Sn02), and glass, and except for the glass, which is the material of the substrate (1), the other film thicknesses were uniformly 5000A. . Also, as a laser, the wavelength is 1.06
A Q-switched YAG laser with a pulse width of 100 nm and a pulse width of 100 nm was used. Incidentally, the reflectance of AI with respect to such a YAG laser is about 92%, and the All! The output IO of the laser beam was controlled so that the temperature of the exit surface uniformly reached 933°, which is the melting point of the Al. That is, FIGS. 5 and 6 show the temperature distribution in the irradiation area A, where FIG. 5 shows the temperature distribution using the device of the present invention, and FIG.
iIi (This is a conventional device in which 8J does not exist. 1fC1 Figures 7 and 8 show the temperature distribution in the irradiation area B,
FIG. 7 shows the device of the present invention, and FIG. 8 shows the conventional device.

斯る温度分布から明らかな如く、8102の絶縁断熱m
(Elを、A/の裏面−゛極膜(4)と5n02(D透
明vL極膜(2b)との界面或いはa−8iの光活性I
m(3b)と8n02(7)透明tffl膜(2b)と
の界面に配挿せしめた本発明装置にあっては透明%、、
極膜(2b)の表面温度は296°にの室温とな夛、極
めて大きな断熱作用を!する。
As is clear from such temperature distribution, the insulation and insulation m of 8102
(El is attached to the back side of A/, the interface between the polar film (4) and 5n02 (D transparent vL polar film (2b), or the photoactive I of a-8i.
In the device of the present invention disposed at the interface between m (3b) and 8n02 (7) transparent tffl film (2b), the transparency %,
The surface temperature of the polar membrane (2b) is 296 degrees to the room temperature, and has an extremely large heat insulating effect! do.

一方、第5図乃至第8図に記入の如<A1m出面の温度
を一律966°Kに上昇すべきレーザビーム出力IOは
、絶縁#r熱層(8)の断熱作用の結果、下層の透明i
ll極膜(2b)への熱伝導が遮断されるので、本発明
装置の方が低出力で済む。即ち、同じ温度まで上昇すべ
きレーザビーム出力IOが低出力で済むと云うことは、
低出力のレーザで以って所望のパターンに加工できるこ
とを意味する。
On the other hand, as shown in FIGS. 5 to 8, the laser beam output IO that should uniformly raise the temperature of the exit surface of i
Since heat conduction to the 11 electrode film (2b) is blocked, the device of the present invention requires lower output. In other words, the fact that the laser beam output IO that should rise to the same temperature can be achieved with a low output means that
This means that a desired pattern can be processed using a low-power laser.

上記絶縁断熱層(8)・・・は8102の他に8iaN
4、A120a、P8(]、B5Cl等があり、当業者
に於いて周知の熱酸(窒)化法、各種OVD法、スパッ
タ法尋が用いられるが、特に8i02及び8iaN+が
レーザ0VI)法、即ちシラン(8iH4)及び酸素(
02)或いは窒素(N2)、アンモニア(NH3)、亜
酸化窒素(N20)専の原料ガスをナヤンパ内に導入し
、絶縁断熱層(8)・・・を形成すべき箇所にのみ医長
が紫外光領域例えば193nmのエキシマレーザビーム
を照射すると、上記原料ガスが熱励起されその箇所に上
記8i02或いは8i3N4膜が直接バターニング形成
されるので好ましい。尚、斯るレーザOVD法自体はA
ppCPhys、Lett、40(8)第716頁乃至
第718頁[La5er−induced ohemi
oalvapor  deposition  of 
8i02JPJJ1oyer他に開示されており周知で
ある。
In addition to 8102, the above-mentioned insulation and heat insulation layer (8)... is 8iaN
4, A120a, P8(], B5Cl, etc., and thermal oxidation (nitridation), various OVD methods, and sputtering methods well known to those skilled in the art are used, but in particular, 8i02 and 8iaN+ are laser 0VI) method, i.e. silane (8iH4) and oxygen (
02) Alternatively, a raw material gas exclusively for nitrogen (N2), ammonia (NH3), and nitrous oxide (N20) is introduced into the Nayampa, and the medical director applies ultraviolet light only to the areas where the insulation and heat insulation layer (8)... is to be formed. Irradiation with an excimer laser beam having a wavelength of, for example, 193 nm is preferable because the raw material gas is thermally excited and the 8i02 or 8i3N4 film is directly patterned at that location. Furthermore, the laser OVD method itself is A.
ppCPPhys, Lett, 40(8), pp. 716-718 [La5er-induced ohemi
oalvapor position of
8i02JPJJ1oyer et al., and is well known.

また、上記レーザOVD法以外の他の好適な形成法はプ
ラズマOVD法であり、上記原料ガスをグロー放電装置
内に導入すると共に、被着しては不都合な箇所をマスク
で覆われた基板(1)を上記放電装置内に載置し、グロ
ー放電を励起する方法である。この方法によらても、原
料ガスはプラズマ分解されマスクを介して選択的に上記
8102或いは8iaN4膜を容易に形成することがで
きる。
In addition, another suitable forming method other than the laser OVD method is the plasma OVD method, in which the raw material gas is introduced into the glow discharge device, and the areas where it would be inconvenient to deposit the substrate ( 1) is placed in the above-mentioned discharge device and a glow discharge is excited. Also by this method, the source gas is plasma decomposed and the 8102 or 8iaN4 film can be easily formed selectively through a mask.

この様な8102.8i3N4等の絶縁断熱層(81・
U光活性層(3a)(3b)(30)・l)形成に先立
って基板(1)に:M明電極展(2a)(2b)(20
)・・・を分割形成後行なわれる。絶縁断熱層(81(
8)(8i・・・形成か終了すると、該透明wI電極膜
2B)(2b、)(20)・・・及び絶縁断熱層(81
+81(81−・・上全面に少なくとも1つの半導体接
合を備えた光活性層が形成され、斯る光活性層はレーザ
ビームの照射により透明To電極膜2a)(2b)(2
゜)・・・の露出部(2a’) (2b’) (20’
)及び上記絶縁断熱N (8)h(8)・・・をその隣
接界面から露出せしめた状態で各光電変換領域(5a)
(5b)(5C)・・・毎に個別に分割される。そして
、光活性層1a)(3b)(30)・・・、絶縁断熱層
+81 (81(8j・・・及び透明電極膜(2a)(
2b)(20)・・・の露出部(2a’) (2b’)
 (20’) ・・・上全面に裏面電極膜(4)が蒸着
される。第4図は蒸着され六裏面%極膜(4)のレーザ
除去工程を示してお夛、上述の々[1く照射仙域A、H
に於ける透明電極膜(2&)(2b)(20)・・・上
には絶縁断熱層+8)f81 (81・・・が設けられ
ており、則るレーザビームの照射に対して断熱作用を呈
している。従って、裏面霜極換(4)としてレーザビー
ムによる選択加工性の悪かったAg或いはA1合金を用
いたとしても、上記絶縁断熱PImf&(8)t8+・
・・により被しされた透明−゛極膜(2a)(2b)(
2c)・・・は熱的ダメージを受けることなくバターニ
ング加工が施される。また、他のオーミック金属であっ
てもレーザ出力条件がかなり大きなものでも許容される
結果、加工条件が緩和さt′Ifcにも拘らず選択加工
が容易となる。
Insulating and heat-insulating layers such as 8102.8i3N4 (81.
Prior to the formation of U photoactive layers (3a) (3b) (30) and l), M bright electrodes (2a) (2b) (20
)... is performed after dividing and forming. Insulating heat insulation layer (81 (
8) (8i... When the formation is completed, the transparent wI electrode film 2B) (2b, ) (20)... and the insulating and heat-insulating layer (81
+81 (81-...A photoactive layer with at least one semiconductor junction is formed on the entire upper surface, and the photoactive layer is irradiated with a laser beam to form a transparent To electrode film 2a) (2b) (2
゜)... exposed parts (2a') (2b') (20'
) and the above-mentioned insulation and heat insulation N (8) h (8)... are exposed from their adjacent interfaces, and each photoelectric conversion region (5a)
(5b) (5C)... are individually divided. Then, the photoactive layer 1a) (3b) (30)..., the insulating heat-insulating layer +81 (81(8j...) and the transparent electrode film (2a)(
2b) Exposed part (2a') (2b') of (20)...
(20')...A back electrode film (4) is deposited on the entire upper surface. Figure 4 shows the laser removal process of the evaporated 6% polar film (4) and the irradiated areas A, H as described above.
The transparent electrode film (2&) (2b) (20)... is provided with an insulating and heat-insulating layer +8) f81 (81...) on top, and has a heat-insulating effect against the irradiation of the laser beam. Therefore, even if Ag or A1 alloy, which has poor selective machinability with a laser beam, is used as the back surface frost polarization (4), the above insulation and heat insulation PImf&(8)t8+・
Transparent polar films (2a) (2b) covered with...
2c)... is subjected to buttering processing without receiving thermal damage. In addition, even when using other ohmic metals, a considerably large laser output condition is allowed, and as a result, the processing conditions are relaxed and selective processing becomes easy despite t'Ifc.

第9図は上記裏面電極膜(4)のレーザバターニング後
の状態を示している。上舵絶縁断熱N (8i f81
(81・・・Idv−ザビーム照射時下層への熱的ダメ
ージを阻止する断熱体として作用していたが、斯るレー
ザビーム照射後、即ちバターニング後にあっては故を防
止する絶縁体として作用している。
FIG. 9 shows the state of the back electrode film (4) after laser patterning. Upper rudder insulation insulation N (8i f81
(81... Idv - It acted as a heat insulator to prevent thermal damage to the underlying layer during laser beam irradiation, but after laser beam irradiation, that is, after buttering, it acted as an insulator to prevent damage.) are doing.

第10図は本発明光起電力装置の他の実施例で、先の実
施例と異なるところは隣接せる光電変換領域(5a)(
5b)・・・の直列接続形態にある。即ち、本実施例に
あっては第2電極膜を司どる裏面電極膜(4a)・・・
が直接右隣りの光電変換領域(5b)・・・に於いて露
出する透明@、電極膜2b)・・・の謂出部(2b’)
・・・と結合するのではなく、三層構造の接続if電極
膜0)・・・によって上記裏面t&膜(4a)・・・と
透明電極膜(2b)・・・とが間接的に結合されており
、従って接続電極膜QOI・・・が裏面電極膜(4B)
・・・のt気的延長部として作用している。上記接続−
°極膜(101の三層構造の内分けは、透明電極膜(2
b)・・・側から、チタン(Ti)或いはチタン銀(T
iAg)、Al或いFiA1合金、及びTi或いはTi
Agの順であり、下層(101)のTi或いはTiAg
は中間NII(102)のシート抵抗低減に不可欠なA
j7が8n02、I’l’0等の透光性導電酸化物(T
CO)から成る透明電極膜(2b)・・・と直接結合し
た場合にその界面に於いて形成される高抵抗なAl2O
3となる酸化を防止するためのものであり、また上層(
103)のTi或いはTiAgは中間層(102)であ
るAl或いはA1合金の耐湿膜である。
FIG. 10 shows another embodiment of the photovoltaic device of the present invention, and the difference from the previous embodiment is that the adjacent photoelectric conversion regions (5a) (
5b)... in series connection form. That is, in this embodiment, the back electrode film (4a) controlling the second electrode film...
The exposed portion (2b') of the transparent electrode film 2b) is exposed in the photoelectric conversion region (5b) directly adjacent to the right.
Rather than being combined with..., the back surface T& film (4a)... and the transparent electrode film (2b)... are indirectly coupled by the three-layered connection if electrode film 0)... Therefore, the connection electrode film QOI... is the back electrode film (4B)
It acts as a mechanical extension of... Above connection-
° The three-layer structure of polar film (101) is divided into transparent electrode film (2
b) ... From the side, titanium (Ti) or titanium silver (T
iAg), Al or FiA1 alloy, and Ti or Ti
Ti or TiAg in the lower layer (101)
is A, which is essential for reducing the sheet resistance of intermediate NII (102).
j7 is a translucent conductive oxide (T
High-resistance Al2O formed at the interface when directly combined with the transparent electrode film (2b) consisting of CO)
This is to prevent oxidation, which results in 3.
Ti or TiAg (103) is a moisture-resistant film of Al or A1 alloy which is the intermediate layer (102).

尚、斯る構成に於ける表面電極膜(4a)・・・はAl
或いはA1合金であり、斯る裏面電極膜(4a)・・・
を先の実施例の如くレーザビームの照射によりバターニ
ングすると、透明電極膜(2b)・・・の誌出部(2b
’)・・・がレーザビームの照射に暴されることになる
ので、不要部をマスクで覆った選択蒸着法により形成さ
れる。斯る選択蒸着法による裏面N極膜(4a)・・・
の形成は、直列抵抗を低減せしめるために透明−:極膜
(21))・・・の露出長は一定長以上の寸法が必要で
あること、及び次に被着される接続N極膜00)・・・
が第11図の如くレーザビーム(L)の照射によりバタ
ーニングされるために、隣接間隔部の間隔縮小を実質的
に阻害するものではない。
In addition, the surface electrode film (4a) in such a configuration is made of Al.
Or A1 alloy, such back electrode film (4a)...
When the transparent electrode film (2b) is buttered by laser beam irradiation as in the previous example, the exposed portion (2b) of the transparent electrode film (2b)...
')... will be exposed by laser beam irradiation, so it is formed by selective vapor deposition with unnecessary parts covered with a mask. Back N electrode film (4a) produced by such selective vapor deposition method...
In order to reduce the series resistance, the exposed length of the transparent electrode film (21) must be a certain length or more, and the connection N electrode film 00 to be deposited next. )...
Since the pattern is patterned by irradiation with the laser beam (L) as shown in FIG. 11, it does not substantially impede the reduction in the distance between the adjacent spaced portions.

(へ)発明の効果 本発明光起電力装置は以上の説明から明らかな如く、基
板の絶縁表面に分割配置された第1市極膜1こ於ける光
活性層からの露出界面を絶縁断熱層で被榎せしめたので
、斯る第11ff極膜の露出部及び絶縁断熱層を越えて
隣接する光活性層上に被着された第2電極膜の!気的延
長部を、」−記絶縁断熱層上に於いてエネルギビームの
照射により下層のMS1電極膜に熱的なダメージを与え
ることなく、しかも当該光電間膜領域に短絡坐故を招く
ことなく各光電変換領域毎に分割することができる。
(F) Effects of the Invention As is clear from the above description, the photovoltaic device of the present invention has a heat insulating layer that insulates the exposed interface from the photoactive layer in the first electrode film 1 which is dividedly arranged on the insulating surface of the substrate. The second electrode film was deposited on the adjacent photoactive layer beyond the exposed portion of the 11th electrode film and the insulating and heat-insulating layer. The optical extension part is irradiated with an energy beam on the insulating and heat-insulating layer without causing thermal damage to the underlying MS1 electrode film, and without causing a short circuit in the photoelectric interlayer region. It can be divided into each photoelectric conversion area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光起電力装置の断面図、第2図は従来の
欠点を説明する拡大断面図、第6図は本発明光起電力装
置の一実施例の断面図、第4図は斯る一実施例に於ける
製造工程を説明する拡大断面図、第5図及び第7図は本
発明に於ける温度勾配を説明する曲線図、第6図及び第
8図は従来に於ける温度勾配を説明する曲線図、第9図
は本発明一実施例の拡大断面図、第10図は本発明光起
電力装置の他の実施例の拡大断面図、第11図は斯る実
施例に於ける製造工程を説明する拡大断面図、を夫々示
している。 (1)・・・・・・基板、(2m>(2b)<20)=
・−・透明wL電極膜(3a)(3b)(30)・−・
・・・光活性層、(4& ) (4b ) (40)・
・・−J(面t1kg、(8)・・・・・・絶縁断熱層
、αα・・・・・・接続電極膜。
FIG. 1 is a cross-sectional view of a conventional photovoltaic device, FIG. 2 is an enlarged cross-sectional view explaining the drawbacks of the conventional device, FIG. 6 is a cross-sectional view of an embodiment of the photovoltaic device of the present invention, and FIG. 5 and 7 are curve diagrams illustrating the temperature gradient in the present invention, and FIGS. 6 and 8 are diagrams illustrating the manufacturing process in the present invention. A curve diagram explaining the temperature gradient, FIG. 9 is an enlarged cross-sectional view of one embodiment of the present invention, FIG. 10 is an enlarged cross-sectional view of another embodiment of the photovoltaic device of the present invention, and FIG. 11 is such an embodiment. FIG. (1)...Substrate, (2m>(2b)<20)=
・-・Transparent wL electrode film (3a) (3b) (30)・-・
... Photoactive layer, (4 & ) (4b) (40)
...-J (surface t1kg, (8)...Insulating heat insulation layer, αα...Connection electrode film.

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁表面を有する基板と、該基板の絶縁表面に分
割配置された第1電極膜と、該第1電極膜上にその一部
を露出せしめて分割配置された光活性層と、該光活性層
上に分割配置された第2電極膜と、該第2電極膜から延
出し隣接する光活性層から露出した第1電極膜の露出部
と電気的に連なる第2電極膜の電気的延長部と、上記第
1電極膜の露出部に於いて上記光活性層から露出する露
出界面を被覆する絶縁断熱層と、を備え、上記第2電極
膜の電気的延長部は少なくとも第1電極膜の露出部及び
絶縁断熱層を越えて隣接する光活性層上に被着された後
、上記絶縁断熱層上に於いてエネルギビームの照射によ
り除去されて分割されることを特徴とした光起電力装置
(1) A substrate having an insulating surface, a first electrode film dividedly arranged on the insulating surface of the substrate, a photoactive layer dividedly arranged on the first electrode film with a part thereof exposed; A second electrode film dividedly arranged on the photoactive layer, and an electrical connection between the second electrode film and the exposed portion of the first electrode film extending from the second electrode film and exposed from the adjacent photoactive layer. an insulating and heat-insulating layer covering an exposed interface exposed from the photoactive layer in the exposed portion of the first electrode film, the electrically extending portion of the second electrode film being connected to at least the first electrode. The photoactive material is deposited on the adjacent photoactive layer across the exposed portion of the film and the insulating and heat-insulating layer, and then removed and divided by irradiation with an energy beam on the insulating and heat-insulating layer. Power equipment.
JP59135824A 1984-06-29 1984-06-29 Photovoltaic device Expired - Lifetime JPS6114769A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59135824A JPS6114769A (en) 1984-06-29 1984-06-29 Photovoltaic device
US06/749,888 US4668840A (en) 1984-06-29 1985-06-27 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59135824A JPS6114769A (en) 1984-06-29 1984-06-29 Photovoltaic device

Publications (1)

Publication Number Publication Date
JPS6114769A true JPS6114769A (en) 1986-01-22

Family

ID=15160648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59135824A Expired - Lifetime JPS6114769A (en) 1984-06-29 1984-06-29 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPS6114769A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288176A (en) * 1985-10-15 1987-04-22 Matsushita Electric Ind Co Ltd Optical information record and reproducing device
JPH03127867A (en) * 1989-10-13 1991-05-30 Sanyo Electric Co Ltd Photovoltaic device and manufacture thereof
JPH0555888U (en) * 1992-01-16 1993-07-27 株式会社高垣製作所 Noodle divider
JP2009200267A (en) * 2008-02-21 2009-09-03 Sanyo Electric Co Ltd Solar cell
JP2010283408A (en) * 2010-09-30 2010-12-16 Sanyo Electric Co Ltd Solar cell
JP2011044749A (en) * 2010-11-30 2011-03-03 Sanyo Electric Co Ltd Solar cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288176A (en) * 1985-10-15 1987-04-22 Matsushita Electric Ind Co Ltd Optical information record and reproducing device
JPH03127867A (en) * 1989-10-13 1991-05-30 Sanyo Electric Co Ltd Photovoltaic device and manufacture thereof
JPH0555888U (en) * 1992-01-16 1993-07-27 株式会社高垣製作所 Noodle divider
JP2009200267A (en) * 2008-02-21 2009-09-03 Sanyo Electric Co Ltd Solar cell
JP2010283408A (en) * 2010-09-30 2010-12-16 Sanyo Electric Co Ltd Solar cell
JP2011044749A (en) * 2010-11-30 2011-03-03 Sanyo Electric Co Ltd Solar cell

Similar Documents

Publication Publication Date Title
US4668840A (en) Photovoltaic device
US5332680A (en) Method of making photoelectric conversion device
US4755475A (en) Method of manufacturing photovoltaic device
US4542578A (en) Method of manufacturing photovoltaic device
JP2804839B2 (en) Method for manufacturing semiconductor device
JP2012525008A (en) Local metal contacts by local laser conversion of functional films in solar cells
JP2003124481A (en) Solar battery
JPS6114769A (en) Photovoltaic device
JPH02164077A (en) Amorphous silicon solar cell
JPS6233477A (en) Manufacture of photovoltaic device
JP4215607B2 (en) Photovoltaic device manufacturing method
JPS61280680A (en) Manufacture of semiconductor device
JPH07105511B2 (en) Photovoltaic device manufacturing method
JPS59220978A (en) Manufacture of photovoltaic device
JP4358493B2 (en) Solar cell
JPS6261376A (en) Solar battery
JP2517226B2 (en) Method for manufacturing semiconductor device
JPH065779B2 (en) Method for manufacturing solar cell device
JPS63157484A (en) Semiconductor device
JPS61280679A (en) Manufacture of photo-voltaic device
JPS60253281A (en) Manufacture of semiconductor device
JP2001237442A (en) Solar cell and its manufacturing method
JPS60253266A (en) Semiconductor device
JPH0443432B2 (en)
JPS61164274A (en) Manufacture of photovoltaic device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term