JPS62183587A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS62183587A
JPS62183587A JP2503686A JP2503686A JPS62183587A JP S62183587 A JPS62183587 A JP S62183587A JP 2503686 A JP2503686 A JP 2503686A JP 2503686 A JP2503686 A JP 2503686A JP S62183587 A JPS62183587 A JP S62183587A
Authority
JP
Japan
Prior art keywords
waveguide
quantum well
side electrode
layer
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2503686A
Other languages
Japanese (ja)
Other versions
JPH0714101B2 (en
Inventor
Akira Furuya
章 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61025036A priority Critical patent/JPH0714101B2/en
Publication of JPS62183587A publication Critical patent/JPS62183587A/en
Publication of JPH0714101B2 publication Critical patent/JPH0714101B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3434Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer comprising at least both As and P as V-compounds

Abstract

PURPOSE:To enable to control the oscillating wavelength of a laser beam without consuming electric power by a method wherein a quantum well construction is furnished to an optical waveguide on a Bragg reflection mirror, and a reverse directional electric field to P-N junction of a semiconductor substrate is applied in the laminating direction of the construction thereof. CONSTITUTION:An active layer 4 (act as a waveguide together with a waveguide layer 3) is made to have a quantum well construction consisting of InGaAsP layers 4a, 4b of two kinds having different compositions. The semiconductor laser element thereof radiates a laser beam from the quantum well active layer 4 under a P-side electrode 10 according to injection of a current from the P-side electrode 10 and an N-side electrode 12, the active layer 4 thereof and the waveguide layer 3 act as the waveguide, and oscillating wave length is decided as usual according to an optical resonator constructed by a Bragg reflection according to a grating 7 and a reflection according to a cleavage plane 13, while the quantum well construction is contained in the waveguide thereof on the grating 7, and oscillating wave length can be controlled by applying a voltage being reverse to the N-side electrode 12 to a control electrode 11, and changing thereby the index of refraction thereof.

Description

【発明の詳細な説明】 〔概要〕 この発明は分布反射形半導体レーザにかがり、ブラッグ
反射鏡上の光導波路に量子井戸構造を備え、その積層方
向に半導体基体のpn接合に対して逆方向の電界を印加
することにより、電力を消費することなく、発振波長制
御を可能とするものである。
[Detailed Description of the Invention] [Summary] The present invention relates to a distributed reflection type semiconductor laser, which has a quantum well structure in an optical waveguide on a Bragg reflector, and has a quantum well structure in the stacking direction opposite to the pn junction of the semiconductor substrate. By applying an electric field, it is possible to control the oscillation wavelength without consuming power.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体レーザにかかり、特にその発振波長制御
手段の改善に関する。
The present invention relates to semiconductor lasers, and particularly relates to improvements in oscillation wavelength control means thereof.

光を情報信号の媒体とする光通信その他のシステムの高
度化、多様化が推進されており、例えばコヒーレント通
信などについてその光源である半導体レーザの発振波長
制御が必要となっている。
2. Description of the Related Art Optical communication and other systems that use light as a medium for information signals are becoming more sophisticated and diversified, and for example, it is necessary to control the oscillation wavelength of a semiconductor laser, which is a light source, for coherent communication.

〔従来の技術〕[Conventional technology]

半導体レーザについて多(の構造が提供されているが、
発振波長制御に適する半導体レーザとしては光共振器鏡
にブラッグ反射鏡を用いる分布反射形(DBR: Di
stributed Bragg Reflector
)レーザが知られている。
Although many structures have been provided for semiconductor lasers,
As a semiconductor laser suitable for oscillation wavelength control, a distributed reflection type (DBR: Di
distributed Bragg Reflector
) laser is known.

第2図は従来の分布反射形レーザの例を示す模式側断面
図である。同図において、21はn型1nP半導体基板
、22はn型InPクラッド層、23はInGaAsP
導波層、24はInGaAsP活性層、25はp型In
Pクラッド層、26はp型InGaAsPコンタクト層
、27はグレイティング、28はn型拡散分離領域、3
oはp側電極、31は制御電極、32はn側電極、33
は襞間面である。
FIG. 2 is a schematic side sectional view showing an example of a conventional distributed reflection laser. In the figure, 21 is an n-type 1nP semiconductor substrate, 22 is an n-type InP cladding layer, and 23 is InGaAsP.
waveguide layer, 24 is InGaAsP active layer, 25 is p-type In
P cladding layer, 26 p-type InGaAsP contact layer, 27 grating, 28 n-type diffusion isolation region, 3
o is a p-side electrode, 31 is a control electrode, 32 is an n-side electrode, 33
is the interfold plane.

本従来例はp側電極30とn側電極32間の電流注入に
よりp側電極30下のInGaAsP活性層24で発光
するが、InGaAsP活性層24及び導波層23を導
波路とし、グレイティング27によるブラッグ反射と襞
間面33による反射とで構成する光共振器によって発振
波長が定まる。従ってグレイティング27部分のInG
aAsP導波層23の屈折率を変化させれば発振波長を
制御することができ、制御電極31とn側電極32との
間に電流を通ずることによってこの屈折率変化を行って
いる。
In this conventional example, light is emitted in the InGaAsP active layer 24 under the p-side electrode 30 by current injection between the p-side electrode 30 and the n-side electrode 32. The oscillation wavelength is determined by the optical resonator formed by the Bragg reflection caused by the interfold surface 33 and the reflection caused by the interfold surface 33. Therefore, InG of grating 27 part
The oscillation wavelength can be controlled by changing the refractive index of the aAsP waveguide layer 23, and this refractive index change is performed by passing a current between the control electrode 31 and the n-side electrode 32.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の如くグレイティング27部分のInGaAsP導
波層23の屈折率変化のために電流を通ずる従来の分布
反射形レーザでは、この電流による消費電力の増大、温
度上昇を伴っており、環境温度条件の制約、信顛度低下
の要因となっている。
As mentioned above, in the conventional distributed reflection laser in which current is passed due to the change in the refractive index of the InGaAsP waveguide layer 23 in the grating 27 portion, this current causes an increase in power consumption and a rise in temperature. This is a cause of restrictions and a decline in credibility.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、光電変換領域にキャリア注入を行う電流
の経路外に光共振器を形成するブラッグ反射鏡を備え、
かつ該共振器の導波路に量子井戸構造を含んで、該ブラ
ッグ反射鏡近傍の該量子井戸構造に、積層方向にかつ半
導体基体に設けられたpn接合に対して逆方向に電界を
印加する手段を備えてなる本発明による半導体レーザに
より解決される。
The above-mentioned problem is solved by including a Bragg reflector that forms an optical resonator outside the path of the current that injects carriers into the photoelectric conversion region;
and means for including a quantum well structure in the waveguide of the resonator and applying an electric field to the quantum well structure near the Bragg reflector in the stacking direction and in the opposite direction to the pn junction provided in the semiconductor substrate. The problem is solved by a semiconductor laser according to the present invention comprising:

〔作 用〕[For production]

本発明によれば、光電変換領域にキャリア注入を行う電
流の経路外にブラッグ反射鏡を設けて光共振器を形成す
る分布反射形半導体レーザにおいて、少なくともそのブ
ラッグ反射鏡近傍の光導波路に量子井戸構造を設けて、
その積層方向に半導体基体に設けられたpn接合に対し
て逆方向の電界を印加する。
According to the present invention, in a distributed reflection semiconductor laser in which an optical resonator is formed by providing a Bragg reflector outside the path of a current that injects carriers into a photoelectric conversion region, a quantum well is formed in at least an optical waveguide near the Bragg reflector. Set up a structure,
An electric field in the opposite direction is applied to the pn junction provided in the semiconductor substrate in the stacking direction.

この様に量子井戸構造に電界を印加すれば、バリアの変
化により量子井戸内のキャリアの波動関数、従って光の
屈折率が変化する。この屈折率変化量は量子力学的効果
のない半導体層に比較して著しく大きく、共振波長の微
調整に十分である。
When an electric field is applied to the quantum well structure in this manner, the wave function of carriers within the quantum well, and therefore the refractive index of light, changes due to changes in the barrier. This amount of refractive index change is significantly larger than that of a semiconductor layer without quantum mechanical effects, and is sufficient for fine adjustment of the resonant wavelength.

本発明の電界印加はpn接合に対して逆方向であるため
に、前記従来例の如き電流による発熱、温度上昇を伴わ
ない。
Since the electric field of the present invention is applied in the opposite direction to the pn junction, there is no heat generation or temperature rise due to current as in the conventional example.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.

第1図(a)は本発明の実施例の模式側断面図、同図(
b)はその半導体基体の構成を示す図であり、1はn型
1nP半導体基板、2はn型InPクラッド層、3はI
nGaAsP系導波層、4はInGaAsP系量子井戸
活性層、5はp型InPクラッド層、6はp型1nGa
AsPコンタクト層、7はグレイティング、8はn型拡
散分離領域、10はp側電極、11は制御電極、12は
n側電極、13は襞間面である。
FIG. 1(a) is a schematic side sectional view of an embodiment of the present invention;
b) is a diagram showing the structure of the semiconductor substrate, where 1 is an n-type 1nP semiconductor substrate, 2 is an n-type InP cladding layer, and 3 is an I
nGaAsP-based waveguide layer, 4 is InGaAsP-based quantum well active layer, 5 is p-type InP cladding layer, 6 is p-type 1nGa
AsP contact layer, 7 is a grating, 8 is an n-type diffusion isolation region, 10 is a p-side electrode, 11 is a control electrode, 12 is an n-side electrode, and 13 is an inter-fold surface.

本実施例では活性層4 (導波層3とともに導波路とな
る)を組成が異なる2種のInGaAsP層4a。
In this embodiment, the active layer 4 (which forms a waveguide together with the waveguide layer 3) is composed of two types of InGaAsP layers 4a having different compositions.

4bからなる量子井戸構造としている。なお導波層3は
GRIN−5CH(GRaded INdex wav
eguide SeparateConfinemen
t Heterostructure)構造として特性
の向上を計っているが、これらの各半導体層の構成は例
えば下記の様である。ただしInGaAsPの組成はル
ミネセンスピーク波長λgで示す。
It has a quantum well structure consisting of 4b. Note that the waveguide layer 3 is GRIN-5CH (GRADED INdex wav
guideSeparateConfinemen
The structure of each of these semiconductor layers is as follows, for example. However, the composition of InGaAsP is indicated by the luminescence peak wavelength λg.

半導体層   組成    不純物  厚さくλg:#
l1l)     cm−’    nm6コンタクト
層1nGaAsP(1,2)  p−lXl01950
5クラッド層   InP     p−I X 10
’ ”  2004活性層(量子井戸構造) 4b (3層)   InGaAsP(1,2)ノンド
ープ  34a (4層)   InGaAsP(1,
6)ノンドープ  32クラッド層   InP   
  n−lXl0”  3’00なおグレイティング7
はn型1nPクラッド層2の表面をパターニングして導
波層3との界面に形成し、n型拡散分離領域8はシリコ
ン(St)をイオン注入して形成している。
Semiconductor layer Composition Impurity Thickness λg: #
l1l) cm-' nm6 contact layer 1nGaAsP(1,2) p-lXl01950
5 cladding layer InP p-I X 10
' 2004 Active layer (quantum well structure) 4b (3 layers) InGaAsP(1,2) non-doped 34a (4 layers) InGaAsP(1,
6) Non-doped 32 cladding layer InP
n-lXl0"3'00 Grating 7
is formed at the interface with the waveguide layer 3 by patterning the surface of the n-type 1nP cladding layer 2, and the n-type diffusion isolation region 8 is formed by ion-implanting silicon (St).

この半導体レーザ素子は、p側電極10とn側電極12
からの電流注入によりp側電極10下の量子井戸活性層
4で発光し、この活性層4及び導波層3を導波路とし、
グレイティング7によるブラッグ反射と襞間面13によ
る反射とで構成する光共振器によって発振波長が定まる
ことは前記従来例と同様であるが、グレイティング7上
のこの導波路に量子井戸構造が含まれ、制御電極11に
n側電極12に対してマイナスの電圧を印加してその屈
折率を変化させ発振波長を制御することができる。
This semiconductor laser device has a p-side electrode 10 and an n-side electrode 12.
Light is emitted in the quantum well active layer 4 under the p-side electrode 10 by current injection from the p-side electrode 10, and this active layer 4 and waveguide layer 3 are used as a waveguide.
The oscillation wavelength is determined by the optical resonator formed by the Bragg reflection by the grating 7 and the reflection by the interfold surface 13, as in the conventional example, but this waveguide on the grating 7 includes a quantum well structure. By applying a negative voltage to the control electrode 11 with respect to the n-side electrode 12, the refractive index can be changed and the oscillation wavelength can be controlled.

本実施例は波長1.5−帯域で約0.01−の発振波長
微調整が可能であり、かつ制御電極11への電圧印加に
伴う温度上昇の増加は無視できる程度に止まっている。
In this embodiment, the oscillation wavelength can be finely adjusted by about 0.01 in the wavelength 1.5 band, and the increase in temperature due to voltage application to the control electrode 11 is negligible.

(発明の効果〕 以上説明した如く本発明による半導体レーザは発振波長
制御、調整が可能で、従来問題であった消費電力、温度
上昇の増加が解決され、光通信等の進展に大きく寄与す
る。
(Effects of the Invention) As explained above, the semiconductor laser according to the present invention is capable of controlling and adjusting the oscillation wavelength, solving the conventional problems of increased power consumption and temperature rise, and greatly contributing to the advancement of optical communications and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図+111は本発明の実施例の模式側断面図、第1
図(blはその半導体基体の構成を示す図、第2図は従
来例の模式側断面図である。 図において、 1はn型1nP半導体基板、 2はn型1nPクラッド層、 3はInGaAsP系導波層、 4はInGaAsP系量子井戸活性層、5はp型InP
クラッド層、 6はp型1nGaAsPコンタクト層、7はグレイティ
ング・ 8はn型拡散分離領域、 10はp側電極、     11は制御電極、12はn
側電極、     13は襞間面を示す。 享ぐう漬也4タリf)4夾4\、イ貝′j目ヒ自−im
峯 1 圀(d) 不 1 川 (し)
Figure 1+111 is a schematic side sectional view of an embodiment of the present invention;
Figure (bl is a diagram showing the structure of the semiconductor substrate, and Figure 2 is a schematic side sectional view of a conventional example. In the figure, 1 is an n-type 1nP semiconductor substrate, 2 is an n-type 1nP cladding layer, and 3 is an InGaAsP-based semiconductor substrate. Waveguide layer, 4 is InGaAsP quantum well active layer, 5 is p-type InP
cladding layer, 6 is p-type 1nGaAsP contact layer, 7 is grating, 8 is n-type diffusion isolation region, 10 is p-side electrode, 11 is control electrode, 12 is n-type
The side electrode 13 indicates the interfold surface. Kyouguzukeya4tarif)4夾4\、Ikai'j eyeshiji-im
Mine 1 Kuni (d) Fu 1 River (shi)

Claims (1)

【特許請求の範囲】[Claims] 光電変換領域にキャリア注入を行う電流の経路外に光共
振器を形成するブラッグ反射鏡を備え、かつ該共振器の
導波路に量子井戸構造を含んで、該ブラッグ反射鏡近傍
の該量子井戸構造に、積層方向にかつ半導体基体に設け
られたpn接合に対して逆方向に電界を印加する手段を
備えてなることを特徴とする半導体レーザ。
a Bragg reflector forming an optical resonator outside the path of the current that injects carriers into the photoelectric conversion region, and a waveguide of the resonator includes a quantum well structure, the quantum well structure near the Bragg reflector; A semiconductor laser comprising means for applying an electric field in the stacking direction and in the opposite direction to the pn junction provided in the semiconductor substrate.
JP61025036A 1986-02-07 1986-02-07 Semiconductor laser Expired - Fee Related JPH0714101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61025036A JPH0714101B2 (en) 1986-02-07 1986-02-07 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61025036A JPH0714101B2 (en) 1986-02-07 1986-02-07 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS62183587A true JPS62183587A (en) 1987-08-11
JPH0714101B2 JPH0714101B2 (en) 1995-02-15

Family

ID=12154681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61025036A Expired - Fee Related JPH0714101B2 (en) 1986-02-07 1986-02-07 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0714101B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472583A (en) * 1987-09-11 1989-03-17 Fujitsu Ltd Wavelength tunable semiconductor laser
FR2748353A1 (en) * 1996-05-06 1997-11-07 France Telecom Distributed Bragg Reflector laser diode for transmitter in WDM optical communications

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172790A (en) * 1981-04-16 1982-10-23 Mitsubishi Electric Corp Semiconductor laser device
JPS60145692A (en) * 1984-01-10 1985-08-01 Nec Corp Single axial mode semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172790A (en) * 1981-04-16 1982-10-23 Mitsubishi Electric Corp Semiconductor laser device
JPS60145692A (en) * 1984-01-10 1985-08-01 Nec Corp Single axial mode semiconductor laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472583A (en) * 1987-09-11 1989-03-17 Fujitsu Ltd Wavelength tunable semiconductor laser
JP2666297B2 (en) * 1987-09-11 1997-10-22 富士通株式会社 Tunable semiconductor laser
FR2748353A1 (en) * 1996-05-06 1997-11-07 France Telecom Distributed Bragg Reflector laser diode for transmitter in WDM optical communications

Also Published As

Publication number Publication date
JPH0714101B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JPH0636457B2 (en) Method for manufacturing monolithic integrated optical device incorporating semiconductor laser and device obtained by this method
JPH02205092A (en) Semiconductor device laser and its manufacture
JPH08213703A (en) Laser diode, manufacture thereof, and optical communication system utilizing the laser diode
JPH0793473B2 (en) Optical semiconductor device
JPS6322637B2 (en)
US4665527A (en) Distributed feedback semiconductor laser
JP2622143B2 (en) Distributed feedback semiconductor laser and method of manufacturing distributed feedback semiconductor laser
JPS62183587A (en) Semiconductor laser
JPH11163456A (en) Semiconductor laser
JP2000244059A (en) Semiconductor laser device
JPS63213383A (en) Semiconductor laser
KR100429531B1 (en) Distributed feedback semiconductor laser
JP2713445B2 (en) Semiconductor laser device
JPH0555689A (en) Distributed reflection type semiconductor laser provided with wavelength control function
JP2003218462A (en) Distributed feedback semiconductor laser device
JPS60178685A (en) Single-axial mode semiconductor laser device
JPH02260482A (en) Semiconductor laser device
JPS62137893A (en) Semiconductor laser
JP2528886B2 (en) Semiconductor light emitting device
JPS59184585A (en) Semiconductor laser of single axial mode
KR100228395B1 (en) Dfb-laser device
KR100364772B1 (en) Semiconductor laser
JPS60133777A (en) Semiconductor light emitting device
JPH0667126A (en) Semiconductor wavelength filter and semiconductor laser
JPH1051066A (en) Distributed feedback type semiconductor laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees