JPH0714101B2 - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH0714101B2
JPH0714101B2 JP61025036A JP2503686A JPH0714101B2 JP H0714101 B2 JPH0714101 B2 JP H0714101B2 JP 61025036 A JP61025036 A JP 61025036A JP 2503686 A JP2503686 A JP 2503686A JP H0714101 B2 JPH0714101 B2 JP H0714101B2
Authority
JP
Japan
Prior art keywords
quantum well
bragg reflector
semiconductor laser
waveguide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61025036A
Other languages
Japanese (ja)
Other versions
JPS62183587A (en
Inventor
章 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61025036A priority Critical patent/JPH0714101B2/en
Publication of JPS62183587A publication Critical patent/JPS62183587A/en
Publication of JPH0714101B2 publication Critical patent/JPH0714101B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3434Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer comprising at least both As and P as V-compounds

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔概要〕 この発明は分布反射形半導体レーザにかかり、ブラッグ
反射鏡上の光導波路に量子井戸構造を備え、その積層方
向に半導体基体のpn接合に対して逆方向の電界を印加す
ることにより、 電力を消費することなく、発振波長制御を可能とするも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Outline] The present invention relates to a distributed Bragg reflector semiconductor laser, in which an optical waveguide on a Bragg reflector is provided with a quantum well structure, and the stacking direction of the quantum well structure is opposite to the pn junction of a semiconductor substrate. By applying an electric field, it is possible to control the oscillation wavelength without consuming electric power.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体レーザにかかり、特にその発振波長制御
手段の改善に関する。
The present invention relates to a semiconductor laser, and more particularly to improvement of its oscillation wavelength control means.

光を情報信号の媒体とする光通信その他のシステム高度
化、多様化が推進されており、例えばコヒーレント通信
などについてその光源である半導体レーザの発振波長制
御が必要となっている。
Optical communication and other systems using light as a medium for information signals have been advanced and diversified. For example, for coherent communication, it is necessary to control the oscillation wavelength of a semiconductor laser which is a light source thereof.

〔従来の技術〕[Conventional technology]

半導体レーザについて多くの構造が提供されているが、
発振波長制御に適する半導体レーザとしては光共振器鏡
にブラッグ反射鏡を用いる分布半導体形(DBR:Distribu
ted Bragg Reflector)レーザが知られている。
Many structures have been provided for semiconductor lasers,
As a semiconductor laser suitable for controlling the oscillation wavelength, a distributed semiconductor type (DBR: Distribu
ted Bragg Reflector) laser is known.

第2図は従来の分布反射形レーザの例を示す模式側断面
図である。同図において、21はn型InP半導体基板、22
はn型InPクラッド層、23はInGaAsP導波層、24はInGaAs
P活性層、25はp型InPクラッド層、26はp型InGaAsPコ
ンタクト層、27はグレイティング、28はn型拡散分離領
域、30はp側電極、31は制御電極、32はn側電極、33は
劈開面である。
FIG. 2 is a schematic side sectional view showing an example of a conventional distributed reflection laser. In the figure, 21 is an n-type InP semiconductor substrate, 22
Is an n-type InP clad layer, 23 is an InGaAsP waveguide layer, 24 is InGaAs
P active layer, 25 p-type InP clad layer, 26 p-type InGaAsP contact layer, 27 grating, 28 n-type diffusion isolation region, 30 p-side electrode, 31 control electrode, 32 n-side electrode, 33 is a cleavage plane.

本従来例はp側電極30とn側電極32間の電流注入により
p側電極30下のInGaAsP活性層24で発光するが、InGaAsP
活性層24及び導波層23を導波路とし、グレイティング27
によるブラッグ反射と劈開面33による反射とで構成する
光共振器によって発振波長が定まる。従ってグレイティ
ング27部分のInGaAsP導波層23の屈折率を変化させれば
発振波長を制御することができ、制御電極31とn側電極
32との間に電流を通ずることによってこの屈折率変化を
行っている。
In this conventional example, current is injected between the p-side electrode 30 and the n-side electrode 32, and light is emitted from the InGaAsP active layer 24 under the p-side electrode 30.
The active layer 24 and the waveguide layer 23 are used as waveguides, and the grating 27
The lasing wavelength is determined by the optical resonator constituted by the Bragg reflection by and the cleavage plane 33. Therefore, the oscillation wavelength can be controlled by changing the refractive index of the InGaAsP waveguide layer 23 in the grating 27, and the control electrode 31 and the n-side electrode can be controlled.
This refractive index change is performed by passing an electric current between and 32.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述の如くグレイティング27部分のInGaAsP導波層23の
屈折率変化のために電流を通ずる従来の分布反射形レー
ザでは、この電流による消費電力の増大、温度上昇を伴
っており、環境温度条件の制約、信頼度低下の要因とな
っている。
As described above, in the conventional distributed Bragg reflector laser in which a current is passed due to the change in the refractive index of the InGaAsP waveguide layer 23 in the grating 27 portion, the power consumption is increased and the temperature is increased due to this current. This is a constraint and a factor of reduced reliability.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、光電変換領域にキャリア注入を行う電流
の経路外に光共振器を形成するブラッグ反射鏡を備え、
かつ該共振器の導波路に量子井戸構造を含んで、該ブラ
ッグ反射鏡近傍の該量子井戸構造に、積層方向にかつ半
導体基体に設けられたpn接合に対して逆方向に電界を印
加する手段を備えてなる本発明による半導体レーザによ
り解決される。
The above-mentioned problem is provided with a Bragg reflector that forms an optical resonator outside a current path for injecting carriers into a photoelectric conversion region,
And means for applying an electric field to the quantum well structure near the Bragg reflector in the direction of stacking and in the direction opposite to the pn junction provided on the semiconductor substrate, including a quantum well structure in the waveguide of the resonator. A semiconductor laser according to the present invention comprising:

〔作用〕[Action]

本発明によれば、光電変換領域にキャリア注入を行う電
流の経路外にブラッグ反射鏡を設けて光共振器を形成す
る分布反射形半導体レーザにおいて、少なくともそのブ
ラッグ反射鏡近傍の光導波路に量子井戸構造を設けて、
その積層方向に半導体基体に設けられたpn接合に対して
逆方向の電界を印加する。
According to the present invention, in a distributed Bragg reflector semiconductor laser in which a Bragg reflector is provided outside a current path for carrier injection into a photoelectric conversion region to form an optical resonator, at least a quantum well is provided in an optical waveguide near the Bragg reflector. With the structure
An electric field in the opposite direction is applied to the pn junction provided on the semiconductor substrate in the stacking direction.

この様に量子井戸構造に電界を印加すれば、バリアの変
化により量子井戸内のキャリアの波動関数、従って光の
屈折率が変化する。この屈折率変化量は量子力学的効果
のない半導体層に比較して著しく大きく、共振波長の微
調整に十分である。
When an electric field is applied to the quantum well structure in this manner, the wave function of carriers in the quantum well, and thus the refractive index of light, changes due to changes in the barrier. This amount of change in refractive index is significantly larger than that of a semiconductor layer having no quantum mechanical effect, and is sufficient for fine adjustment of the resonance wavelength.

本発明の電界印加はpn接合に対して逆方向であるため
に、前記従来例の如き電流による発熱、温度上昇を伴わ
ない。
Since the electric field application of the present invention is in the opposite direction to the pn junction, there is no heat generation and temperature rise due to the current as in the conventional example.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically described below with reference to examples.

第1図(a)は本発明の実施例の模式側断面図、同図
(b)はその半導体基体の構成を示す図であり、1はn
型InP半導体基板、2はn型InPクラッド層、3はInGaAs
P系導波層、4はInGaAsP系量子井戸活性層、5はp型In
Pクラッド層、6はp型InGaAsPコンタクト層、7はグレ
イティング、8はn型拡散分離領域、10はp側電極、11
は制御電極、12はn側電極、13は劈開面である。
FIG. 1 (a) is a schematic side sectional view of an embodiment of the present invention, FIG. 1 (b) is a view showing the structure of the semiconductor substrate, and 1 is n
Type InP semiconductor substrate, 2 n-type InP clad layer, 3 InGaAs
P-type waveguide layer, 4 is InGaAsP-type quantum well active layer, 5 is p-type In
P clad layer, 6 p-type InGaAsP contact layer, 7 grating, 8 n-type diffusion isolation region, 10 p-side electrode, 11
Is a control electrode, 12 is an n-side electrode, and 13 is a cleavage plane.

本実施例では活性層4(導波層3とともに導波路とな
る)を組成が異なる2種のInGaAsP層4a、4bからなる量
子井戸構造としている。なお導波層3はGRIN−SCH(GRa
ded INdex waveguide Separate Confinement Heterostr
ucture)構造として特性の向上を計っているが、これら
の各半導体層の構成は例えば下記の様である。ただしIn
GaAsPの組成はルミネセンスピーク波長λgで示す。
In this embodiment, the active layer 4 (which serves as a waveguide together with the waveguide layer 3) has a quantum well structure composed of two types of InGaAsP layers 4a and 4b having different compositions. The waveguide layer 3 is formed by GRIN-SCH (GRa
ded INdex waveguide Separate Confinement Heterostr
The structure of each of these semiconductor layers is, for example, as follows. However, In
The composition of GaAsP is shown by the luminescence peak wavelength λg.

なおグレイティング7はn型InPクラッド層2の表面を
パターニングして導波層3との界面に形成し、n型拡散
分離領域8はシリコン(Si)をイオン注入して形成して
いる。
The grating 7 is formed at the interface with the waveguide layer 3 by patterning the surface of the n-type InP clad layer 2, and the n-type diffusion isolation region 8 is formed by ion-implanting silicon (Si).

この半導体レーザ素子は、p側電極10とn側電極12から
の電流注入によりp側電極10の量子井戸活性層4で発光
し、この活性層4及び導波層3を導波路とし、グレイテ
ィング7によるブラッグ反射と劈開面13による反射とで
構成する光共振器によって発振波長が定まることは前記
従来例と同様であるが、グレイティング7上のこの導波
路に量子井戸構造が含まれ、制御電極11にn側電極12に
対してマイナスの電圧を印加してその屈折率を変化させ
発振波長を制御することができる。
This semiconductor laser device emits light in the quantum well active layer 4 of the p-side electrode 10 by injecting current from the p-side electrode 10 and the n-side electrode 12, and the active layer 4 and the waveguide layer 3 are used as waveguides to create a grating. Although the oscillation wavelength is determined by the optical resonator composed of the Bragg reflection by 7 and the reflection by the cleavage plane 13, it is the same as in the conventional example, but this waveguide on the grating 7 includes a quantum well structure and is controlled. A negative voltage can be applied to the electrode 11 with respect to the n-side electrode 12 to change its refractive index and control the oscillation wavelength.

本実施例は波長1.5μm帯域で約0.01μmの発振波長微
調整が可能であり、かつ制御電極11への電圧印加に伴う
温度上昇の増加は無視できる程度に止まっている。
In this embodiment, the oscillation wavelength can be finely adjusted to about 0.01 μm in the wavelength band of 1.5 μm, and the increase in the temperature rise due to the voltage application to the control electrode 11 is negligible.

〔発明の効果〕〔The invention's effect〕

以上説明した如く本発明による半導体レーザは発振波長
制御、調整が可能で、従来問題であった消費電力、温度
上昇の増加が解決され、光通信等の進展に大きく寄与す
る。
As described above, the semiconductor laser according to the present invention can control and adjust the oscillation wavelength, solves the problems of power consumption and increase in temperature, which have been problems in the past, and greatly contributes to the progress of optical communication and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は本発明の実施例の模式側断面図、 第1図(b)はその半導体基体の構成を示す図、 第2図は従来例の模式側断面図である。 図において、 1はn型InP半導体基板、2はn型InPクラッド層、3は
InGaAsP系導波層、4はInGaAsP系量子井戸活性層、5は
p型InPクラッド層、6はp型InGaAsPコンタクト層、7
はグレイティング、8はn型拡散分離領域、10はp側電
極、11は制御電極、12はn側電極、13は劈開面を示す。
1 (a) is a schematic side sectional view of an embodiment of the present invention, FIG. 1 (b) is a diagram showing the structure of the semiconductor substrate, and FIG. 2 is a schematic side sectional view of a conventional example. In the figure, 1 is an n-type InP semiconductor substrate, 2 is an n-type InP clad layer, and 3 is
InGaAsP-based waveguide layer, 4 InGaAsP-based quantum well active layer, 5 p-type InP clad layer, 6 p-type InGaAsP contact layer, 7
Is a grating, 8 is an n-type diffusion isolation region, 10 is a p-side electrode, 11 is a control electrode, 12 is an n-side electrode, and 13 is a cleavage plane.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光電変換領域にキャリア注入を行う電流の
経路外に光共振器を形成するブラッグ反射鏡を備え、か
つ該共振器の導波路に量子井戸構造を含んで、該ブラッ
グ反射鏡近傍の該量子井戸構造に、積層方向にかつ半導
体基体に設けられたpn接合に対して逆方向に電界を印加
する手段を備えてなることを特徴とする半導体レーザ。
1. A Bragg reflector which forms an optical resonator outside a path of a current for injecting carriers into a photoelectric conversion region, and a waveguide of the resonator includes a quantum well structure, and the Bragg reflector near the Bragg reflector. 2. The semiconductor laser, wherein the quantum well structure is provided with means for applying an electric field in the stacking direction and in the opposite direction to the pn junction provided in the semiconductor substrate.
JP61025036A 1986-02-07 1986-02-07 Semiconductor laser Expired - Fee Related JPH0714101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61025036A JPH0714101B2 (en) 1986-02-07 1986-02-07 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61025036A JPH0714101B2 (en) 1986-02-07 1986-02-07 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS62183587A JPS62183587A (en) 1987-08-11
JPH0714101B2 true JPH0714101B2 (en) 1995-02-15

Family

ID=12154681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61025036A Expired - Fee Related JPH0714101B2 (en) 1986-02-07 1986-02-07 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0714101B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2666297B2 (en) * 1987-09-11 1997-10-22 富士通株式会社 Tunable semiconductor laser
FR2748353B1 (en) * 1996-05-06 1998-07-31 France Telecom DISTRIBUTED BRAGG ARRAY LASER EMISSION COMPONENTS

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172790A (en) * 1981-04-16 1982-10-23 Mitsubishi Electric Corp Semiconductor laser device
JPS60145692A (en) * 1984-01-10 1985-08-01 Nec Corp Single axial mode semiconductor laser

Also Published As

Publication number Publication date
JPS62183587A (en) 1987-08-11

Similar Documents

Publication Publication Date Title
JPH07105571B2 (en) Individually addressable laser diode array
JPH0277185A (en) Grating coupled type surface emitting laser element and modulation thereof
CA2435330A1 (en) Asymmetric waveguide electroabsorption-modulated laser
JP2004273993A (en) Wavelength variable distribution reflecting type semiconductor laser device
JP2587628B2 (en) Semiconductor integrated light emitting device
JP2003046190A (en) Semiconductor laser
JPH0793473B2 (en) Optical semiconductor device
JP4027639B2 (en) Semiconductor light emitting device
US5756373A (en) Method for fabricating optical semiconductor device
JPS6140159B2 (en)
JPH05167197A (en) Optical semiconductor device
JP2950302B2 (en) Semiconductor laser
JPH0714101B2 (en) Semiconductor laser
JP2002111125A (en) Distributed feedback semiconductor laser
US6734464B2 (en) Hetero-junction laser diode
JPH0457384A (en) Semiconductor laser
JPS62173786A (en) Distributed feedback type semiconductor laser
JP3149959B2 (en) Semiconductor laser device and driving method thereof
JP2004311556A (en) Semiconductor laser, optical module using the same, and functionally integrated laser
JP3149962B2 (en) Multi-wavelength semiconductor laser device and driving method thereof
JPS6218782A (en) Semiconductor laser of buried structure
JP3154417B2 (en) Oscillation wavelength control driving method of semiconductor laser
JP2528886B2 (en) Semiconductor light emitting device
JPS59184585A (en) Semiconductor laser of single axial mode
JPS62137893A (en) Semiconductor laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees