JPS60133777A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPS60133777A
JPS60133777A JP58240892A JP24089283A JPS60133777A JP S60133777 A JPS60133777 A JP S60133777A JP 58240892 A JP58240892 A JP 58240892A JP 24089283 A JP24089283 A JP 24089283A JP S60133777 A JPS60133777 A JP S60133777A
Authority
JP
Japan
Prior art keywords
region
layer
light emitting
electrode
cladding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58240892A
Other languages
Japanese (ja)
Inventor
Hideho Saito
斎藤 秀穂
Haruo Nagai
治男 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58240892A priority Critical patent/JPS60133777A/en
Publication of JPS60133777A publication Critical patent/JPS60133777A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure

Abstract

PURPOSE:To oscillate the titled device by a single wavelength over a wide range of temperatures by a method wherein the carrier density is controlled by passing forward directional currents to a reflection region having a diffraction grating. CONSTITUTION:A laser is composed of an N type InP substrate 1', an N type InP clad layer 2', an undoped InGaAsP active layer 3', a P type InP clad layer 4', a P type InGaAsP contact layer 5', an InGaAsP undoped photo waveguide layer 6', an insulation region 7', a driving P type electrode 8', a wavelength control P-side electrode 9' and an N-side electrode 10'. Light emission is obtained in a region A by passing forward idrectional current between the electrodes 8' and 10'. Injecting current to the reflection region B varies the refractive index in accordance with the number of injected carriers, thus enabling the wavelength capable of selective reflection to be controlled within a distribution of gain; accordingly, the enlargement of the temperature region of single vertical mode oscillation can be realized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体発光装置に関するもので、特に回折格
子を有する分布反射形半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor light emitting device, and particularly to a distributed reflection semiconductor laser having a diffraction grating.

(従来技術) 第1図は従来のInp/ InGaAsP糸材料からな
る回折格子を有する半導体発光装置の断面図を示すもの
で6.?、図においてlはn型インジウム拳リン(In
P )基板兼クラッド層、2はアンドープのインジウム
・ガリウム・ヒ素eリン(JnGaAsP )活性層、
3はp型InGaAsP導波路層、4はp型InPクラ
ッド層、5はp型InQaAsp −xクラッド層、6
はp側電極、7はn側電極、Aは発光領域、Bは反射領
域を示す。
(Prior Art) FIG. 1 shows a cross-sectional view of a semiconductor light emitting device having a diffraction grating made of a conventional Inp/InGaAsP thread material. ? , in the figure, l is n-type indium metal (In
P) substrate and cladding layer, 2 is undoped indium gallium arsenide e-phosphorus (JnGaAsP) active layer,
3 is a p-type InGaAsP waveguide layer, 4 is a p-type InP cladding layer, 5 is a p-type InQaAsp-x cladding layer, 6
7 is a p-side electrode, 7 is an n-side electrode, A is a light emitting region, and B is a reflective region.

ここで活性層2のバンド中Eaと導波路層3のバンド巾
Eg、クラッド層1.4のバンド巾Ecとの間に次のよ
うな関係がある。
Here, the following relationship exists between the band width Ea of the active layer 2, the band width Eg of the waveguide layer 3, and the band width Ec of the cladding layer 1.4.

Ea(Eg(Ec なお光導波路層3の反射領域には、
周期的に(ロ)折格子が形成されている。この様な構造
の半導体レーザの動作は、p 9jll電極6に正、n
側電極7に負の電圧を印加し、活性層2の発光領域Aに
電流を注入し、再結合により発光を得る。この光は活性
層2及び光導波路層3によって導かれるが、光導波路層
3の反射領域Bに形成された回折格子により反射され、
発光領域Aで増巾されて、この回折格子の周期で決まる
波長によってレーザ発振する。ここで単一波長発振する
為には反射領域の構成は次式(1)の条件を満足しなけ
ればならない。
Ea(Eg(Ec) In the reflective region of the optical waveguide layer 3,
(b) A folded lattice is formed periodically. The operation of a semiconductor laser having such a structure is as follows: p 9jll electrode 6 has positive and n
A negative voltage is applied to the side electrode 7, a current is injected into the light emitting region A of the active layer 2, and light emission is obtained by recombination. This light is guided by the active layer 2 and the optical waveguide layer 3, but is reflected by the diffraction grating formed in the reflective area B of the optical waveguide layer 3.
The light is amplified in the light emitting region A, and the laser oscillates at a wavelength determined by the period of this diffraction grating. In order to oscillate with a single wavelength, the configuration of the reflection region must satisfy the following condition (1).

λ= A m 2mn eft 、、、、、、、、、(
1)(1)式においてλは発振波長、mは整数、nef
tは発振波長、活性層、光導波路層及びクラッド層で決
まる有効屈折率、Aは回折格子の周期である。λは活性
層の利得分布内になければならない。しかし上記構造の
半導体発光装置では温度変化により、バンド巾エネルギ
ーで決まる利得分布が大きく変化し、回折格子によシ選
択しうる波長の範囲をこえて大きく変化するため、単一
発振温度領域が狭いという問題があった。
λ= A m 2mn ft , , , , , , (
1) In equation (1), λ is the oscillation wavelength, m is an integer, nef
t is the oscillation wavelength, the effective refractive index determined by the active layer, the optical waveguide layer, and the cladding layer, and A is the period of the diffraction grating. λ must be within the gain distribution of the active layer. However, in semiconductor light emitting devices with the above structure, the gain distribution determined by the band width energy changes greatly due to temperature changes, and the temperature range for single oscillation is narrow because the gain distribution changes significantly beyond the range of wavelengths that can be selected by the diffraction grating. There was a problem.

(発明の目的) 不発明はこれらの欠点を除去するために提案されたもの
で、その目的とする点は温度変化によるゲイン分布変化
に対して、常に反射領域で選択可能な波長を、ゲイン分
布内に制御することにより、単−波長発振温度領域を広
げた、回折格子付半導体発光装置の構造を提供するにあ
る。
(Purpose of the invention) The invention was proposed to eliminate these drawbacks, and its purpose is to always maintain selectable wavelengths in the reflection region in response to changes in the gain distribution due to temperature changes. It is an object of the present invention to provide a structure of a semiconductor light emitting device with a diffraction grating in which the single wavelength oscillation temperature range is widened by controlling the temperature within the range.

(発明の構成) 上記の目的を達成するため、本発明は下部に電極を有す
る半導体基板と、前記半導体基板上に形成され、かつバ
ンド巾がEcのクラッド層と、前記クラッド層上に形成
され、バンド巾がEaでかつ発光領域を形成する活性層
と、前記クラッド層上に形成されバンド巾がEgで、か
つ回折格子を有し、反射領域を構成する光導波路層と、
(3) 前記の活性層と光導波路層上に形成され、バンド巾がE
cのクラッド層と、前記のクラッド層において前記の活
性層と光導波路層とが接する部分に形成された絶縁領域
と、前記の絶縁領域によシ分離され、コンタクト層を介
して発光領域上に形成された主電極と、反射領域上に形
成された波長制御用電極とを備え、バンド巾Ea+ E
g+ECとの間にはEa<Eg<ECの関係を有してお
シ、反射領域を介して形成されたpn接合に順方向電流
を流し、注入されたキャリア濃度に応じて屈折率を調節
することによシ、発振波長を制御し、かつ単−縦モード
発振の温度領域を拡大可能としたことを特徴とする半導
体発光装置を発明の賛旨とするものである。
(Structure of the Invention) In order to achieve the above object, the present invention provides a semiconductor substrate having an electrode at the bottom thereof, a cladding layer formed on the semiconductor substrate and having a band width of Ec, and a cladding layer formed on the cladding layer. , an active layer having a band width Ea and forming a light emitting region; an optical waveguide layer formed on the cladding layer, having a band width Eg, having a diffraction grating, and forming a reflection region;
(3) Formed on the active layer and optical waveguide layer, with a band width of E.
a cladding layer c; an insulating region formed in a portion of the cladding layer where the active layer and the optical waveguide layer are in contact with each other; The main electrode is formed on the reflective region, and the wavelength control electrode is formed on the reflective region, and the band width is Ea+E.
There is a relationship of Ea<Eg<EC with g+EC, and a forward current is passed through the pn junction formed through the reflective region to adjust the refractive index according to the injected carrier concentration. In particular, the gist of the invention is to provide a semiconductor light emitting device characterized in that the oscillation wavelength can be controlled and the temperature range of single-longitudinal mode oscillation can be expanded.

要約すれば、本発明は発光部へキャリア注入するための
駆動用電極とは別に電気的に分離した波長制御用電極を
反射領域に設け、この電極を介して反射領域に順方向電
流を注入し、この部分の実効屈折率を調節することによ
シ、発振波長を制御することを特徴とするものである。
To summarize, the present invention provides a wavelength control electrode in the reflective region that is electrically separated from the driving electrode for injecting carriers into the light emitting part, and injects forward current into the reflective region through this electrode. The oscillation wavelength is controlled by adjusting the effective refractive index of this portion.

。 (4) 次に本発明の実施例を添付図面について説明する。なお
実施例は一つの例示であって、本発明の精神を逸脱しな
い範囲で、種々の変更あるいは改良を行いうろことは言
うまでもない。
. (4) Next, embodiments of the present invention will be described with reference to the accompanying drawings. It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the spirit of the present invention.

第2図はInP / InGaA8P結晶系を用いた本
発明の実施例の断面図を示すものであって、図において
1′はn型InP基板、7はn型InPクラッド層、3
′はアンドープInGaAsP活性層、4′はp型In
P クラッド層、5′はp型InGaAsPコンタクト
層、6′はI nGaAsPアンドープ光導波路層、7
′はプロトンの照射によ多形成された絶縁領域、8′は
レーザ駆動用p側電極、グは波長制御用p側電極、10
′はn側電極である。
FIG. 2 shows a cross-sectional view of an embodiment of the present invention using an InP/InGaA8P crystal system, in which 1' is an n-type InP substrate, 7 is an n-type InP cladding layer, and 3
′ is an undoped InGaAsP active layer, 4′ is a p-type In
P cladding layer, 5' is p-type InGaAsP contact layer, 6' is InGaAsP undoped optical waveguide layer, 7
' is an insulating region formed by proton irradiation, 8' is a p-side electrode for laser driving, g is a p-side electrode for wavelength control, 10
' is the n-side electrode.

ここで活性層3′のバンド巾Eaと光導波路層6′のバ
ンド巾Egとクラッド層2′、4′のバンド巾ECとの
間に次の関係がある。Ea<Eg<Ea又、Aは発光領
域、Bは反射領域を示している。InGaA8P4元結
晶はInP単結晶と格子整置していることが必要である
Here, the following relationship exists between the band width Ea of the active layer 3', the band width Eg of the optical waveguide layer 6', and the band width EC of the cladding layers 2' and 4'. Ea<Eg<Ea Further, A indicates a light emitting region and B indicates a reflective region. It is necessary that the InGaA8P quaternary crystal has lattice alignment with the InP single crystal.

つぎに動作について説明すると、レーザ駆動用p側電極
8′とn l1111電極l()′の間に願方向′醒流
を流し、A領域でキャリア再結合により発光を得る。こ
の光は活性層3′を含んだダブルへテロ構造導波路によ
り反kR領域Bに導びかれる。この時反射領域Bに設け
られた回折格子による屈折率の周期的変化により、選択
的な反射が起り、単−縦モードでのレーザ発振が起るわ
けである。
Next, the operation will be described. A current in the desired direction is caused to flow between the laser driving p-side electrode 8' and the nl1111 electrode l()', and light emission is obtained by carrier recombination in the A region. This light is guided to the anti-kR region B by a double heterostructure waveguide including the active layer 3'. At this time, selective reflection occurs due to periodic changes in the refractive index due to the diffraction grating provided in the reflection region B, and laser oscillation in a single longitudinal mode occurs.

この時反射領域Bに電流を注入すれば、注入されたキャ
リア数に応じて屈折率が変化する。屈折率変化△nはプ
ラズマ振動の式から次のよう嬌−6,7Xl0−”(c
J) X△N (cm ”) −(2)ここでnは屈折
率、Cは光速、λは発振波長、ΔNはキャリア密度変化
(m−リ、me hは各々電子と正孔の実効質量、ε0
は誘電率、eは電子の電荷である。このようにBに注入
する電流により、有効屈折率”effを所望の値に調節
できるので、温度変化によるバンド巾の変動に基づく活
性領域の利得分布の変化に対して、選択的な反射の可能
な波長を利得分布内に制御することにより、単−縦モー
ド発振の温度領域の拡大が実現できる。
If a current is injected into the reflective region B at this time, the refractive index changes depending on the number of injected carriers. The refractive index change △n is expressed as follows from the plasma oscillation equation: -6,7Xl0-'' (c
J) ,ε0
is the dielectric constant and e is the electron charge. In this way, the effective refractive index "eff" can be adjusted to a desired value by the current injected into B, making it possible to selectively reflect changes in the gain distribution of the active region due to changes in band width due to temperature changes. By controlling the wavelength within the gain distribution, it is possible to expand the temperature range of single-longitudinal mode oscillation.

第3図は本発明の他の実施例を示すもので、第3図は第
2図の場合と異なり非対称型を示す。
FIG. 3 shows another embodiment of the present invention, and unlike the case of FIG. 2, FIG. 3 shows an asymmetric type.

図中に示した符号は第2図の場合と同様である。The symbols shown in the figure are the same as in FIG. 2.

尚、主電極8′側の端面は垂直であることが必要である
。制御用電極9′側の端面は斜面であってもさしつかえ
ない。
Note that the end face on the main electrode 8' side needs to be vertical. The end face on the control electrode 9' side may be a slope.

なお本実施例ではInP / InGaAsP系材料を
用いた例を述べたが% GaA3 / AffiaA8
系材料を使用しても良い。
In this example, an example using InP/InGaAsP-based materials is described, but %GaA3/AffiaA8
Other materials may also be used.

また本発明では、発光装置のストライプ構造には言及し
なかったが、どのようなストライブ構造でも適用できる
のは明白である。また、本実施例とはp、n型を反対に
したものも考えられるのは明白である。
Further, although the present invention does not refer to the striped structure of the light emitting device, it is obvious that any striped structure can be applied. It is also obvious that a structure in which the p and n types are reversed from that of this embodiment is also conceivable.

(発明の効果) 以上説明したように、本発明によれば回折格子がある反
射領域に、順方向電流を流して、キ(7) ヤリア密度を調節することによシ、反射領域の有効屈折
率”eftを調整し、反射可能な波長を調節して、常に
バンド巾で決まる利得分布内に発振波長を制御すること
によ)、広い温度範囲にわたシ、単一波長発振を実現で
きる効果を有するものである。
(Effects of the Invention) As explained above, according to the present invention, the effective refraction of the reflection region can be improved by flowing a forward current through the reflection region where the diffraction grating is located and adjusting the transmission density. By adjusting the reflectance ratio (ef), adjusting the reflectable wavelength, and always controlling the oscillation wavelength within the gain distribution determined by the band width, it is possible to realize single wavelength oscillation over a wide temperature range. It has the following.

【図面の簡単な説明】 第1図は従来の半導体発光装置の断面図、第2図は本発
明の一実施例の半導体発光装置の断面図、第3図は他の
実施例の断面図を示す。 l・・・・・・n型InP基板兼クラッド層2・・・・
・・アンドープInGaA8P活性層3・・・・・・p
型InGaA8P光導波路層4・・・・・・p型InP
クラッド層 5・・・・・・p型InGaAsPコンタクト層6・・
・・・・p側電極 7・・・・・・n側電極 1′・・・・・・n型InP基板 2′・・・・・・n型InPクラッド層3′・・・・・
・アンドープInGaA8P活性層(8) 4′・・・・・・p型InPクラッド層5′・・・・・
・p型InGaA8Pコンタクト層6′・・・・・・ア
ンドープInGaAsP光導波路層7′・・・・・・絶
縁領域 8′・・・・・・レーザ駆動用p側電極9′・・・・・
・波長制御用p側電極 10’・・・・・・n側電極 特許出願人 日本電信電話公社
[Brief Description of the Drawings] Fig. 1 is a sectional view of a conventional semiconductor light emitting device, Fig. 2 is a sectional view of a semiconductor light emitting device according to an embodiment of the present invention, and Fig. 3 is a sectional view of another embodiment. show. l...N-type InP substrate and cladding layer 2...
...Undoped InGaA8P active layer 3...p
Type InGaA8P optical waveguide layer 4...P type InP
Cladding layer 5...p-type InGaAsP contact layer 6...
...P-side electrode 7...N-side electrode 1'...N-type InP substrate 2'...N-type InP cladding layer 3'...
・Undoped InGaA8P active layer (8) 4'...P-type InP cladding layer 5'...
・P-type InGaA8P contact layer 6'... Undoped InGaAsP optical waveguide layer 7'... Insulating region 8'... Laser driving p-side electrode 9'...
・Wavelength control p-side electrode 10'...N-side electrode patent applicant Nippon Telegraph and Telephone Public Corporation

Claims (1)

【特許請求の範囲】[Claims] 下部に電極を有する半導体基板と、前記半導体基板上に
形成され、かつバンド中がpcのクラッド層と、前記ク
ラッド層上に形成され、バンド中がEaでかつ発光領域
を形成する活性層と、前記クラッド層上に形成されバン
ド中がEgで、かつ回折格子を有し、反射領域を構成す
る光導波路層と、前記の活性層と光導波路層上に形成さ
れ、バンド中がECのクラッド層と、前記のクラッド層
において前記の活性層と光導波路層とが接する部分に形
成された絶縁領域と、前記の絶縁領域によシ分離され、
コンタクト層を介して発光領域上に形成された主電極と
、反射領域上に形成された波長制御用電極とを備え、バ
ンド中Ear Eg 、 Ecとの間にはEa < E
g< Ec (7)関係をMしておシ、反射領域を介し
て形成されたpn接合に順方向電流を流し、注入された
キャリア濃度に応じて屈折率を調節することにより、発
振波長を制御し、かつ単−縦モード発振の温度領域を拡
大可能としたことを特徴とする半導体発光装置。
a semiconductor substrate having an electrode at the bottom; a cladding layer formed on the semiconductor substrate and having a PC band in the band; an active layer formed on the cladding layer and having an Ea band and forming a light emitting region; an optical waveguide layer formed on the cladding layer and having Eg in the band and having a diffraction grating and forming a reflective region; a cladding layer formed on the active layer and the optical waveguide layer and having EC in the band; and an insulating region formed in a portion of the cladding layer where the active layer and the optical waveguide layer are in contact with each other, and separated by the insulating region,
The main electrode is formed on the light emitting region through the contact layer, and the wavelength control electrode is formed on the reflective region.
g < Ec (7) By setting the relationship M, a forward current is caused to flow through the pn junction formed through the reflective region, and the refractive index is adjusted according to the injected carrier concentration, thereby changing the oscillation wavelength. A semiconductor light emitting device characterized by being able to control and expand the temperature range of single-longitudinal mode oscillation.
JP58240892A 1983-12-22 1983-12-22 Semiconductor light emitting device Pending JPS60133777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58240892A JPS60133777A (en) 1983-12-22 1983-12-22 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58240892A JPS60133777A (en) 1983-12-22 1983-12-22 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPS60133777A true JPS60133777A (en) 1985-07-16

Family

ID=17066235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58240892A Pending JPS60133777A (en) 1983-12-22 1983-12-22 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS60133777A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0314490A2 (en) * 1987-10-28 1989-05-03 Kokusai Denshin Denwa Kabushiki Kaisha Semiconductor laser
EP0391334A2 (en) * 1989-04-04 1990-10-10 Canon Kabushiki Kaisha Semiconductor laser element capable of changing emission wavelength, and wavelength selective fitter, and methods of driving the same
EP1283571A1 (en) * 2001-08-06 2003-02-12 nanoplus GmbH Nanosystems and Technologies Laser with weakly coupled grating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727091A (en) * 1980-07-25 1982-02-13 Toshiba Corp Wavelength variable semiconductor laser
JPS5737893A (en) * 1980-08-18 1982-03-02 Mitsubishi Electric Corp Semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727091A (en) * 1980-07-25 1982-02-13 Toshiba Corp Wavelength variable semiconductor laser
JPS5737893A (en) * 1980-08-18 1982-03-02 Mitsubishi Electric Corp Semiconductor laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0314490A2 (en) * 1987-10-28 1989-05-03 Kokusai Denshin Denwa Kabushiki Kaisha Semiconductor laser
EP0391334A2 (en) * 1989-04-04 1990-10-10 Canon Kabushiki Kaisha Semiconductor laser element capable of changing emission wavelength, and wavelength selective fitter, and methods of driving the same
EP1283571A1 (en) * 2001-08-06 2003-02-12 nanoplus GmbH Nanosystems and Technologies Laser with weakly coupled grating

Similar Documents

Publication Publication Date Title
US7457340B2 (en) High coherent power, two-dimensional surface-emitting semiconductor diode array laser
JP2005510090A (en) Surface emitting DFB laser structure for broadband communication systems and arrangement of this structure
JPS6254489A (en) Semiconductor light emitting element
US4701930A (en) Distributed feedback semiconductor laser
JPH0213942B2 (en)
US5311534A (en) Semiconductor laser devices
US6885686B2 (en) High coherent power, two-dimensional surface-emitting semiconductor diode array laser
US5012474A (en) Polarization switching in active devices
JP2003289169A (en) Semiconductor laser
JPH01319986A (en) Semiconductor laser device
JPS60124887A (en) Distributed feedback type semiconductor laser
JPS60133777A (en) Semiconductor light emitting device
JPH11163456A (en) Semiconductor laser
JP2009246390A (en) Semiconductor laser device
JPH03268379A (en) Semiconductor laser-chip and manufacture thereof
JPH0587035B2 (en)
JPH02305487A (en) Semiconductor laser
US20050271089A1 (en) Tuneable laser
JPH02260482A (en) Semiconductor laser device
JPH0680857B2 (en) Integrated distributed Bragg reflector semiconductor laser
JP3397511B2 (en) Semiconductor laser capable of polarization modulation
JP3204969B2 (en) Semiconductor laser and optical communication system
JPS6177381A (en) Integrated distributed feedback type semiconductor laser
JPS59184585A (en) Semiconductor laser of single axial mode
JP2776381B2 (en) Semiconductor laser device