JPS6177381A - Integrated distributed feedback type semiconductor laser - Google Patents
Integrated distributed feedback type semiconductor laserInfo
- Publication number
- JPS6177381A JPS6177381A JP59198033A JP19803384A JPS6177381A JP S6177381 A JPS6177381 A JP S6177381A JP 59198033 A JP59198033 A JP 59198033A JP 19803384 A JP19803384 A JP 19803384A JP S6177381 A JPS6177381 A JP S6177381A
- Authority
- JP
- Japan
- Prior art keywords
- phase control
- layer
- active layer
- diffraction grating
- dfb
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/0625—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
- H01S5/06255—Controlling the frequency of the radiation
- H01S5/06258—Controlling the frequency of the radiation with DFB-structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/124—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts
- H01S5/1243—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts by other means than a jump in the grating period, e.g. bent waveguides
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は集積化分布帰還型半導体レーザに関するO
〔従来技術〕
高速変調時にも安定な単一軸モード発振を示し、光フア
イバ通信における伝送帯域を大きくとることのできる半
導体光源として分布帰還型半導体レーザ(DFB−LD
)の開発が進められている。DFB−LDは適当なピッ
チの回折格子による波長選択機構を有しており、Gb/
mレベルの高速度で変調しても単一波長で安定に発振す
るという結果が得られている。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an integrated distributed feedback semiconductor laser. Distributed feedback semiconductor laser (DFB-LD) is a semiconductor light source that can be made large.
) is being developed. DFB-LD has a wavelength selection mechanism using a diffraction grating with an appropriate pitch, and has a wavelength selection mechanism of Gb/
Results have been obtained in which stable oscillation occurs at a single wavelength even when modulated at m-level high speeds.
ところで、通常のDFB−LDにおいて、端面反射がな
い場合にはブラッグ波長をはさんだ2つの軸モードに対
するしきい値利得が等しくなるため、基本的には2軸モ
一ド発振することが知られている。少なくとも一力の出
力端面が反射端面となっている場合には、ブラッグ波長
をはさんだ発振波長としきい値利得との関係が非対称に
なってきて、1本の軸モードで発振することになる。そ
の場合にも片側の端面反射率が00とき、反射面におけ
る回折格子位相がπ/2,3π/2に近いと、2つの軸
モードに対するしきい値利得の差は小さくなるので2軸
モ一ド発振しやすくなる。しかも回折格子周期は240
0 A程度であシ、「襞間」によって形成する反射面に
おいて上述の回折格子位相を制御することは不可能であ
る。By the way, it is known that in a normal DFB-LD, when there is no end face reflection, the threshold gain for the two axial modes sandwiching the Bragg wavelength is equal, so basically biaxial mode oscillation occurs. ing. When at least one output end face is a reflective end face, the relationship between the oscillation wavelength sandwiching the Bragg wavelength and the threshold gain becomes asymmetrical, resulting in oscillation in one axial mode. In that case, when the end face reflectance on one side is 00, if the diffraction grating phase on the reflecting surface is close to π/2, 3π/2, the difference in threshold gain for the two axial modes will be small, so the two axial modes will be uniform. oscillation is likely to occur. Moreover, the diffraction grating period is 240
At about 0 A, it is impossible to control the above-mentioned diffraction grating phase on the reflecting surface formed by the "interfolds".
本発明の目的は上述の観点にたって、安定に単一軸モー
ド発振が得られ、特性の向上した集積化分布帰還型半導
体レーザを提供することにある。SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide an integrated distributed feedback semiconductor laser that can stably obtain single-axis mode oscillation and has improved characteristics.
本発明は、半導体基板l上に、少なくとも活性層4と、
前記活性層4よりもエネルギーギャップが大きく、かつ
一方の面に回折格子2が形成された光ガイド層3との積
層構造を有する集積化分布帰還型半導体レーザにおいて
、少なくとも前記活性層4よりもエネルギーギャップの
大きな位相制御層5を有する位相制御領域6を備え、前
記位相制御領域6に独立した電極7を設けたことを特徴
としている。The present invention provides at least an active layer 4 on a semiconductor substrate l;
In an integrated distributed feedback semiconductor laser having a laminated structure with a light guide layer 3 having a larger energy gap than the active layer 4 and having a diffraction grating 2 formed on one surface, the integrated distributed feedback semiconductor laser has a larger energy gap than the active layer 4 . It is characterized in that it includes a phase control region 6 having a phase control layer 5 with a large gap, and that an independent electrode 7 is provided in the phase control region 6.
従来のDFB−LDに対し、本発明においては、素子内
部に光波の位相を制御する領域を形成することにより、
位相ずれ量を適切に設定して、フラッグ波長において単
一軸モード発振させている。この場合そのしきい値利得
も通常の場合と比べて大幅に下げることができる。In contrast to the conventional DFB-LD, in the present invention, by forming a region inside the element to control the phase of the light wave,
By appropriately setting the amount of phase shift, single-axis mode oscillation is achieved at the flag wavelength. In this case, the threshold gain can also be significantly lowered compared to the normal case.
位相シフトの効果は宇宮氏らによシ計算結果が報告され
ている( Electron、Lett、20. p3
26(1984戸。The effect of phase shift has been reported by Mr. Umiya et al. (Electron, Lett, 20. p3
26 (1984 units.
本発明ではそのような適切な位相シフトを行なうために
回折格子は通常どうりに形成しておいて部分的に光波に
対して透明な位相制御領域を形成した。通常のDFB−
LDにおいては、ブラッグ波長において光波の位相が一
往復でπラジアンだけずれるために互いに打ち消しあう
。すなわち、ブラッグ波長では発振せず、これがいわゆ
るストップバンドとなる。そこで前述のようにレーザ共
振軸方向にそって位相制御領域を形成し、光波の位相を
πラジアンだけずらせれば、ブラッグ波長において一往
復で2πずれることになり、したがってブラッグ波長で
発振する。このときには同時に、しきい値利得も低減し
、発振しきい値電流の低減。In the present invention, in order to perform such an appropriate phase shift, the diffraction grating is formed in the usual manner, and a phase control region partially transparent to light waves is formed. Normal DFB-
In an LD, the phases of light waves shift by π radians in one round trip at the Bragg wavelength, so they cancel each other out. That is, it does not oscillate at the Bragg wavelength, and this becomes a so-called stop band. Therefore, if a phase control region is formed along the laser resonance axis direction as described above and the phase of the light wave is shifted by π radians, the Bragg wavelength will be shifted by 2π in one round trip, and therefore oscillation will occur at the Bragg wavelength. At this time, the threshold gain is also reduced and the oscillation threshold current is reduced.
温度特性の改善、量子効率の向上などが期待される・
〔実施例〕“
以下実施例を示す図面を用いて本発明をより詳細に説明
する。Improvements in temperature characteristics, quantum efficiency, etc. are expected. [Example] The present invention will be explained in more detail below using drawings showing examples.
第1図に本発明による一実施例を示す、まず、n−In
P基板l上に回折格子2を形成し、そのうえに発光波長
1.3μmに相当するn−Ino4Gao、tsA!1
oatPo、se光ガイド層3、発光波長1.55μm
に相当するノンドープIno、5eGao−stA8+
aoPo、t。活性層4、p−InPクラッド層lO等
を順次形成する。回折格子2はHe−Cdガスレーザを
用いた2光束干渉露光法および化学エツチング法によっ
て形成した。その周期は2400人、深さ1000入程
度とした。光ガイド層3、活性層4等の成長は回折格子
2の消失を防ぐために600℃以下の比較的・低い温度
で行なった。その結果結晶酸゛長後にも500〜600
Aの深さに回折格子2が保存された。位相制御領域6
となる部分のみ活性層4、光ガイド層3まで選択的にエ
ツチングし、発光波長1.3μm組成の位相制御層5を
積層した。このときは640″c程度の通常の温度で結
晶成長を行ない、回折格子2はほぼ消失した。位相制御
層5は光波がスムーズに結合するような高さに形成した
。その後通常のプロセスでメサエッチングし、埋め込み
構造に結晶成長を行ない、DFB電極8゜9、位相制御
電極7を独立に形成し、所望のDFB−Wを得た。埋め
込み構造において活性層幅は1.5踊 とした。なお、
電極形成の際電極間、の絶縁を良好に行なうために、電
極間にエツチング溝を形成したり、あるいはプロトン照
射を行なう等により半絶縁性の中溝体層を形成してもよ
い。FIG. 1 shows an embodiment according to the present invention.
A diffraction grating 2 is formed on a P substrate l, and n-Ino4Gao, tsA!, corresponding to an emission wavelength of 1.3 μm is formed thereon. 1
oatPo, se optical guide layer 3, emission wavelength 1.55 μm
Non-doped Ino, 5eGao-stA8+ corresponding to
aoPo,t. An active layer 4, a p-InP cladding layer 1O, etc. are sequentially formed. The diffraction grating 2 was formed by a two-beam interference exposure method using a He--Cd gas laser and a chemical etching method. The cycle was 2,400 people and the depth was about 1,000. The growth of the optical guide layer 3, active layer 4, etc. was carried out at a relatively low temperature of 600° C. or lower in order to prevent the disappearance of the diffraction grating 2. As a result, even after crystal acid prolongation, 500 to 600
Diffraction grating 2 was stored at depth A. Phase control area 6
The active layer 4 and the optical guide layer 3 were selectively etched only in the portions where the wavelength was 1.3 μm, and the phase control layer 5 having a composition having an emission wavelength of 1.3 μm was laminated. At this time, crystal growth was carried out at a normal temperature of about 640"c, and the diffraction grating 2 almost disappeared. The phase control layer 5 was formed at a height that allows the light waves to combine smoothly. Thereafter, the mesa The desired DFB-W was obtained by etching and crystal growth in the buried structure to independently form a DFB electrode 8°9 and a phase control electrode 7. The width of the active layer in the buried structure was set to 1.5 degrees. In addition,
In order to provide good insulation between the electrodes when forming the electrodes, a semi-insulating groove layer may be formed by forming etching grooves between the electrodes or by irradiating protons.
以上のようにして作製したDFB−LDを素子長250
μm、そのほぼ中央部分に長さ20μmの位相制御領域
6が配置されるように切り出して特性を評価した。その
結果、位相制御領域6に流す制御電流を数mAとするこ
とにより、室温CWにおいて発振しきい値電流20mA
、片面からの微分量子効率30チ、最高単一軸モード出
力30mWの特性を備えた素子を再現性よく得られた。The DFB-LD fabricated as described above has an element length of 250 mm.
.mu.m, and the characteristics were evaluated by cutting out so that a phase control region 6 with a length of 20 .mu.m was placed approximately at the center thereof. As a result, by setting the control current flowing through the phase control region 6 to several mA, the oscillation threshold current is 20 mA at room temperature CW.
A device with characteristics of a single-sided differential quantum efficiency of 30 cm and a maximum single-axis mode output of 30 mW was obtained with good reproducibility.
制御電流を適切に設定してやることによシ主モードと副
モードとの強度比を常に30〜40 dB程度にとるこ
とができた。By appropriately setting the control current, the intensity ratio between the main mode and the sub-mode could always be kept at about 30 to 40 dB.
また制御電流を変化させることによりIO人程度の波長
変化が観測され、そのときの光出力の変化もどくわずか
であった。In addition, by changing the control current, a wavelength change on the order of IO was observed, and the change in optical output at that time was very small.
さらにこのような位相制御領域6を有するDFB−LD
においては反射端面における回折格子2の位相の影響も
小さい。通常のDFB−LDにおいては反射端面におけ
る位相条件によってモードとびを生ずる素子が少なくな
かった。−例として、1枚のウェファから任意に切シ出
して特性歩留シを調べたところ、通常のDFB−LDで
は35チの素子が10 mW以内の出力レベルで反射端
面位相条件によるモードとびを示したが、実施例に示し
た位相制御DFB−Wにおいてはその割合は5チに減少
し、単一軸モード発振の等性歩留シが大幅に向上した。Furthermore, a DFB-LD having such a phase control region 6
In this case, the influence of the phase of the diffraction grating 2 on the reflective end face is also small. In ordinary DFB-LDs, there are many elements in which mode skipping occurs due to phase conditions at the reflective end face. - As an example, when we cut arbitrary pieces from one wafer and investigated the characteristic yield, we found that in a normal DFB-LD, a 35-chi element exhibits mode skipping due to the reflection end face phase condition at an output level of 10 mW or less. However, in the phase control DFB-W shown in the example, the ratio was reduced to 5, and the homogeneity yield of single-axis mode oscillation was significantly improved.
なお、以上の実施例においてはInPを基板、InGa
AsPを活性層等とする波長1μm帯の半導体材料を示
したが、本発明に用いる半導体材料はもちろんこれに限
るものではなく、GaAA’As/GaAa系。Note that in the above embodiments, InP is used as the substrate, and InGa is used as the substrate.
Although a semiconductor material with a wavelength of 1 μm in which AsP is used as an active layer is shown, the semiconductor material used in the present invention is of course not limited to this, and may be GaAA'As/GaAa type.
InGaAs/InAJAs系等他の半導体材料を用い
て何ら差しつかえない。また、実施例においては基板l
に直接回折格子2を形成し、その上に光ガイド層3、活
性層4を成長したが、あらかじめ活性層、光ガイド層を
積層し、光ガイド層の上に回折格子を形成してもよい。There is no problem in using other semiconductor materials such as InGaAs/InAJAs. In addition, in the embodiment, the substrate l
Although the diffraction grating 2 is directly formed on the substrate and the light guide layer 3 and the active layer 4 are grown thereon, the active layer and the light guide layer may be laminated in advance and the diffraction grating may be formed on the light guide layer. .
さらに光ガイド層3、活性層4を積層した後に位相制御
層5を成長したが、この順序は逆でもさしつかえない。Although the phase control layer 5 was grown after the optical guide layer 3 and the active layer 4 were further laminated, this order may be reversed.
また実施例ではDFB電極8,9を共通にして特性を評
価したが、3つの電極を別々に駆動させ、1つのDFB
領域を変調器として用いてもかまわない。In addition, in the example, the characteristics were evaluated using the DFB electrodes 8 and 9 in common, but the three electrodes were driven separately, and one DFB
A region may also be used as a modulator.
本発明の特徴は集積化分布帰還型半導体レーザにおいて
、発振波長に対して透明な位相制御領域を形成したこと
にある。これによシ、ブラッグ波長付近で安定に単一軸
モード発振させることが可能となカ、発振しきい値電流
の低減、温度特性の改善、量子動車の向上等を図シ、レ
ーザ特性、素子の特性歩留りを大幅に向上したDFB−
LDを得ることができる効果を有するものである。A feature of the present invention is that a phase control region transparent to the oscillation wavelength is formed in an integrated distributed feedback semiconductor laser. This has enabled stable single-axis mode oscillation near the Bragg wavelength, reduced the oscillation threshold current, improved temperature characteristics, and improved quantum dynamics. DFB with significantly improved characteristic yield
This has the effect that LD can be obtained.
第1図は本発明の一実施例であるDFB−LDO共イド
層、4は活性層、5は位相制御層、6は位相制御領域、
7は制御電極、8,9はDFB電極、i。
はp−InPクラッド層をそれぞれあられす。
特許出願人 日本電気株式会社
1 : ITIP基板
2:回折格子
3:光がイド層
4:)呂/l住層
5:イΩ相制イ卸層
6:位相制御9a域
7:位相制訓ii樋FIG. 1 shows a DFB-LDO cooid layer which is an embodiment of the present invention, 4 is an active layer, 5 is a phase control layer, 6 is a phase control region,
7 is a control electrode, 8 and 9 are DFB electrodes, i. and p-InP cladding layer respectively. Patent Applicant: NEC Corporation 1: ITIP substrate 2: Diffraction grating 3: Optical layer 4:) layer 5: phase control layer 6: phase control 9a region 7: phase control ii gutter
Claims (1)
層よりもエネルギーギャップが大きく、かつ一方の面に
回折格子が形成された光ガイド層との積層構造を有する
集積化分布帰還型半導体レーザにおいて、少なくとも前
記活性層よりもエネルギーギャップの大きな位相制御層
を有する位相制御領域を備え、前記位相制御領域に独立
した電極を設けたことを特徴とする集積化分布帰還型半
導体レーザ。(1) An integrated distributed feedback semiconductor laser having a laminated structure on a semiconductor substrate, including at least an active layer and an optical guide layer having a larger energy gap than the active layer and having a diffraction grating formed on one surface. An integrated distributed feedback semiconductor laser comprising a phase control region having a phase control layer having at least a larger energy gap than the active layer, and an independent electrode provided in the phase control region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59198033A JPH0656904B2 (en) | 1984-09-21 | 1984-09-21 | Integrated distributed feedback semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59198033A JPH0656904B2 (en) | 1984-09-21 | 1984-09-21 | Integrated distributed feedback semiconductor laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6177381A true JPS6177381A (en) | 1986-04-19 |
JPH0656904B2 JPH0656904B2 (en) | 1994-07-27 |
Family
ID=16384410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59198033A Expired - Lifetime JPH0656904B2 (en) | 1984-09-21 | 1984-09-21 | Integrated distributed feedback semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0656904B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01126621A (en) * | 1987-11-11 | 1989-05-18 | Nec Corp | Variable wavelength filter |
JPH01312881A (en) * | 1988-06-09 | 1989-12-18 | Nec Corp | Variable wavelength transducer |
EP1191651A1 (en) * | 2000-09-06 | 2002-03-27 | Nec Corporation | Distributed feedback semiconductor laser |
KR100526999B1 (en) * | 2002-12-13 | 2005-11-08 | 한국전자통신연구원 | Multi DFB Laser Diode |
-
1984
- 1984-09-21 JP JP59198033A patent/JPH0656904B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01126621A (en) * | 1987-11-11 | 1989-05-18 | Nec Corp | Variable wavelength filter |
JPH01312881A (en) * | 1988-06-09 | 1989-12-18 | Nec Corp | Variable wavelength transducer |
EP1191651A1 (en) * | 2000-09-06 | 2002-03-27 | Nec Corporation | Distributed feedback semiconductor laser |
KR100526999B1 (en) * | 2002-12-13 | 2005-11-08 | 한국전자통신연구원 | Multi DFB Laser Diode |
Also Published As
Publication number | Publication date |
---|---|
JPH0656904B2 (en) | 1994-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104937791B (en) | Laser aid, optic modulating device and optical semiconductor | |
CA1105598A (en) | Semiconductor laser device | |
JPS58155788A (en) | Semiconductor laser | |
JPH0770791B2 (en) | Semiconductor laser and manufacturing method thereof | |
US5289494A (en) | Distributed feedback semiconductor laser | |
JPS6254489A (en) | Semiconductor light emitting element | |
JP3141854B2 (en) | Method for manufacturing optical semiconductor device | |
JPH06338659A (en) | Laser element | |
US4782035A (en) | Method of forming a waveguide for a DFB laser using photo-assisted epitaxy | |
US6526087B1 (en) | Distributed feedback semiconductor laser | |
JPS6177381A (en) | Integrated distributed feedback type semiconductor laser | |
JPH10178232A (en) | Semiconductor laser and its manufacture | |
JPS6114787A (en) | Distributed feedback type semiconductor laser | |
JPS63166281A (en) | Distributed feedback semiconductor laser | |
JPS6232680A (en) | Integrated type semiconductor laser | |
JPS6179283A (en) | Distributed bragg reflection type semiconductor laser | |
KR100576299B1 (en) | Semiconductor laser and element for optical communication | |
JPS6195592A (en) | Integrated distribution bragg's reflection type semiconductor laser | |
US6771681B2 (en) | Distributed feedback semiconductor laser | |
JPS61164289A (en) | Integrated semiconductor laser | |
JPS6223186A (en) | Distributed feedback type semiconductor laser | |
JPS59127892A (en) | Semiconductor laser and manufacture thereof | |
JP3075822B2 (en) | Semiconductor distributed feedback laser device | |
JPS60133777A (en) | Semiconductor light emitting device | |
JPS63122188A (en) | Photo-semiconductor device |