JPS6195592A - Integrated distribution bragg's reflection type semiconductor laser - Google Patents

Integrated distribution bragg's reflection type semiconductor laser

Info

Publication number
JPS6195592A
JPS6195592A JP21680284A JP21680284A JPS6195592A JP S6195592 A JPS6195592 A JP S6195592A JP 21680284 A JP21680284 A JP 21680284A JP 21680284 A JP21680284 A JP 21680284A JP S6195592 A JPS6195592 A JP S6195592A
Authority
JP
Japan
Prior art keywords
region
wavelength
control
dbr
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21680284A
Other languages
Japanese (ja)
Other versions
JPH0680857B2 (en
Inventor
Mitsuhiro Kitamura
北村 光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59216802A priority Critical patent/JPH0680857B2/en
Publication of JPS6195592A publication Critical patent/JPS6195592A/en
Publication of JPH0680857B2 publication Critical patent/JPH0680857B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To control the oscillating wavelength in a stable uniaxial mode state in the range of several Angstrom by forming an active region, a phase control region and a DBR region, and forming a control electrode also on the DBR region. CONSTITUTION:An active region 1, a phase control region 2 and a DBR region 3 are formed, and a control electrode 20 is formed on the DBR regions. Thus, the wavelength range of approx. several Angstrom is varied substantially in a stable uniaxial mode operation state by altering the control current. Further, the oscillating spectral beam width at the uniaxial mode oscillation time also depends upon the control state, and the oscillating spectral beam width of 4MH2 is obtained by setting to the most stable state. For example, the length of the region 2 is 300mum, the length of the region 3 is 150mum and the length of the region is 150mum, thereby varying the wavelength of 45Angstrom by implanting a current of approx. 60mA.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は発振波長が制御可能な半導体レーザ]こ関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser whose oscillation wavelength can be controlled.

(従来技術とその問題点) Gb/sレベルの超高速変調時にも安定な単一軸モード
動作を示す分布帰還型半導体レーザ(DPB−LD)、
分布ブラック反射型半導体レーザ(DBR−LD)は長
距離・大容量光ファイバ通信用光源として有望視されて
いる。単一軸モード性の良好なこれらの半導体レーザに
波長制御機講を4人することは、現在の長距離・大容量
直接伝送方式のみならず、将来の光ヘテロダイン通信、
高密度波長多重伝送等の分野への展開が期待され、きわ
めて有用と考えられる。その−例として例えば、東盛氏
らはエレクトロニクス・レターズ誌(Electron
(Prior art and its problems) A distributed feedback semiconductor laser (DPB-LD) that exhibits stable single-axis mode operation even during ultra-high-speed modulation at the Gb/s level;
Distributed black reflective semiconductor lasers (DBR-LDs) are seen as promising light sources for long-distance, high-capacity optical fiber communications. Having four people develop a wavelength control mechanism for these semiconductor lasers, which have good single-axis mode properties, will be useful not only for the current long-distance, high-capacity direct transmission system, but also for future optical heterodyne communications,
It is expected to be applied to fields such as high-density wavelength division multiplexing transmission, and is considered to be extremely useful. For example, Tomori et al.
.

Lett、 19 (1983) 、 pp 656 
)  jcおいて報告しているような発振波長の制御が
可能な直接結合型の集積化DBR−LD  を開発した
。東盛氏らは第2図に示すように活性領域1を素子中央
に、その片側fこDBRB域2を、もう一方の側に位相
制御領域3を配置した全損波長制御可能な集積化DBR
−LDを試作し、位相制御領域3に4mAの電流注入を
行なうことにより、4μm度の発振波長変化を実現した
。第3図はその動作原理を示すためのものである。第3
図の横軸は波長、たて軸はしきい値利得を与える反射損
失を示す。すなわち、たて軸は低い値はど反射損失が小
さく、したがってしきい値利得が小さく軸モードが発振
しやすいことを示す。東盛氏らによる波長制御集積化D
B几−LDにおいては第3図に示した反射損失曲線は変
化せず、この曲線上を各軸モードが移動することiこな
る。各軸モードの点はDB几領領域2決定される位相曲
線と活性領域1および位相制御領域3きで決定される位
相曲線との交点で決まる6位相制御領域3に電流注入す
ることにより後者の位相曲線が変化し、したがって2つ
の位相曲線の支点が変化するため(こ発振波長が変化す
ることになる。
Lett, 19 (1983), pp 656
) We have developed a direct-coupled integrated DBR-LD that can control the oscillation wavelength as reported in J.C. As shown in Figure 2, Tomori et al. have developed an integrated DBR capable of controlling total loss wavelength, with an active region 1 in the center of the device, a DBRB region 2 on one side, and a phase control region 3 on the other side.
- By making a prototype LD and injecting a current of 4 mA into the phase control region 3, a change in the oscillation wavelength of 4 μm degree was realized. FIG. 3 is for illustrating its operating principle. Third
The horizontal axis of the figure shows wavelength, and the vertical axis shows reflection loss that provides threshold gain. That is, a low value on the vertical axis indicates that the vertical reflection loss is small, and therefore the threshold gain is small and the axis mode is likely to oscillate. Wavelength control integration D by Tomori et al.
In the B-LD, the reflection loss curve shown in FIG. 3 does not change, and each axis mode moves on this curve. The point of each axis mode is determined by the intersection of the phase curve determined by the DB control region 2 and the phase curve determined by the active region 1 and the phase control region 3.By injecting current into the phase control region 3, the latter Since the phase curves change and therefore the fulcrums of the two phase curves change (this causes the oscillation wavelength to change).

?lJえば電流注入のないときに第3図に示したように
31 、32 、33 、34のような軸モードがある
とすると、はじめは最も反射損失の小さな32のモード
が発振する。位相制御領域に電流を注入することにより
位相曲線の支点で与えられる各軸モードは矢印の方向に
移動し、発振波長が短波長側に変化する。ある程度電流
を注入していくと32のモードと33のモードとの反射
損失が逆転し、そこでモードのとびが生じて、こんどは
おのモードが発振するようになる。以後、同罎の波長変
化を示すことになる。ところがこの場合(こは反射損失
曲線は窯化しないので、最低のしきい値利得を与えるブ
ラック波長は変化しない、すなわち制御9牝な波長範囲
は軸モード間隔で決定され、現実的な素子寸法を考える
とたかだか数人にとどまってしまう。将来の高密度波長
多重光通信等への適用を考えた場合、数十人オーダーの
波長制御が必要となる。同時にそのときの微調も必要と
なってくる。
? For example, if there are axial modes such as 31, 32, 33, and 34 as shown in FIG. 3 when no current is injected, 32 modes with the smallest reflection loss oscillate at first. By injecting a current into the phase control region, each axial mode given by the fulcrum of the phase curve moves in the direction of the arrow, and the oscillation wavelength changes to the shorter wavelength side. When a certain amount of current is injected, the reflection losses between the 32nd mode and the 33rd mode are reversed, causing a mode jump, and each mode now oscillates. From now on, we will show the wavelength change of the same wavelength. However, in this case (in this case, the reflection loss curve does not change, the black wavelength that gives the lowest threshold gain does not change, i.e., the control wavelength range is determined by the axial mode spacing, and realistic device dimensions cannot be determined. If you think about it, it will only require a few people at most.If we consider future applications such as high-density wavelength division multiplexing optical communications, it will require dozens of people to control the wavelength.At the same time, fine tuning will also be necessary. .

(発明の目的) 本発明の目的は上述の観点から、数十λオーダーの波長
制御と同時に発振モードの微調が可dヒな新規な構造の
集積化DBR−LD  を提供することにある。
(Objective of the Invention) From the above-mentioned viewpoint, the object of the present invention is to provide an integrated DBR-LD with a novel structure that allows fine tuning of the oscillation mode at the same time as wavelength control on the order of several tens of λ.

(発明の構成) 本発明の構成fこよる集積分布ブラック反射型中4体レ
ーザは、半導体基板上に少なくとも活性層と、前記活性
層よりもエネルギーギヤ、プが大きく、かつ一方の面に
回折格子が形成されたガイド層とを有する8層構造を備
え、少なくとも前記活性層を有する活性領域、レーザ光
に対して透明な位相制御領域、少なくとも前記ガイド層
を有するDBRB域がレーザ共逗軸方向につらなりて形
成さn、 r+”b記活性頌城の一方の端面が反射端面
となり、ポエ記積層構造上部に2つの独立な成績が形成
され、その1つの1螺が2つの領域にまたがって形成さ
れていることを特徴としている。
(Structure of the Invention) According to the structure of the present invention, an integrated distribution black reflection type medium 4-body laser has at least an active layer on a semiconductor substrate, and has an energy gap larger than that of the active layer, and has diffraction on one surface. and a guide layer in which a grating is formed, at least an active region having the active layer, a phase control region transparent to laser light, and a DBRB region having at least the guide layer are arranged in the laser coaxial direction. One end surface of the n, r+"b active dome formed in a chain becomes a reflective end surface, and two independent grades are formed on the upper part of the Poe's laminated structure, one of which spans the two regions. It is characterized by the fact that it is formed.

(発明の作用・原理) 本発明;こよる集積型DBR−LD  は、活性領域。(Function/principle of invention) The integrated DBR-LD according to the present invention has an active region.

位相TiU(1’D領域、DJ3fl領域が形成され、
少なくとも2つの独立の電極が形成されている。DBR
B域へのキャリア注入Iこより、第3図に示したブラッ
ク波長そのものが変化することになる。また同時に位相
制御領域へのキャリア注入により各軸モードの発振波長
も変化させることができる。前者の場合、数十へのオー
ダーのブラック波長変化が実現でき、また後者の場合数
十へオーダーのスムーズな波長変化が可能となるので、
例えばそれら2つの領域に同じ成極を形成する場合、2
つの領域の長さを適切に設定してやることtこより、数
十へオーダーの波長範囲をほぼ完全にカバーすることが
可能となる。
Phase TiU (1'D region, DJ3fl region are formed,
At least two independent electrodes are formed. DBR
Due to the carrier injection I into the B region, the black wavelength itself shown in FIG. 3 changes. At the same time, the oscillation wavelength of each axial mode can also be changed by injecting carriers into the phase control region. In the former case, a black wavelength change on the order of tens can be realized, and in the latter case, a smooth wavelength change on the order of several tens can be achieved.
For example, when forming the same polarization in those two regions, 2
By appropriately setting the length of each region, it becomes possible to almost completely cover a wavelength range on the order of several tens.

(実施例) 以下実施例を示す図面を用いて本発明をより詳細に説明
する。
(Example) The present invention will be described in more detail below using drawings showing examples.

第1図は本発明の一実施例である集積分布ブラック反射
型半導体レーザの断面模式図である。このような素子を
作製するtこはまずInP基板11上に部分的に回折格
子12を形成し、そのうえに全面に例えば波長1,3μ
mに相当するI n o、7z Ga IIL2. A
s o、5iP03.光ガイド層13等を積層した。そ
ののち選択エンチング、選択エピタキシャル成長を行な
って例えば波長1.55 μm相当のIn 、6.Ga
 o4. As 、9゜Po、。
FIG. 1 is a schematic cross-sectional view of an integrated distribution black reflective semiconductor laser which is an embodiment of the present invention. To fabricate such an element, first, a diffraction grating 12 is partially formed on an InP substrate 11, and then a diffraction grating 12 with a wavelength of, for example, 1 or 3 μm is formed on the entire surface of the InP substrate 11.
I n o, 7z Ga IIL2. A
s o, 5iP03. A light guide layer 13 and the like were laminated. After that, selective etching and selective epitaxial growth are performed to grow, for example, In with a wavelength of 1.55 μm.6. Ga
o4. As, 9°Po,.

活性層14等を光が直接結合するように積層し、横モー
ド制御と電流とじ込のの目的で埋め込み構造に形成した
。その後回に示すように2つの一極を形成した。制御電
極20は位相制御領域3とDB几領領域2に対して共通
している。それぞれの領域の長さを適切Iこ設だしてや
ることにより数十への波長範囲をカバーして発振させる
ことができるし、すべての波長範囲を連続的fこ波長変
化しない才でもモードジャンプを生じない状態で数A程
度の連続波長変化が実現できることfこなる。−例とし
てDB几領領域2部分の位相変化分が活性領域1と位、
tllll−」岬領域3と力)ら成る部分の位相変化分
のほぼ2倍程度となるようにすればモードジャンプを含
めた全体の波長変化分のほぼ半分以上の波長領域にわた
って連続的な波長変化を実現することができ、FSKヘ
テロダイン光通信方式等への適用に11はぼ十分な波長
チューニングが行なえることにrlる。
The active layer 14 and the like were laminated so that light was directly coupled, and formed into a buried structure for the purpose of transverse mode control and current confinement. Two monopoles were formed as shown in the subsequent chapters. The control electrode 20 is common to the phase control region 3 and the DB control region 2. By setting the length of each region appropriately, it is possible to oscillate over several tens of wavelength ranges, and mode jumps occur even if the wavelength does not change continuously over all wavelength ranges. It is possible to realize a continuous wavelength change of about several A even when there is no current. - For example, if the phase change of the DB area area 2 is about the same as the active area 1,
If the phase change is approximately twice the amount of the phase change in the portion consisting of the cape region 3 and force), a continuous wavelength change will occur over a wavelength region that is approximately half or more of the total wavelength change including mode jumps. Therefore, it is possible to perform wavelength tuning that is sufficient for application to FSK heterodyne optical communication systems and the like.

本実施例ではDBRB域2の長さを300μm、僅相制
回領域3の憂さを150μm、活性領域1の長さ815
0μmとすることにより、5QmA程度の電流注入fこ
より45Aの波長変化が実現できた。軸モードとびを生
ずる前後の4A程度の範囲ではやや不安定な動作を示し
たが、それ以外の波長範囲では軸モード選択比が39d
B以上の良好な単一軸モード動作下で波長制御が行なえ
た。呈温CW動作においても活性領域1だけIこ電流注
入する場合に、しきい値′区流4QmA、微分童子効率
15チ程凌のものが再現性よく得られた。光出力の点か
らも活性領域1側の出力端面4から最大10rnWまで
の安定な単一軸モード全損が得られた。制御fii20
はDBB−領域2および位相制御領域3とに共通とした
が、DBRB域2のみ独立させ、活性領域1と位相制御
領域3とに共通の一極を形成してもよい、2つの独立な
成極だけで良好な波長制御が行なえる。活性領域1と位
相制御領域3を合わせた長さで、位相条件が決定され、
それとDBR立相面相曲線叉点が各弛モードの発振波長
を決定するので、それぞれの領域の長さや注入する電流
を適切に設定することにより、いずれの場合も40〜5
0A程度の範囲で波長制御が可能となる。
In this example, the length of the DBRB region 2 is 300 μm, the length of the small phase control region 3 is 150 μm, and the length of the active region 1 is 815 μm.
By setting it to 0 μm, a wavelength change of 45 A could be achieved by injecting a current f of about 5 QmA. The operation was somewhat unstable in the range of about 4A before and after the axial mode skipping occurred, but in the other wavelength range the axial mode selection ratio was 39d.
Wavelength control was possible under good single-axis mode operation of B or better. Even in the temperature changing CW operation, when current was injected into only the active region 1, a threshold current of 4 QmA and a differential efficiency of about 15 cm were obtained with good reproducibility. In terms of optical output, a stable single-axis mode total loss of up to 10 rnW from the output end face 4 on the active region 1 side was obtained. control fii20
is common to the DBB-region 2 and the phase control region 3; however, only the DBRB region 2 may be made independent, and a common pole may be formed in the active region 1 and the phase control region 3. Good wavelength control can be achieved using just the poles. The phase condition is determined by the combined length of the active region 1 and the phase control region 3,
The intersection point of the DBR vertical phase curve determines the oscillation wavelength of each relaxation mode, so by appropriately setting the length of each region and the injected current, it is possible to
Wavelength control becomes possible within a range of approximately 0A.

本発明の実施例ICおいては、活性領域12位相制御領
域2 、DBAB域3を形成し、DBRB域3Iこも制
御′1極20を形成した。これによって制御電流を変化
させることにより数十人程度の波長範囲をほぼ安定な単
一軸モード動作の状態で変化させることができた。さら
に単一軸モード発振時の発振スペクトル線幅も制御状態
に依存し、最も安定な状態に設定することにより4 M
Hzの発成スペクトル線幅が得られた。
In the example IC of the present invention, an active region 12, a phase control region 2, a DBAB region 3 were formed, and a DBRB region 3I and a control '1 pole 20 were formed. By changing the control current, we were able to change a wavelength range of several tens of wavelengths in a nearly stable single-axis mode operation. Furthermore, the oscillation spectrum linewidth during single-axis mode oscillation also depends on the control state, and by setting it to the most stable state, 4 M
Emission spectral linewidths in Hz were obtained.

なお本発明の実施例においては電流注入Iこよるキャリ
アのプラズマ効果を利用して屈折率変化させ、波長制御
を行なったが、P−N接合に逆バイアスを印加し、空乏
層の拡がりを利用して屈折率変化させる等の手段上用い
てもよい、用いる半導体材料も実施例fこおいてはIn
Pを基板、 InGaAsPを活性層、光ガイド層とす
る波長1μm帯の材料を用いたが、これに限ることな(
、GaAgAs 。
In the example of the present invention, the refractive index was changed using the plasma effect of carriers caused by current injection I, and the wavelength was controlled. In Example F, the semiconductor material used may also be used for purposes such as changing the refractive index.
A material with a wavelength of 1 μm, including P as a substrate and InGaAsP as an active layer and a light guide layer, was used, but the material is not limited to this.
, GaAgAs.

InGaAJP 、 GaAsSb  系等、他の半導
体材料を用いてさしつかえない。実施例においてはDB
RB域2と位相制御領域3とに同じ組成の光ガイド層1
3を用いたが、これらは異なる組成の結晶であってもか
まわない、また独立な電極間には電気的絶縁を良好にす
るためにエツチング溝を形成したり、プロトン照射高抵
抗層を形成してもよい。
Other semiconductor materials such as InGaAJP and GaAsSb may also be used. In the example, DB
A light guide layer 1 having the same composition in the RB region 2 and the phase control region 3
3 was used, but these may be crystals of different compositions, and etching grooves may be formed between independent electrodes to improve electrical insulation, or a proton irradiation high-resistance layer may be formed. It's okay.

(発明の効果) 本発明の特徴は集積型DBR−I、D  において、活
性領域2位相制御領域、DBR領域を形成し、DBR領
域上にも制御電極を形成したことである。
(Effects of the Invention) A feature of the present invention is that in the integrated DBR-I, D, an active region two-phase control region and a DBR region are formed, and a control electrode is also formed on the DBR region.

これIζよって数十人の範囲で安定な単一軸モード状態
での発振波長制御が可能となった。さらに光ヘテロダイ
ン通信において重要な発振スペクトル線幅も制御するこ
とができ、光ヘテロダイン通信。
This Iζ has made it possible to control the oscillation wavelength in a stable single-axis mode state over a range of several tens of people. Furthermore, it is also possible to control the oscillation spectrum linewidth, which is important in optical heterodyne communication.

高密度波長多重通信等将来の高級光フアイバ通信用光源
として大きな発展が期待できる。
We can expect great development as a light source for future high-grade optical fiber communications such as high-density wavelength division multiplexing communications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ本発明の一実施例である集積
DBR−LD 、従来例の集積DBB−LDの断面模式
図、第3図は動作原理を示すための発振波長七DBR反
射損失との関係を示〒デ図中1は活性領域、2はDBR
,領域、3は位相制御領域。 4は出力端面、11はInP基板、12は回折格子、1
3は光ガイド層、14は活性層、20 it fffi
l #電極、31゜32 、33 、34は発振軸モー
ドをそれぞれあらゎす。 代温人弁理士内原   πl″。 ゝ、 第1図 第2図
Figures 1 and 2 are schematic cross-sectional views of an integrated DBR-LD that is an embodiment of the present invention and a conventional integrated DBB-LD, respectively, and Figure 3 is a seven-wavelength DBR reflection loss to illustrate the operating principle. In the figure, 1 is the active region and 2 is the DBR.
, area, and 3 is the phase control area. 4 is an output end face, 11 is an InP substrate, 12 is a diffraction grating, 1
3 is a light guide layer, 14 is an active layer, 20 it fffi
The # electrodes 31, 32, 33, and 34 represent the oscillation axis modes, respectively. Yoshion Patent Attorney Uchihara πl''. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に少なくとも活性層と、前記活性層よりも
エネルギーギャップが大きく、かつ一方の面に回折格子
が形成されたガイド層とを有する積層構造を備え、少な
くとも前記活性層を有する活性領域、レーザ光に対して
透明な位相制御領域、少なくとも前記ガイド層を有する
DBR領域がレーザ共振軸方向につらなって形成され、
前記活性領域の一方の端面が反射端面となり、前記積層
構造上部に2つの独立な電極が形成され、そのうちの1
つの電極が2つの領域にまたがって形成されていること
を特徴とする集積分布ブラック反射型半導体レーザ。
A laminated structure having, on a semiconductor substrate, at least an active layer and a guide layer having a larger energy gap than the active layer and having a diffraction grating formed on one surface, an active region having at least the active layer, and a laser. A phase control region transparent to light, a DBR region having at least the guide layer, is formed in a manner extending in the laser resonance axis direction,
One end face of the active region becomes a reflective end face, and two independent electrodes are formed on the upper part of the laminated structure, one of which is a reflective end face.
1. An integrated distributed black reflective semiconductor laser characterized in that one electrode is formed across two regions.
JP59216802A 1984-10-16 1984-10-16 Integrated distributed Bragg reflector semiconductor laser Expired - Lifetime JPH0680857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59216802A JPH0680857B2 (en) 1984-10-16 1984-10-16 Integrated distributed Bragg reflector semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59216802A JPH0680857B2 (en) 1984-10-16 1984-10-16 Integrated distributed Bragg reflector semiconductor laser

Publications (2)

Publication Number Publication Date
JPS6195592A true JPS6195592A (en) 1986-05-14
JPH0680857B2 JPH0680857B2 (en) 1994-10-12

Family

ID=16694112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59216802A Expired - Lifetime JPH0680857B2 (en) 1984-10-16 1984-10-16 Integrated distributed Bragg reflector semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0680857B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122188A (en) * 1986-11-12 1988-05-26 Hitachi Ltd Photo-semiconductor device
JPS63253335A (en) * 1987-04-09 1988-10-20 Nec Corp Optical filter element
JPS649679A (en) * 1987-07-02 1989-01-12 Kokusai Denshin Denwa Co Ltd Semiconductor laser of long resonator length
EP0692853A1 (en) * 1994-07-15 1996-01-17 Nec Corporation Wavelength-tunable semiconductor laser and fabrication process thereof
JP2011253977A (en) * 2010-06-03 2011-12-15 Mitsubishi Electric Corp Dbr laser

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116683A (en) * 1980-02-20 1981-09-12 Tokyo Inst Of Technol Distribution reflecting type semiconductor laser having tuning and requency-modulating mechanism

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116683A (en) * 1980-02-20 1981-09-12 Tokyo Inst Of Technol Distribution reflecting type semiconductor laser having tuning and requency-modulating mechanism

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122188A (en) * 1986-11-12 1988-05-26 Hitachi Ltd Photo-semiconductor device
JPS63253335A (en) * 1987-04-09 1988-10-20 Nec Corp Optical filter element
JPS649679A (en) * 1987-07-02 1989-01-12 Kokusai Denshin Denwa Co Ltd Semiconductor laser of long resonator length
EP0692853A1 (en) * 1994-07-15 1996-01-17 Nec Corporation Wavelength-tunable semiconductor laser and fabrication process thereof
US5541945A (en) * 1994-07-15 1996-07-30 Nec Corporation Wavelength-tunable semiconductor laser
US5789274A (en) * 1994-07-15 1998-08-04 Nec Corporation Wavelength-tunable semiconductor laser and fabrication process thereof
JP2011253977A (en) * 2010-06-03 2011-12-15 Mitsubishi Electric Corp Dbr laser

Also Published As

Publication number Publication date
JPH0680857B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
US5398256A (en) Interferometric ring lasers and optical devices
EP3453086B1 (en) Laser device and method for its operation
JPH06204610A (en) Semiconductor laser and manufacture thereof
JP2003046190A (en) Semiconductor laser
Schilling et al. Wavelength converter based on integrated all-active three-port Mach-Zehnder interferometer
EP1316129B1 (en) A multisegment integrated laser and a method for fabrication thereof
JP2003289169A (en) Semiconductor laser
JPS6195592A (en) Integrated distribution bragg's reflection type semiconductor laser
JPS6179283A (en) Distributed bragg reflection type semiconductor laser
de Valicourt et al. Hybrid silicon-based tunable laser with integrated reflectivity-tunable mirror
Rennon et al. Complex coupled distributed-feedback and Bragg-reflector lasers for monolithic device integration based on focused-ion-beam technology
JPH0656904B2 (en) Integrated distributed feedback semiconductor laser
US11411371B1 (en) Carrier sweep-out in a tunable laser
Arimoto et al. A wavelength-tunable short-cavity DBR laser with active distributed Bragg reflector
JP2666297B2 (en) Tunable semiconductor laser
JPS62173785A (en) Semiconductor laser
JP2006047895A (en) Photonic crystal semiconductor device and semiconductor laser integrated device
JP2687884B2 (en) Tunable semiconductor laser and manufacturing method thereof
Alibert et al. A new tunable laser using a single electroabsorption tuning super structure grating for subnanosecond switching applications
JPS61212082A (en) Integrated semiconductor laser
JP2022015037A (en) Semiconductor optical element
JP2023020996A (en) Semiconductor optical device
JPS63122188A (en) Photo-semiconductor device
JPS6223186A (en) Distributed feedback type semiconductor laser
JP2692577B2 (en) Tunable semiconductor laser

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term