JPS63253335A - Optical filter element - Google Patents

Optical filter element

Info

Publication number
JPS63253335A
JPS63253335A JP62088273A JP8827387A JPS63253335A JP S63253335 A JPS63253335 A JP S63253335A JP 62088273 A JP62088273 A JP 62088273A JP 8827387 A JP8827387 A JP 8827387A JP S63253335 A JPS63253335 A JP S63253335A
Authority
JP
Japan
Prior art keywords
area
wavelength
layer
phase
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62088273A
Other languages
Japanese (ja)
Other versions
JP2655600B2 (en
Inventor
Takaaki Numai
沼居 貴陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8827387A priority Critical patent/JP2655600B2/en
Publication of JPS63253335A publication Critical patent/JPS63253335A/en
Application granted granted Critical
Publication of JP2655600B2 publication Critical patent/JP2655600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To obtain an optical filter element having tens of channels or more that can provide the variable tuning width of a large selective wavelength by optically connecting a distribution feedback area with a phase, shift structure and an active area serially, and making to the both end surfaces of the element into non-reflection structure and controlling a phase shifting amount. CONSTITUTION:The distribution feedback area with the phase shift structure is composed of a DBR area 200 and a phase control area 210. The phase shifting amount can be adjusted by pouring a current to the phase shifting area from the outside. Firstly, a lambda/4 shift diffraction grating is formed in the DBR area 200 of an n-InP substrate 110. Secondly, a 1st LPE growth leads a non-dope InGaAsP light guide layer 120, an n-InP buffer layer 130, a non-dope active layer 140 and a p-InP clad layer 150 to grow in that order. Thirdly, the InP clad layer 150 and the active layer 140 apart from the active area 100 are selectively removed, and during the 2nd LPE growth a p-InP clad layer 160 is fully formed. After that, an SiN film 170 is formed in order to keep the reflectance of the both ends of the element below 1%. Thus any wavelength can be selected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光交換用の光フィルタ素子に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an optical filter element for light exchange.

(従来の技術) 波長多重化光信号から任意の光信号を選択する機能を有
する光フィルタ素子は、光伝送、光交換、光情報処理等
において広範な用途に応用可能なキーデバイスの1つで
ある。そして、いづれの用途においても光フィルタ素子
の特性として十分な波長選択度と選択波長の広い可変・
同調幅が必要とされている。また、構造として光集積回
路化が不可欠なことから、任意の選択したい波長のみを
透過する透過型の波長選択7にルタであることも必要で
ある。
(Prior Art) Optical filter elements, which have the function of selecting an arbitrary optical signal from wavelength-multiplexed optical signals, are one of the key devices that can be applied to a wide range of applications such as optical transmission, optical exchange, and optical information processing. be. In any application, the characteristics of the optical filter element include sufficient wavelength selectivity and wide tunability of selected wavelengths.
Tuning range is required. Further, since optical integrated circuit structure is essential, it is also necessary that the transmission type wavelength selection 7 transmits only a desired wavelength.

従来から、透過型の波長選択フィルタに関してはいくつ
かの検討がなされている。その中で、半導体活性層を用
いた光増幅素子内に波長選択性のある光帰還構造を設け
た構造の光フィルタ素子が、活性層への注入キャリア濃
度により選択波長の可変同調が可能で、かつ透過型の集
積化に適しているという点から期待を集めている。特に
光帰還構造としては、襞間によるファプIルベロー共振
器よりも回折格子から成る分布帰還構造の方が、波長選
択性および光集積化の点で有利であり、それらの構造を
用いた光フィルタ素子の提案および理論的検討もされて
いる。(オブティクス・コミュニケーションズ(Opt
ics Communications)第10巻12
0ページ参照) (発明が解決しようとする問題点) しかしながら、これら従来がら提案され、検討されてき
た光増幅素子内に分布帰還構造を有する光フィルタ素子
は、選択波長の同調のために活性層への注入キャリア濃
度を調整した場合、同時に選択波長に対する光利得およ
び自然放出光強度も変化するため、光フィルタ素子とし
て必要な波長選択度を得るため、および対雑音信号強度
比を得るためには、活性層への注入キャリア濃度が原理
上狭く限定され、その結果として選択波長の可変幅が数
人程度と小さいため、数チャンネルのフィルタとしてし
か使えないという欠点があった。
Conventionally, several studies have been made regarding transmission type wavelength selection filters. Among these, an optical filter element has a structure in which an optical feedback structure with wavelength selectivity is provided within an optical amplification element using a semiconductor active layer, and the selected wavelength can be tunable by changing the concentration of carriers injected into the active layer. It is also attracting high expectations because it is suitable for transparent integration. In particular, as an optical feedback structure, a distributed feedback structure consisting of a diffraction grating is more advantageous than a Fap I Leuberot resonator between folds in terms of wavelength selectivity and optical integration, and optical filters using such a structure Element proposals and theoretical studies have also been made. (Optix Communications (Opt.
ics Communications) Volume 10 12
(See page 0) (Problems to be Solved by the Invention) However, these optical filter elements that have a distributed feedback structure in the optical amplification element that has been proposed and studied in the past do not have an active layer for tuning the selected wavelength. When adjusting the concentration of carriers injected into the filter, the optical gain and spontaneous emission intensity for the selected wavelength also change. In principle, the carrier concentration injected into the active layer is narrowly limited, and as a result, the variable range of the selected wavelength is as small as a few wavelengths, so it has the disadvantage that it can only be used as a filter for a few channels.

本発明の目的は、増幅機能を有し、かつ上述の欠点を除
去した大きな選択波長の可変同調幅を得ることのできる
数十チャンネル以上の光フィルタ素子を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical filter element having several tens of channels or more, which has an amplification function and can obtain a large variable tuning width of a selected wavelength, eliminating the above-mentioned drawbacks.

(問題を解決するための手段) 本発明の光フィルタ素子は、位相シフト構造を有する分
布帰還領域と活性領域とが光学的に結合して直列に配置
され、がつ素子の両端面が無反射構造になっており、か
つ前記位相シフト領域が外部からシフト量制御可能であ
ることを特徴としている。
(Means for solving the problem) In the optical filter element of the present invention, a distributed feedback region having a phase shift structure and an active region are optically coupled and arranged in series, and both end surfaces of the element are non-reflective. The phase shift region is characterized in that the shift amount of the phase shift region can be controlled from the outside.

(作用) 分布帰還構造を有する先導波路の光透過特性は、透過波
長域において光利得をもたない場合、各分布帰還領域の
光学的位相がそろっている場合は、その回折格子の光学
的周期から定まるブラッグ波長を中心に数10人程度の
1つの透過阻止波長域を形成する。一方、分布帰還領域
の中央を境にして両側で光学的位相がnずれた場合(こ
の場合、素子内を伝播する光の波長をλとすると、回折
格子のピッチがv4だけずれたことに対応するので、M
4シフト溝造と呼ばれる)は、透過阻止波長域は分裂し
、上述の数10人程度の透過阻止波長域の中央にに2人
程度以下の狭い幅の透過波長域が生じる。この)J4シ
フト構造を有する分布帰還領域をもつ光導波路層を透過
波長より短波側の組成の半導体で構成すれば光利得がな
いため、キャリア注入によりブラッグ波長を中心とする
1〜2人程程度下の狭い幅で大きな波長選択幅が得られ
、さらに自然放出光による対雑音強度比の劣化を生じる
こともない。
(Function) The optical transmission characteristics of a guiding waveguide having a distributed feedback structure are determined by the optical period of the diffraction grating when there is no optical gain in the transmission wavelength region, and when the optical phase of each distributed feedback region is the same. One transmission-blocking wavelength range of about several dozen is formed around the Bragg wavelength determined by . On the other hand, if the optical phase is shifted by n on both sides of the center of the distributed feedback region (in this case, if the wavelength of the light propagating in the element is λ, then the pitch of the diffraction grating is shifted by v4) Therefore, M
In the 4-shift groove structure), the transmission blocking wavelength range is divided, and a narrow transmission wavelength range of about 2 wavelengths or less is generated in the center of the transmission blocking wavelength range of about 10 wavelengths described above. If the optical waveguide layer with a distributed feedback region having a J4 shift structure is constructed of a semiconductor with a composition on the shorter wavelength side than the transmission wavelength, there will be no optical gain. A large wavelength selection width can be obtained with the narrow width at the bottom, and furthermore, the deterioration of the noise intensity ratio due to spontaneous emission light does not occur.

また、外部から位相シフト領域に電流を注入すると、位
相シフト量を調節することができる。位相シフト量によ
って、透過特性は第3図のように変化し、ブラッグ波長
を中心とする数人〜数10程度度の波長域の任意の波長
を選択できる可変同調可能な透過型光フィルタ素子が得
られる。すなわち、位相シフト量を可変することによっ
て、位相シフト量がM4のみに固定された場合よりも、
さらに可変波長幅を大きくすることができる。
Furthermore, by injecting a current into the phase shift region from the outside, the amount of phase shift can be adjusted. Depending on the amount of phase shift, the transmission characteristics change as shown in Figure 3, and a tunable transmission optical filter element can select any wavelength in the wavelength range of several to several tens of degrees centered around the Bragg wavelength. can get. In other words, by varying the phase shift amount, compared to the case where the phase shift amount is fixed only to M4,
Furthermore, the variable wavelength width can be increased.

前述の先導波路層は、利得をもっていないので、増幅機
能を有する光フィルタ素子を構成するためには活性領域
と分布帰還領域とを光学的に結合、させてやればよい。
Since the above-mentioned leading waveguide layer has no gain, the active region and the distributed feedback region may be optically coupled to form an optical filter element having an amplification function.

すなわち、光を活性領域に注入して増幅した後に分布帰
還領域に透過させる゛構造にすれば、増幅機能をもった
光フィルタ素子を得ることができる。
That is, if the structure is such that light is injected into the active region, amplified, and then transmitted through the distributed feedback region, an optical filter element having an amplification function can be obtained.

ここで注意すべきことが1つ存在する。すなわち、素子
の両端面を無反射構造としなければならない。この理由
は、もし、無反射構造にしなければ、DBRレーザとし
て発振してしまうがらである。
There is one thing to note here. That is, both end faces of the element must have a non-reflection structure. The reason for this is that if it were not made to have a non-reflective structure, it would oscillate as a DBR laser.

(実施例) 次に図面を参照して本発明の詳細な説明する。(Example) Next, the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例の光フィルタ素子の構造を
示す斜視図である。以下、製作手順に従いながら本実施
例の構造について説明する。まず、n形InP基板11
0上のDBR領域200に周期2400人のA/4シフ
ト回折格子を形成する。次に1回目のLPE成長によっ
てノンドープInGaAsP光ガイド層120(λg=
1゜3pm、厚さ0.3pm)、n形InPバッファ層
130(厚さ0゜1pm)、ノンドープ活性層140(
λg=1.53pm、厚さ0゜1pm)、p形InPク
ラッド層150(厚さ0.2pm)を順序成長する。次
に活性領域100を除いた他の部分のInPクラッド層
150と活性層140とを選択的に除去する。次に2回
目のLPE成長において全体にp形InPクラッド層1
60を形成する。
FIG. 1 is a perspective view showing the structure of an optical filter element according to an embodiment of the present invention. The structure of this embodiment will be explained below while following the manufacturing procedure. First, n-type InP substrate 11
An A/4 shift diffraction grating with a period of 2400 is formed in the DBR region 200 above 0. Next, the non-doped InGaAsP optical guide layer 120 (λg=
1°3 pm, thickness 0.3 pm), n-type InP buffer layer 130 (thickness 0°1 pm), non-doped active layer 140 (
λg=1.53 pm, thickness 0°1 pm), and a p-type InP cladding layer 150 (thickness 0.2 pm) is sequentially grown. Next, the InP cladding layer 150 and the active layer 140 other than the active region 100 are selectively removed. Next, in the second LPE growth, the entire p-type InP cladding layer 1 is
Form 60.

次に埋め込み構造とするために、メサエッチングを行な
った後、3回目のLPE成長によって埋め込°み成長を
行なう。ここでは、埋め込み構造とじて二重チャンネル
プレーナ埋め込み構造を用いた。
Next, in order to form a buried structure, mesa etching is performed, and then buried growth is performed by a third LPE growth. Here, a double channel planar embedding structure was used as the embedding structure.

最後に基板側と成長層側に電極を形成した後、活性領域
100とDBR領域200、およびDBR@域200と
位相制御領域210との間の電気的な分離を行なうため
に、中央のメサ付近を除いて幅20pmの溝を形成する
。その後、プラズマCVD装置を用いて素子の両端の反
射率を1%以下に低減するためにSiN膜170を形成
する。活性領域100、DBR領域200、位相制御領
域210の長さは、それぞれ1100p、 240pm
、20μmである。この実施例では位相シフト構造を有
する分布帰還領域はDBR領域200と位相制御領域2
10とから成っている。
Finally, after forming electrodes on the substrate side and the growth layer side, in order to electrically isolate between the active region 100 and the DBR region 200, and between the DBR @ region 200 and the phase control region 210, A groove with a width of 20 pm is formed except for. Thereafter, a SiN film 170 is formed using a plasma CVD apparatus in order to reduce the reflectance at both ends of the element to 1% or less. The lengths of the active region 100, DBR region 200, and phase control region 210 are 1100p and 240pm, respectively.
, 20 μm. In this embodiment, the distributed feedback region having a phase shift structure is a DBR region 200 and a phase control region 2.
It consists of 10.

こうして試作した素子の特性の一例を次に示す。増幅領
域100に50mAの電流を注入した時、消光比は20
dB以上、透過波長の10dB減衰幅は0.5人であっ
た。また、DBR領域200、位相制御領域210に電
流を流さない時は、透過波長は1.5563pm。
An example of the characteristics of the device prototyped in this way is shown below. When a current of 50 mA is injected into the amplification region 100, the extinction ratio is 20.
dB or more, the 10 dB attenuation width of the transmitted wavelength was 0.5 people. Further, when no current is applied to the DBR region 200 and the phase control region 210, the transmission wavelength is 1.5563 pm.

DBR領域200、位相制御領域210の両方に80m
Aの電流をま大した時は、透過波長は1.5505pm
となり、透過波長は連続して58人変化した。さらに、
DBR領域200に注入する電流を80mAに固定して
おき、位相制御領域210への注入電流を80mAから
160mAまで増加させると、透過波長は連続して8人
短波側へずれ、1.5497pmとなった。この時の位
相シフト量は3υ16に対応している。なお、結晶成長
後の回折格子の深さは500人、透過阻止波長域は65
人であった。
80m for both DBR area 200 and phase control area 210
When the current of A is increased, the transmitted wavelength is 1.5505 pm.
Therefore, the transmitted wavelength changed continuously by 58 people. moreover,
When the current injected into the DBR region 200 is fixed at 80 mA and the current injected into the phase control region 210 is increased from 80 mA to 160 mA, the transmission wavelength continuously shifts to the shorter wavelength side and becomes 1.5497 pm. Ta. The phase shift amount at this time corresponds to 3υ16. The depth of the diffraction grating after crystal growth is 500 mm, and the transmission blocking wavelength range is 65 mm.
It was a person.

第2図にDBR領域200、位相制御210の両方に同
じ大きさの電流を注入した時の透過特性を示す。
FIG. 2 shows the transmission characteristics when the same magnitude of current is injected into both the DBR region 200 and the phase control 210.

この図から、透過阻止波長域の約半分すなわち30人程
度の範囲内に0.5程度度の間隔で波長多重化された信
号から任意の波長選択が可能となる。さらにDBR領域
200への注入電流を固定しておき、位相制御領域に電
流を注入していくと最大38人の範囲内に0.5〜0.
7人の間隔で波長多重化された信号から任意の波長選択
が可能となる。すなわち、70チャンネル程度の波長可
変フィルタとして使うことができる。
From this figure, it is possible to select any wavelength from signals wavelength-multiplexed at intervals of about 0.5 degrees within about half of the transmission blocking wavelength range, that is, within a range of about 30 people. Furthermore, by fixing the injection current to the DBR region 200 and injecting the current into the phase control region, the range of 0.5 to 0.
It is possible to select any wavelength from signals wavelength-multiplexed at intervals of seven people. That is, it can be used as a wavelength tunable filter with about 70 channels.

なお、素子の材料および組成は、上述の実施例に限定す
る必要、は、なく、他の半導体材料や誘電体材料などで
あってもよい。また、位相シフト構造も均一な回折格子
を有し、かつ導波路の幅を変えたり、導波路の厚みを変
えたようないわゆる等測的な位相シフト構造であっても
よい。また、先導波路構造は光を導波する機能をもつな
らばプレーナ構造や埋め込み構造に限らず、いかなる構
造であってもよく、例えば積層方向に光を入射、透過さ
せる固型構造であってもよい。さらに、分布帰還構造も
先導波路に回折格子を構成した導波路型に限らず、屈折
率の異なる層を交互に積層した固型構造であってもよい
。また、無反射構造もウィンドウ構造や多層膜コートで
あってもよい。
Note that the material and composition of the element need not be limited to the above-mentioned embodiments, and may be other semiconductor materials, dielectric materials, or the like. Further, the phase shift structure may also be a so-called isometric phase shift structure, which has a uniform diffraction grating and has a waveguide having a different width or a different thickness. In addition, the guiding waveguide structure is not limited to a planar structure or a buried structure, but may be any structure as long as it has the function of guiding light; for example, it may be a solid structure that allows light to enter and pass in the stacking direction. good. Further, the distributed feedback structure is not limited to a waveguide type in which a diffraction grating is formed in the leading waveguide, but may be a solid structure in which layers having different refractive indexes are alternately laminated. Further, the non-reflective structure may also be a window structure or a multilayer coating.

(発明の効果) 従来の光フィルタ素子では、数チャンネルが限度であっ
たが、本発明の光フィルタ素子によって70チヤンネル
迄の波長多重化された光信号からの任意の波長選択が可
能となった。
(Effects of the Invention) Conventional optical filter elements were limited to a few channels, but the optical filter element of the present invention makes it possible to select any wavelength from a wavelength-multiplexed optical signal of up to 70 channels. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の光フィルタ素子の構造を
示す斜視図である。第2図は本実施例の光フィルタ素子
のDBR領域と位相制御領域に同じ大きさの電流を流し
た時の透過特性である。第3図は、位相シフト量が変化
した時の透過特性である。 図において、 100〜活性領域、200〜DBR領域110〜基板、
120〜光ガイド層 130〜バッファ層、140〜活性層 150〜クラッド層、160〜クラッド層ごIIN  
          t!に第2図 波長(pm)
FIG. 1 is a perspective view showing the structure of an optical filter element according to an embodiment of the present invention. FIG. 2 shows the transmission characteristics when the same magnitude of current is passed through the DBR region and the phase control region of the optical filter element of this example. FIG. 3 shows the transmission characteristics when the amount of phase shift changes. In the figure, 100 - active region, 200 - DBR region 110 - substrate,
120~light guide layer 130~buffer layer, 140~active layer 150~cladding layer, 160~cladding layer IIN
T! Figure 2 Wavelength (pm)

Claims (1)

【特許請求の範囲】[Claims]  位相シフト構造を有する分布帰還領域と活性領域とが
光学的に結合して直列に配置され、かつ素子の両端面が
無反射構造になっており、かつ前記位相シフト領域が外
部からシフト量制御可能であることを特徴とする光フィ
ルタ素子。
A distributed feedback region having a phase shift structure and an active region are optically coupled and arranged in series, both end faces of the element have a non-reflection structure, and the amount of shift of the phase shift region can be controlled from the outside. An optical filter element characterized by:
JP8827387A 1987-04-09 1987-04-09 Optical filter element Expired - Lifetime JP2655600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8827387A JP2655600B2 (en) 1987-04-09 1987-04-09 Optical filter element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8827387A JP2655600B2 (en) 1987-04-09 1987-04-09 Optical filter element

Publications (2)

Publication Number Publication Date
JPS63253335A true JPS63253335A (en) 1988-10-20
JP2655600B2 JP2655600B2 (en) 1997-09-24

Family

ID=13938294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8827387A Expired - Lifetime JP2655600B2 (en) 1987-04-09 1987-04-09 Optical filter element

Country Status (1)

Country Link
JP (1) JP2655600B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105591A (en) * 1987-10-19 1989-04-24 Mitsubishi Electric Corp Wavelength selecting amplifier
JPH04127489A (en) * 1988-12-21 1992-04-28 Hikari Keisoku Gijutsu Kaihatsu Kk Semiconductor optical element and manufacture thereof
JPH04503868A (en) * 1989-03-02 1992-07-09 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー A device that generates a comb of toothed light of different frequencies
JP2008090318A (en) * 2007-11-08 2008-04-17 Mitsubishi Electric Corp Reciprocating multiple optical modulator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6195592A (en) * 1984-10-16 1986-05-14 Nec Corp Integrated distribution bragg's reflection type semiconductor laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6195592A (en) * 1984-10-16 1986-05-14 Nec Corp Integrated distribution bragg's reflection type semiconductor laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105591A (en) * 1987-10-19 1989-04-24 Mitsubishi Electric Corp Wavelength selecting amplifier
JPH04127489A (en) * 1988-12-21 1992-04-28 Hikari Keisoku Gijutsu Kaihatsu Kk Semiconductor optical element and manufacture thereof
JPH04503868A (en) * 1989-03-02 1992-07-09 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー A device that generates a comb of toothed light of different frequencies
JP2008090318A (en) * 2007-11-08 2008-04-17 Mitsubishi Electric Corp Reciprocating multiple optical modulator

Also Published As

Publication number Publication date
JP2655600B2 (en) 1997-09-24

Similar Documents

Publication Publication Date Title
US5379318A (en) Alternating grating tunable DBR laser
JP2813067B2 (en) Optical filter
EP0559192A2 (en) Distributed reflector and wavelength-tunable semiconductor laser
JP2659187B2 (en) Optical filter element
JPH06194613A (en) Tuning optical filter device
EP0952470A2 (en) A method of manufacturing a semiconductor optical waveguide array and an array-structured semiconductor optical device
JPH07273400A (en) Semiconductor laser
JP2659199B2 (en) Tunable wavelength filter
JP2000012952A (en) Manufacture of semiconductor optical waveguide array and array-structured semiconductor optical element
JPS63253335A (en) Optical filter element
US5084897A (en) Optical filter device
JPS622213A (en) Optical filter element
JPH0671119B2 (en) Optical filter element
JPS61212082A (en) Integrated semiconductor laser
JPH0671118B2 (en) Integrated optical filter device
JPH01244431A (en) Variable wavelength filter
JP2788760B2 (en) Selectable wavelength tunable filter
JPH0983087A (en) Semiconductor optical device capable of polarization control and wavelength control and network employing it
JPH0661572A (en) Distribution light reflecting device and variable wavelength semiconductor laser using the same
JPH1027936A (en) Method of forming laser with modulator
JPH02238686A (en) Semiconductor laser
JPH02119287A (en) Semiconductor laser of variable wavelength
JPH0461183A (en) Variable wavelength semiconductor laser
JPH0661571A (en) Distribution light reflection device and semiconductor laser using the same
JPH01312881A (en) Variable wavelength transducer