JPS622213A - Optical filter element - Google Patents

Optical filter element

Info

Publication number
JPS622213A
JPS622213A JP14097085A JP14097085A JPS622213A JP S622213 A JPS622213 A JP S622213A JP 14097085 A JP14097085 A JP 14097085A JP 14097085 A JP14097085 A JP 14097085A JP S622213 A JPS622213 A JP S622213A
Authority
JP
Japan
Prior art keywords
optical
wavelength
filter element
optical filter
phase modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14097085A
Other languages
Japanese (ja)
Inventor
Akira Suzuki
明 鈴木
Tomoji Terakado
知二 寺門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14097085A priority Critical patent/JPS622213A/en
Publication of JPS622213A publication Critical patent/JPS622213A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings

Abstract

PURPOSE:To obtain a transmission type optical filter element which can select an optional wavelength near a Bragg wavelength and can be variably tuned by inserting an optically coupled phase modulation region between optical waveguides having plural distribution feedback regions and adjusting the optical phase difference of the respective distribution feedback regions from the outside. CONSTITUTION:The optical filter element is constituted of a buffer layer 2 epitaxially grown on a semiconductor substrate 1, the optical waveguide layer 3 including the distribution feedback regions 31 and the phase modulation region 32, a clad layer 4, an electrode forming layer 5, an n side electrode 6, a p side electrode 7 and an antireflection film 8. The optical waveguide layer 3 consists of undoped In0.84Ga0.16As0.36P0.64 and the average thickness in the part of the distribution feedback regions 31 is 0.1mum. The thickness in the part of the phase modulation region 32 is 0.2mum. The electrode forming layer 5 and the p side electrode 7 positioned in the part of the distribution feedback regions 31 are removed by chemical etching so that current is not injected to the regions 31.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光フィルタ素子に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an optical filter element.

(従来の技術) 波長多重化光信号から任意の波長の光信号を選択する機
能を有する光フィルタ素子は、光伝送、光変換、光情報
処理等において広範な用途に応用可能なキー・デバイス
の一つである。そして、いずれの用途においても、光フ
ィルタ素子の特性として十分な波長選択度と、選択波長
のひろい可変同調幅が必要とされている。また、構造と
して、光集積回路化が不可欠なことから、任意の選択し
たい波長のみを透過する透過型の波長選択フィルタであ
ることも必要である。
(Prior Art) Optical filter elements, which have the function of selecting an optical signal of an arbitrary wavelength from a wavelength multiplexed optical signal, are key devices that can be applied to a wide range of applications such as optical transmission, optical conversion, and optical information processing. There is one. In any of these applications, the characteristics of the optical filter element are required to have sufficient wavelength selectivity and a wide range of selective wavelengths and variable tuning width. Furthermore, since optical integrated circuit structure is essential, it is also necessary to be a transmission type wavelength selection filter that transmits only a desired wavelength.

従来より、透過型の波長選択フィルタに関してはいくつ
かの検討がなされている。その中で、半導体活性層を用
いた光増幅素子内に、波長選択性のある光帰還構造を設
けた構造の光フィルタ素子が活性層への注入キャリア濃
度により選択波長の可変同調が可能でかつ透過型の光集
積化に適した光フィルタ素子として期待されている。特
に、光帰還構造としてはヘキ開によるファプリー・ベロ
ー共振器よりも回折格子から成る分布帰還構造の方が波
長選択性及び光集積化の点で有利であり、それらの構造
を用いた光フィルタ素子の提案、及び理論検討もされて
いる(オプティクスーコミュニケーション(Optic
s Communication)第10巻、120ペ
ージ参照)。
Conventionally, several studies have been made regarding transmission type wavelength selection filters. Among these, an optical filter element has a structure in which a wavelength-selective optical feedback structure is provided in an optical amplification element using a semiconductor active layer, and the selected wavelength can be tunable by changing the concentration of carriers injected into the active layer. It is expected to be an optical filter element suitable for transmission-type optical integration. In particular, as an optical feedback structure, a distributed feedback structure consisting of a diffraction grating is more advantageous than a Fapley-Bello resonator using a cleavage in terms of wavelength selectivity and optical integration, and optical filter elements using these structures Proposals and theoretical studies have also been carried out (Optics-Communication).
s Communication) Volume 10, page 120).

(発明が解決しようとする問題点) しかしながら、これらの従来より提案され、検討されて
きた光増幅素子内に分布帰還構造を有する光フィルタ素
子は、選択波長の同調の為に、活性層への注入キャリア
濃度を調整した場合、同時に選択波長に対する光利得、
及び自然放出光強度も変化する為、光フィルタ素子とし
て必要な波長選択度、及び対雑音信号強度比を得る為に
は活性層への注入キャリア濃度の範囲が原理上せまく限
定され、結果として大きな選択波長の可変同調幅が得ら
れないといった欠点を有していた。
(Problems to be Solved by the Invention) However, these optical filter elements that have a distributed feedback structure in the optical amplification element that have been proposed and studied conventionally have a problem in that the active layer is When adjusting the injected carrier concentration, the optical gain for the selected wavelength,
Since the spontaneous emission light intensity also changes, the range of carrier concentration injected into the active layer is narrowly limited in principle in order to obtain the wavelength selectivity and signal intensity ratio to noise required for an optical filter element, and as a result, the range of the carrier concentration injected into the active layer is narrowly limited. This method has the disadvantage that a variable tuning width of the selected wavelength cannot be obtained.

本発明の目的は、上述の欠点を除去し、大きな選択波長
の可変同調幅が得られる製造容易な光フィルタ素子を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide an easily manufactured optical filter element that can provide a wide variable tuning width of selected wavelengths.

(問題点を解決するための手段) 本発明の光フィルタ素子は、複数の分布帰還領域と、該
分布帰還領域の間に挿入され、光学的に結合した外部よ
り変調度を制御可“能な位相変調領域とからなる。
(Means for Solving the Problems) The optical filter element of the present invention includes a plurality of distributed feedback regions, and an optical filter element which is inserted between the distributed feedback regions and whose modulation degree can be controlled from an optically coupled external device. It consists of a phase modulation region.

(作用) 光学的に結合した複数の分布帰還構造を有する先導波路
の光枦造特性は、透過波長域において光利得をもたない
場合、各分布帰還領域の光学的位相がそろっている場合
はその回折格子の光学的周期より定まるブラッグ波長を
中心に、数人〜数10程度度の一つの透過阻止波長域を
形成するが、各分布帰還領域の光学的位相がずれた場合
は、透過阻止波長域は分裂し、その透過阻止波長域の間
に、1〜2人程程度下のせまい幅の透過波長域が生じる
。複数の分布帰還領域を有する先導波路の間に光学的に
結合した位相変調領域を挿入し、各分布帰還領域の光学
的位相を外部より調整すれば、ブラッグ波長を中心とす
る数人〜数10程度度の波長域の任意の波長を選択でき
る可変同調可能な透過型光フィルタ素子が得られる。又
、透過波長域において光利得をもつ必要がない為、先導
波路を透過波長より短波長の組成の半導体で構成すれば
、キャリア注入により大きな波長選択幅が得られ、さら
に自然放出光による対雑音信号強度比の劣化を生じるこ
ともない。
(Function) The optical structure characteristics of a guiding waveguide having multiple distributed feedback structures optically coupled are such that when there is no optical gain in the transmission wavelength region, when the optical phase of each distributed feedback region is aligned, A transmission blocking wavelength range of several to several tens of degrees is formed around the Bragg wavelength determined by the optical period of the diffraction grating, but if the optical phase of each distributed feedback region is shifted, transmission blocking occurs. The wavelength range is divided, and a narrow transmission wavelength range of about 1 to 2 wavelengths is generated between the transmission blocking wavelength ranges. If an optically coupled phase modulation region is inserted between a leading waveguide having a plurality of distributed feedback regions, and the optical phase of each distributed feedback region is adjusted from the outside, it is possible to adjust the wavelength from several to several tens of times around the Bragg wavelength. A tunable transmission optical filter element that can select any wavelength in a wavelength range to a certain extent is obtained. In addition, since there is no need to have optical gain in the transmission wavelength range, if the leading waveguide is made of a semiconductor with a composition shorter than the transmission wavelength, a large wavelength selection range can be obtained by carrier injection, and furthermore, noise reduction due to spontaneous emission can be achieved. No deterioration of signal strength ratio occurs.

(実施例) 次に図面を参照して本発明の詳細な説明する。(Example) Next, the present invention will be described in detail with reference to the drawings.

第1図は、本発明に基づく一実施例の光を増幅する方向
の断面を表わす回である。本実施例の光フィルタ素子は
、半導体基板1にエピタキシャル成長されたバッファ層
2、分布帰還領域31及び位相変調領域32を含む光導
波層3、クラッド層4、電極形成層5及びn側電極6、
p側電極7、反射防止膜8から構成されている。半導体
基板1は(100)方位を有し、Snが1×1018c
m−3ドープされた厚さ10011mのInPから成り
、バッファ層はSnが1×1018cm−3ドープされ
た厚さlpmのInPから成り、光導波層3はアンドー
プの’0.84GaO,16As0.36P0.64か
ら成り、分布帰還領域31の部分の平均の厚さは0.1
pm、位相変調領域32の部分の厚さは0.2pmであ
る。クラッド層4はZnが5×1017cm−3ドープ
された厚さ2pmのInPから成り、電極形成層5はZ
nがI×1019cm−3ドープされたInO,84G
aO,16As0.36P0.64から成り厚さは0.
5pmである。
FIG. 1 is a cross-sectional view of an embodiment of the present invention in the direction of amplifying light. The optical filter element of this embodiment includes a buffer layer 2 epitaxially grown on a semiconductor substrate 1, an optical waveguide layer 3 including a distributed feedback region 31 and a phase modulation region 32, a cladding layer 4, an electrode forming layer 5, an n-side electrode 6,
It is composed of a p-side electrode 7 and an antireflection film 8. The semiconductor substrate 1 has a (100) orientation, and Sn is 1×1018c.
The buffer layer is made of InP doped with m-3 to a thickness of 10011 m, the buffer layer is made of InP doped with Sn to a thickness of lpm, and the optical waveguide layer 3 is made of undoped '0.84GaO, 16As0.36P0. The average thickness of the distributed feedback region 31 is 0.1.
pm, and the thickness of the phase modulation region 32 is 0.2 pm. The cladding layer 4 is made of InP doped with 5 x 1017 cm-3 of Zn and has a thickness of 2 pm, and the electrode forming layer 5 is made of InP doped with 5 x 1017 cm-3 of Zn.
InO, 84G doped with n of I x 1019 cm-3
It is made of aO, 16As0.36P0.64 and has a thickness of 0.
It is 5pm.

n側電極6はAn−Ge−Ni合金から成り厚さ0.3
pm、 p側電極7はAn−Zn合金から成り厚さ0.
3pm、反射防止膜8は5L3N4から成り厚さは19
00人である。分布帰還領域31には三光束干渉法てに
より作成された回折格子が形成され、周期には1805
人、格子の深さは600人である。又、素子の長さは3
00pm、位相変調領域32は、その中央部に位置し長
さ1100pである。そして、分布帰還領域31の部分
に位置する、電極形成層5及びp側電極7は化学エツチ
ングにより除去され、分布帰還領域31に電流が注入さ
れないようになっている。
The n-side electrode 6 is made of An-Ge-Ni alloy and has a thickness of 0.3
pm, the p-side electrode 7 is made of an An-Zn alloy and has a thickness of 0.5 mm.
3pm, and the antireflection film 8 is made of 5L3N4 and has a thickness of 19
There are 00 people. A diffraction grating created by three-beam interference method is formed in the distributed feedback region 31, and the period is 1805.
The depth of the grid is 600 people. Also, the length of the element is 3
00pm, and the phase modulation region 32 is located at the center and has a length of 1100p. Then, the electrode formation layer 5 and the p-side electrode 7 located in the distributed feedback region 31 are removed by chemical etching, so that no current is injected into the distributed feedback region 31.

この光フィルタ素子はその動作時において、p側電極7
から位相変調領域32へ注入される制御電流により、素
子の一端面から入射した、分布帰還構造のブラッグ波長
近傍の波長多重化光信号から、任意の波長の波長の光信
号を、選択して取出すことができる。第2図は、本発明
の動作原理を説明する為に2つの分布帰還領域を有する
光導波路の中央部に位相変調領域挿入した光フィルタ素
子の光透過特性を、2つの分布帰還領域の光学的位相差
をパラメータとして示した図である。光学的位相差がゼ
ロの場合は、従来の分布帰還構造を有する導波路型光フ
ィルタとなり、ブラッグ波長近傍に、一つの透過阻止波
長域が存在し、ブラッグ波長近傍の波長の光信号は全て
反射し、透過しない。一方、位相変調領域の導波路の屈
折率を変え、例えば1/8波長分の光学的位相差をもた
せた場合、大小2つの分裂した透過阻止波長域が現れ、
それらにはさまれたλ1の波長の光は反射されないで完
全に透過する。この透過波長は、第2図に示すように光
学的位相差に対応して、λ1からλ3に変えることがで
きる。
During operation, this optical filter element has a p-side electrode 7
A control current injected into the phase modulation region 32 from the control current selects and extracts an optical signal of an arbitrary wavelength from the wavelength multiplexed optical signal near the Bragg wavelength of the distributed feedback structure, which is incident from one end face of the element. be able to. In order to explain the operating principle of the present invention, FIG. FIG. 3 is a diagram showing a phase difference as a parameter. When the optical phase difference is zero, it becomes a waveguide type optical filter with a conventional distributed feedback structure, and there is one transmission blocking wavelength region near the Bragg wavelength, and all optical signals with wavelengths near the Bragg wavelength are reflected. and does not pass through. On the other hand, if the refractive index of the waveguide in the phase modulation region is changed to give an optical phase difference of, for example, 1/8 wavelength, two divided transmission blocking wavelength bands will appear, large and small.
The light of wavelength λ1 sandwiched between them is completely transmitted without being reflected. This transmission wavelength can be changed from λ1 to λ3 in accordance with the optical phase difference, as shown in FIG.

すなわち、第2図中においてλ1.λ2.λ3の3波多
重化光信号を光フィルタ素子の一端に入射すればその中
から任意の波長の光信号を位相変調領域により同調して
選択的に取り出すことができる。
That is, in FIG. 2, λ1. λ2. If a three-wave multiplexed optical signal of λ3 is input to one end of an optical filter element, an optical signal of an arbitrary wavelength can be tuned by the phase modulation region and selectively extracted.

具体的に、実施例について計算された設計値を述べると
、分布帰還構造の結合係数は約200cm−1となる。
Specifically, to describe the design value calculated for the example, the coupling coefficient of the distributed feedback structure is about 200 cm-1.

光フィルタ素子として必要な波長選択度を10dBとし
た場合、透過波に関して常に波長選択度10dBが得ら
れる光学的位相変調量は1/8波長から3/8波長の間
となり、それに対応する透過波長の変化幅は16人とな
る。一方、位相変調領域に、電流注入により1×101
8cm−3程度のキャリアを注入すれば導波路の屈折率
が変化し、最大、半波長骨の光学的位相を変化させるこ
とができる。従って透過波長の10dB減衰幅が2人と
なることからブラッグ波長を中心に最大8チャンネル程
度の波長多重化された光信号から任意の波長選択が可能
となる。
If the wavelength selectivity required for an optical filter element is 10 dB, the amount of optical phase modulation that always provides a wavelength selectivity of 10 dB for transmitted waves is between 1/8 wavelength and 3/8 wavelength, and the corresponding transmitted wavelength The range of change is 16 people. On the other hand, a current of 1×101 is applied to the phase modulation region by current injection.
By injecting carriers of about 8 cm -3 , the refractive index of the waveguide changes, and the optical phase of the bone can be changed by up to half a wavelength. Therefore, since the 10 dB attenuation width of the transmitted wavelength is two, it becomes possible to select any wavelength from optical signals wavelength-multiplexed with a maximum of about 8 channels around the Bragg wavelength.

なお、素子の材料及び組成は、上述の実施例に限定する
必要はなく他の半導体材料や誘電体材料であってもよい
。位相変調の機構も、キャリア注入によるものに限定す
る必要はなく、電気光学効果や、誘電体の屈折率の温度
依存性など、必要な屈折率変化を得ることのできる現象
ならばいかなるものであってもよい。又、先導波路構造
は光を導波する機能をもつならばプレーナ構造や埋め込
み構造に限らず、いかなる構造であってもよく、積層方
向に光を入射、透過させる固型構造であってもよい。さ
らに、分布帰還構造も、先導波路に回折格子を構成した
導波路型に限らず屈折率の異なる層を交互に積層した固
型構造であってもよい。
Note that the material and composition of the element need not be limited to the above-mentioned embodiments, and may be other semiconductor materials or dielectric materials. The phase modulation mechanism does not need to be limited to carrier injection; it may be any phenomenon that can obtain the necessary refractive index change, such as the electro-optic effect or the temperature dependence of the refractive index of a dielectric material. It's okay. Further, the guiding waveguide structure may be of any structure, not limited to a planar structure or a buried structure, as long as it has the function of guiding light, and may be a solid structure that allows light to enter and pass in the stacking direction. . Further, the distributed feedback structure is not limited to a waveguide type in which a diffraction grating is formed in the leading waveguide, but may be a solid structure in which layers having different refractive indexes are alternately laminated.

(発明の効果) 最後に本発明が有する特徴を要約すれば、複数の分布帰
還領域を有する先導波路の間に光学的に結合した位相変
調領域を挿入する、製造容易な構造により、各分布帰還
領域の光学的位相差を外部より調整することによりブラ
ッグ波長近傍の任意の波長を選択できる可変同調が可能
な透過型光フィルタ素子が得られることである。
(Effects of the Invention) Finally, to summarize the features of the present invention, each distributed feedback can be An object of the present invention is to obtain a transmissive optical filter element capable of variable tuning that allows selection of any wavelength in the vicinity of the Bragg wavelength by externally adjusting the optical phase difference of the regions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図は実施例の
光フィルタ素子の透過率特性を示す図である。図中、1
は半導体基板、2はバッファ層、3は先導波路、31は
分布帰還領域、32は位相変調領域、4はクラッド層、
5は電極形成層、6はn側電極、7はp側電極、8は反
射防止膜である。 31、分布帰′11L霞熾′
FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a diagram showing transmittance characteristics of an optical filter element of the embodiment. In the figure, 1
is a semiconductor substrate, 2 is a buffer layer, 3 is a leading waveguide, 31 is a distributed feedback region, 32 is a phase modulation region, 4 is a cladding layer,
5 is an electrode formation layer, 6 is an n-side electrode, 7 is a p-side electrode, and 8 is an antireflection film. 31, Distribution return '11L Kasumi'

Claims (1)

【特許請求の範囲】[Claims] 複数の分布帰還領域と、該分布帰還領域の間に光学的に
結合した状態で挿入され、外部より変調度が制御可能な
位相変調領域とからなることを特徴とする光フィルタ素
子。
An optical filter element comprising a plurality of distributed feedback regions and a phase modulation region which is inserted in an optically coupled state between the distributed feedback regions and whose degree of modulation can be controlled from the outside.
JP14097085A 1985-06-27 1985-06-27 Optical filter element Pending JPS622213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14097085A JPS622213A (en) 1985-06-27 1985-06-27 Optical filter element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14097085A JPS622213A (en) 1985-06-27 1985-06-27 Optical filter element

Publications (1)

Publication Number Publication Date
JPS622213A true JPS622213A (en) 1987-01-08

Family

ID=15281066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14097085A Pending JPS622213A (en) 1985-06-27 1985-06-27 Optical filter element

Country Status (1)

Country Link
JP (1) JPS622213A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256927A (en) * 1987-04-14 1988-10-24 Nec Corp Optical filter element
JPH01244431A (en) * 1988-03-25 1989-09-28 Nec Corp Variable wavelength filter
US5088097A (en) * 1990-04-04 1992-02-11 Canon Kabushiki Kaisha Semiconductor laser element capable of changing emission wavelength, and method of driving the same
US5440581A (en) * 1992-01-13 1995-08-08 Canon Kabushiki Kaisha Semiconductor optical filter and an optical communication system using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256927A (en) * 1987-04-14 1988-10-24 Nec Corp Optical filter element
JPH01244431A (en) * 1988-03-25 1989-09-28 Nec Corp Variable wavelength filter
US5088097A (en) * 1990-04-04 1992-02-11 Canon Kabushiki Kaisha Semiconductor laser element capable of changing emission wavelength, and method of driving the same
US5440581A (en) * 1992-01-13 1995-08-08 Canon Kabushiki Kaisha Semiconductor optical filter and an optical communication system using the same

Similar Documents

Publication Publication Date Title
US5459799A (en) Tunable optical filter
JP2813067B2 (en) Optical filter
US5023944A (en) Optical resonator structures
US6198863B1 (en) Optical filters
EP0853831B1 (en) Optical filters
JPH06194613A (en) Tuning optical filter device
JP2659187B2 (en) Optical filter element
JP2002353556A (en) Integrated tunable laser
JP2659199B2 (en) Tunable wavelength filter
JPH0715092A (en) Semiconductor laser array and fabrication there
JPS622213A (en) Optical filter element
US5084897A (en) Optical filter device
JP2655600B2 (en) Optical filter element
EP0551863B1 (en) A semiconductor optical filter and an optical communication system using the same
JPH0345938A (en) Variable wavelength optical filter
JPH0671118B2 (en) Integrated optical filter device
JPH0671119B2 (en) Optical filter element
JPH0774426A (en) Variable wavelength laser, variable wavelength filter and selective wavelength detection element
JPH01186918A (en) Optical demultiplexer
JPH01244431A (en) Variable wavelength filter
JPH0797193B2 (en) Variable wavelength filter
JPH02238686A (en) Semiconductor laser
JPH02226234A (en) Variable wavelength optical filter
JPH10178165A (en) Sensitivity variable type light-integrating element
JPS63264708A (en) Optical integrated element