JPH01244431A - Variable wavelength filter - Google Patents

Variable wavelength filter

Info

Publication number
JPH01244431A
JPH01244431A JP7233388A JP7233388A JPH01244431A JP H01244431 A JPH01244431 A JP H01244431A JP 7233388 A JP7233388 A JP 7233388A JP 7233388 A JP7233388 A JP 7233388A JP H01244431 A JPH01244431 A JP H01244431A
Authority
JP
Japan
Prior art keywords
region
layer
wavelength
distributed feedback
phase control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7233388A
Other languages
Japanese (ja)
Other versions
JPH07119905B2 (en
Inventor
Takaaki Numai
沼居 貴陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63072333A priority Critical patent/JPH07119905B2/en
Publication of JPH01244431A publication Critical patent/JPH01244431A/en
Publication of JPH07119905B2 publication Critical patent/JPH07119905B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To increase variable tuning width and channel number by providing phase control regions which are disposed on both sides of a distribution feedback region, are optically coupled to this region and are capable of controlling the end face phase of said region from the outside. CONSTITUTION:A diffraction grating is formed in the distribution feedback region 100 of an n-InP substrate 110. An InGaAs light guide layer 120, an n-InP buffer layer 130, an active layer 140, and a p-InP clad layer 150 are successively formed thereon. After the layers 150, 140 of the phase control regions 200, 210 are selectively removed, an InP clad layer 160 is formed over the entire part. This filter is made into a flush structure for the purposes of carrier confinement and transverse mode control. Electrodes 300, 310 are formed to the substrate side and the growth layer side and grooves are formed by removing the neighborhood of the mesa at the center. A transmission wavelength moves continuously to a short wavelength side when current I1 is injected to the region 200. The transmission wave moves further to the short wavelength side when current I2 is injected in this state to the region 210.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光伝送、光交換、光情報処理等に用いられる
可変波長フィルタに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a variable wavelength filter used for optical transmission, optical exchange, optical information processing, etc.

(従来の技術) 可変波長フィルタは、波長多重光信号から任意の光信号
を選択する機能を存し、光伝送、光交関換、光情報処理
等において広範な用途に応用可能なキーデバイスの−っ
である。いずれの用途においても、可変波長フィルタの
特性として充分な波長選択度と選択波長の広い可変同調
幅が必要とされている。また、構造として光集積回路化
か不可欠なことから、透過型の波長選択フィルタである
ことが望ましい。
(Prior art) A tunable wavelength filter has the function of selecting an arbitrary optical signal from wavelength-multiplexed optical signals, and is a key device that can be applied to a wide range of applications such as optical transmission, optical exchange, and optical information processing. -It is. In either application, the characteristics of a variable wavelength filter require sufficient wavelength selectivity and a wide variable tuning width of the selected wavelength. Further, since the structure must be an optical integrated circuit, it is desirable to use a transmission type wavelength selection filter.

従来から、透過型の波長選択フィルタとしては、いくつ
かの検討がされている。その中で、半導体を用いた可変
波長フィルタとしては、分布帰還型半導体レーザ(DF
B  LD)を発振しきい値以下にバイアスして、可変
波長フィルタとして用いた報告がある。この文献として
曲他著のアプライド・フィジックス・レターズ(App
lied Physics Letters)第51巻
1974ページ記載の論文をあげることが出来る。
Conventionally, several studies have been made on transmission type wavelength selection filters. Among them, a distributed feedback semiconductor laser (DF
There has been a report on the use of a tunable wavelength filter by biasing a BLD below the oscillation threshold. This document includes Applied Physics Letters (App
I can cite the paper written in Volume 51, page 1974 of Lied Physics Letters.

(発明が解決しようとする課題) しかしながら、分布帰還型半導体レーザ(DFB  L
D)を発振しきい値以下にバイアスした可変波長フィル
タには次のような欠点が存在する。
(Problem to be solved by the invention) However, distributed feedback semiconductor lasers (DFB L
A variable wavelength filter in which D) is biased below the oscillation threshold has the following drawbacks.

この可変波長フィルタは、選択波長の同調のために活性
層への注入キャリア密度を調整しているが、選択波長と
同時に選択波長に対する光利得及ひ自然放出光強度も変
化する。従って、フィルタとして必要な波長選択度を得
るため、及び、対雑音強度比を得るために、活性層への
注入キャリア密度が原理−に狭く限定されていた。その
ため、選択波長の可変幅か狭く、数ヂャンネルのフィル
タとしてしか使えなかった。
This variable wavelength filter adjusts the density of carriers injected into the active layer in order to tune the selected wavelength, but the optical gain and spontaneous emission light intensity for the selected wavelength also change at the same time as the selected wavelength. Therefore, in order to obtain the wavelength selectivity necessary for the filter and to obtain the intensity-to-noise ratio, the density of carriers injected into the active layer has been narrowly limited in principle. Therefore, the variable width of the selected wavelength was narrow, and it could only be used as a filter for a few channels.

本発明の1]的は、増幅機能を有し、かつ上述の欠点を
克服した選択波長の可変同調幅と、チャンネル数の大き
な可変波長フィルタを提供することにある。
An object of the present invention is to provide a variable wavelength filter having an amplification function, a variable tuning width of a selected wavelength, and a large number of channels, which overcomes the above-mentioned drawbacks.

(課題を解決するための手段) 本発明の可変波長フィルタは、分布帰還領域と、前記分
布帰還領域をはさむように配置され、前記分布帰還領域
と光学的に結合しかつ外部がら分布帰還領域の端面位相
を制御可能な位相制御領域とから構成されることを特徴
とする。
(Means for Solving the Problems) The tunable wavelength filter of the present invention includes a distributed feedback region, which is arranged to sandwich the distributed feedback region, is optically coupled to the distributed feedback region, and is externally connected to the distributed feedback region. It is characterized by being composed of a phase control region that can control the end face phase.

(作用) 本発明のフィルタは、波長可変動作と光利得の調整をほ
ぼ独立に制御できることを特徴としている。波長可変動
作の原理について述へる。分布帰還構造を有する先導波
路の透過波長は、分布帰還構造の両端面に反射率を有す
る場合、端面における位相によって大きく変わることが
知られている。第3図に回折格子の端面位相によるモー
ドの変化の計算例を示す。横軸は、△βL(波長に対応
)、縦軸は、発振しきい値利得αしである。発振しきい
値利得αLか最小のモードかフィルタの透過波長に相当
する。第3図から端面位相によって透過波長が変化する
ことかわかる。すなわち、端面位相を制御することによ
って可変波長動作が実現できる。本発明では、端面位相
を制御するために、分布帰還領域の両側に位相制御領域
を設けた。分布帰還領域の片側たけに位相制御領域を設
けた構造でも可変波長動作が実現できるが、両側に設け
ることによってさらに波長可変範囲を拡大することか出
来る。この位相制御領域は、入射光のエネルギーよりも
禁制帯幅の広い、すなわち入射光に対して透明な光ガイ
ドから構成されている。位相制御領域にキャリアを注入
すると、プラズマ効果によって光力イトの透過屈折率が
減少する。このため、分布帰還領域の両端の位相か等価
的に変わり、等価波長か変化する。一方、光利得は、分
布帰還領域への注入キャリアによって制御する。現実に
は、位相制御領域にキャリアを注入すると、吸収係数か
わずかに増加したり、発振しきい値が変化するので分布
帰還領域への注入キャアを微調する必要があるか、はぼ
独立に選択波長と光利得を制御することが出来る。この
ため、選択波長と光利得か同時に変化する分布帰還型半
導体レーザ(DFB  LD)を発振しきい値以下にバ
イアスした可変波長フィルタに比べて波長可変同調幅を
大きく取ることか出来る。従って、チャンネル数の大き
なフィルタが得られる。
(Function) The filter of the present invention is characterized in that wavelength tuning operation and optical gain adjustment can be controlled almost independently. The principle of wavelength tunable operation will now be described. It is known that the transmission wavelength of a guide waveguide having a distributed feedback structure changes greatly depending on the phase at the end faces when both end faces of the distributed feedback structure have reflectance. FIG. 3 shows an example of calculation of mode changes due to the end face phase of the diffraction grating. The horizontal axis is ΔβL (corresponding to wavelength), and the vertical axis is the oscillation threshold gain α. The oscillation threshold gain αL corresponds to the minimum mode or the transmission wavelength of the filter. It can be seen from FIG. 3 that the transmission wavelength changes depending on the end face phase. That is, variable wavelength operation can be realized by controlling the end face phase. In the present invention, phase control regions are provided on both sides of the distributed feedback region in order to control the end face phase. Tunable wavelength operation can be realized with a structure in which the phase control region is provided only on one side of the distributed feedback region, but the wavelength tuning range can be further expanded by providing it on both sides. This phase control region is composed of a light guide that has a forbidden band wider than the energy of the incident light, that is, is transparent to the incident light. When carriers are injected into the phase control region, the transmission refractive index of the optical power decreases due to the plasma effect. Therefore, the phase at both ends of the distributed feedback region changes equivalently, and the equivalent wavelength also changes. On the other hand, optical gain is controlled by carrier injection into the distributed feedback region. In reality, when carriers are injected into the phase control region, the absorption coefficient slightly increases or the oscillation threshold changes, so it is necessary to fine-tune the carriers injected into the distributed feedback region or not. Wavelength and optical gain can be controlled. Therefore, compared to a variable wavelength filter in which a distributed feedback semiconductor laser (DFB LD) whose selected wavelength and optical gain change simultaneously is biased below the oscillation threshold, the wavelength variable tuning width can be increased. Therefore, a filter with a large number of channels can be obtained.

(実施例) 以下図面を参照して、本発明の実施例を詳細に説明する
。第1図は、本発明の一実施例可変波長フィルタの構造
を示す斜視図である。以下、製作手順にしたかって本実
施例の構造について説明する。
(Example) Examples of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a perspective view showing the structure of a variable wavelength filter according to an embodiment of the present invention. The structure of this embodiment will be explained below based on the manufacturing procedure.

ます、n形1nP基板110の分布帰還領域+00に周
期2380入の回折格子を形成する。次に、1回[−1
のLPE成長によって、ノンドープ1nGaAs光カイ
ト層 120 ()、 g=  1.3μm1厚さ 0
.3μm)、 n形lnPバッファ層 130(厚さ 
0.1μm) 、ノンドープ活性層140 (λ、 =
 +、53.r1mi厚さ0.1 μm)、p形1nP
クラッド層150 (厚さ 0.2μm)を順次成長す
る。位相制御領域200.210のInPクラッド層+
50と活性層140とを選択的に除去した後、2回目の
LPE成長によって全体にp形1nPクラッド層160
を形成する。
First, a diffraction grating with a period of 2380 is formed in the distributed feedback region +00 of the n-type 1nP substrate 110. Then once [-1
By LPE growth of undoped 1nGaAs photokite layer 120 (), g = 1.3 μm 1 thickness 0
.. 3 μm), n-type lnP buffer layer 130 (thickness
0.1 μm), non-doped active layer 140 (λ, =
+, 53. r1mi thickness 0.1 μm), p-type 1nP
A cladding layer 150 (thickness: 0.2 μm) is sequentially grown. InP cladding layer + of phase control region 200.210
After selectively removing the active layer 140 and the p-type 1nP cladding layer 160, a second LPE growth is performed to form a p-type 1nP cladding layer 160.
form.

キャリアの閉じ込めと横モード制御のために埋込み構造
とする。メサエッチングを行った後、3回目のLPE成
長によって埋め込み成長を行う。
A buried structure is used for carrier confinement and transverse mode control. After mesa etching, third LPE growth is performed to perform buried growth.

ここでは、埋め込み構造として、二重チャンネルプレー
ナ埋め込み構造を用いた。最後に基板側と成長層側とに
電極300.310を形成した後、分布帰還領域+00
と位相制御領域200.210との間の電気的な分離を
行うために、中央のメサ付近を除いて幅20μmの溝を
形成する。分布帰還領域、片側の位相制御領域の長さは
、それぞれ300/1m。
Here, a double channel planar embedding structure was used as the embedding structure. Finally, after forming electrodes 300 and 310 on the substrate side and the growth layer side, the distributed feedback region +00
In order to electrically isolate the phase control regions 200 and 210, a groove with a width of 20 μm is formed except for the vicinity of the central mesa. The length of the distributed feedback region and the phase control region on one side are each 300/1 m.

100μmであり、素子の全長は500μmである。100 μm, and the total length of the element is 500 μm.

こうして試作した素子の特性の一例を第2図(a)、(
b)に示す。位相制御領域200に電流I、を3mA注
入すると透過波長は、(a)図に示すように連続して4
A短波側に変化した。この状態で位相制御領域210に
電流I2を3mA注入すると、透過波長は(b)図に示
すようにさらに連続して短波側に4Aシフトした。この
間、分布帰還領域100への注入電流は、発振しきい値
電流の0.98倍となるように調整している。入射光強
度−40dBmのとき、利得は、27dB透過波長の3
dBダウンハンド幅は0.4A、10dBダウンハンド
幅は、0.7Xであった。−10dBのクロストークを
許すとすると、12チヤンネルのフィルタとして使うこ
とか出来る。
An example of the characteristics of the device prototyped in this way is shown in Figures 2(a) and (
Shown in b). When a current I of 3 mA is injected into the phase control region 200, the transmission wavelength changes continuously by 4 as shown in Fig. (a).
A: Changed to the short wave side. When a current I2 of 3 mA was injected into the phase control region 210 in this state, the transmission wavelength was further continuously shifted by 4 A to the shorter wavelength side as shown in FIG. During this time, the current injected into the distributed feedback region 100 is adjusted to be 0.98 times the oscillation threshold current. When the incident light intensity is -40 dBm, the gain is 3 of the 27 dB transmission wavelength.
The dB downhand width was 0.4A, and the 10dB downhand width was 0.7X. If -10 dB of crosstalk is allowed, it can be used as a 12-channel filter.

なお、素子の分布帰還領域や位相制御領域なとを構成す
る祠ト1及び組成は、ト述の実施例に限定する必要はな
く、他の平導体材料(例えばGaAs系の材料)や誘電
体材料(例えば、TiO□、Al2O,3,5in2)
などてあってもよい。また、先導波路構造も光を導波す
る機能を持つならば、プレーナ構造や埋め込み構造に限
らす、如何なる構造であってもよい。
Note that the shrine 1 and composition that constitute the distributed feedback region and phase control region of the element need not be limited to the above-mentioned embodiments, and may be other flat conductor materials (for example, GaAs-based materials) or dielectric materials. Material (e.g. TiO□, Al2O, 3,5in2)
etc. may be used. Further, the guiding waveguide structure may have any structure other than a planar structure or a buried structure as long as it has the function of guiding light.

(発明の効果) 従来の可変波長フィルタでは数チャンネルが限度であっ
たが、本発明の可変波長フィルタによってIOチャンネ
ル以上の波長多重化光信号からの任意の波長選択か可能
となった。
(Effects of the Invention) Conventional variable wavelength filters were limited to a few channels, but the variable wavelength filter of the present invention makes it possible to select any wavelength from a wavelength multiplexed optical signal of IO channels or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す斜視図である。第2
図(a)、(b)図は、本実施例の可変波長フィルタの
透過特性を示す図である。第3図は回折格子の端面位相
によるモードの変化の3A算例を示す図である。 図において、 100〜分布帰還領域、  110一基板、120〜光
ガイド層、130〜バッファ層140〜活性層、15θ
、160〜クラッド層200.210〜位層制御領域3
00.310〜電極、である。
FIG. 1 is a perspective view showing an embodiment of the present invention. Second
Figures (a) and (b) are diagrams showing the transmission characteristics of the variable wavelength filter of this example. FIG. 3 is a diagram showing an example of 3A calculation of mode changes due to the end face phase of a diffraction grating. In the figure, 100 - distributed feedback region, 110 - substrate, 120 - optical guide layer, 130 - buffer layer 140 - active layer, 15θ
, 160~cladding layer 200.210~layer control region 3
00.310~electrode.

Claims (1)

【特許請求の範囲】[Claims] 分布帰還領域と、前記分布帰還領域をはさむように配置
され、前記分布帰還領域と光学的に結合しかつ外部から
分布帰還領域の端面位相を制御可能な位相制御領域とか
ら構成されることを特徴とする可変波長フィルタ。
It is characterized by being composed of a distributed feedback region and a phase control region arranged to sandwich the distributed feedback region, optically coupled to the distributed feedback region, and capable of controlling the end face phase of the distributed feedback region from the outside. tunable wavelength filter.
JP63072333A 1988-03-25 1988-03-25 Variable wavelength filter Expired - Lifetime JPH07119905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63072333A JPH07119905B2 (en) 1988-03-25 1988-03-25 Variable wavelength filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63072333A JPH07119905B2 (en) 1988-03-25 1988-03-25 Variable wavelength filter

Publications (2)

Publication Number Publication Date
JPH01244431A true JPH01244431A (en) 1989-09-28
JPH07119905B2 JPH07119905B2 (en) 1995-12-20

Family

ID=13486258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63072333A Expired - Lifetime JPH07119905B2 (en) 1988-03-25 1988-03-25 Variable wavelength filter

Country Status (1)

Country Link
JP (1) JPH07119905B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211220A (en) * 1989-12-12 1992-08-03 American Teleph & Telegr Co <Att> Optical filter
JP2011507289A (en) * 2007-12-21 2011-03-03 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Laser light source and method for manufacturing the laser light source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622213A (en) * 1985-06-27 1987-01-08 Nec Corp Optical filter element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622213A (en) * 1985-06-27 1987-01-08 Nec Corp Optical filter element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211220A (en) * 1989-12-12 1992-08-03 American Teleph & Telegr Co <Att> Optical filter
JP2011507289A (en) * 2007-12-21 2011-03-03 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Laser light source and method for manufacturing the laser light source
US8964808B2 (en) 2007-12-21 2015-02-24 Osram Opto Semiconductors Gmbh Laser light source and method for producing a laser light source
US9407063B2 (en) 2007-12-21 2016-08-02 Osram Opto Semiconductors Gmbh Laser light source and method for producing a laser light source
US9531158B2 (en) 2007-12-21 2016-12-27 Osram Opto Semiconductors Gmbh Laser light source
US9559496B2 (en) 2007-12-21 2017-01-31 Osram Opto Semiconductors Gmbh Laser light source
US9559497B2 (en) 2007-12-21 2017-01-31 Osram Opto Semiconductors Gmbh Laser light source

Also Published As

Publication number Publication date
JPH07119905B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
US5416866A (en) Optical waveguide/grating device for filtering optical wavelengths
US4920542A (en) Tunable semiconductor laser
US5459799A (en) Tunable optical filter
JP4026334B2 (en) Semiconductor laser, distributed feedback semiconductor laser, and wavelength tunable semiconductor laser
JPH07335991A (en) Article containing integrated laser/modulator bound body
JPH0629628A (en) Optical coupler and semiconductor laser
EP0287065B1 (en) An optical filter device
US6909734B2 (en) High-power, manufacturable sampled grating distributed Bragg reflector lasers
US7081990B2 (en) Variable-gain gain-clamped optical amplifiers
EP0505289A2 (en) Optical waveguide having a variable refractive index and an optical device having such an optical waveguide
JPH06260727A (en) Optical semiconductor device and manufacture thereof
US4976513A (en) Tunable wavelength filter
JPH0715092A (en) Semiconductor laser array and fabrication there
JPH04783A (en) Semiconductor optical element
CA1252188A (en) Single mode injection laser structure
EP1290765B1 (en) High-power sampled grating distributed bragg reflector lasers
US5084897A (en) Optical filter device
JPH01244431A (en) Variable wavelength filter
JP3246703B2 (en) Semiconductor laser capable of polarization modulation and optical communication system using the same
JP2655600B2 (en) Optical filter element
Numai Semiconductor wavelength tunable optical filters
JPH0794827A (en) Face light-emitting semiconductor laser element
JP2788760B2 (en) Selectable wavelength tunable filter
JPH04245494A (en) Multiwavelength semiconductor laser element and driving method of that element
JPH01312881A (en) Variable wavelength transducer