JPH01105591A - Wavelength selecting amplifier - Google Patents

Wavelength selecting amplifier

Info

Publication number
JPH01105591A
JPH01105591A JP62263063A JP26306387A JPH01105591A JP H01105591 A JPH01105591 A JP H01105591A JP 62263063 A JP62263063 A JP 62263063A JP 26306387 A JP26306387 A JP 26306387A JP H01105591 A JPH01105591 A JP H01105591A
Authority
JP
Japan
Prior art keywords
wavelength
phase
current
lambdab
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62263063A
Other languages
Japanese (ja)
Other versions
JP2515824B2 (en
Inventor
Yoshihito Hirano
嘉仁 平野
Kumio Kasahara
笠原 久美雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62263063A priority Critical patent/JP2515824B2/en
Publication of JPH01105591A publication Critical patent/JPH01105591A/en
Application granted granted Critical
Publication of JP2515824B2 publication Critical patent/JP2515824B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • H01S5/5045Amplifier structures not provided for in groups H01S5/02 - H01S5/30 the arrangement having a frequency filtering function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06258Controlling the frequency of the radiation with DFB-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/124Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To set a selecting wavelength to one, and to broaden the width of a variable wavelength by providing a phase displacing unit of pi in a diffraction grating, and providing a plurality of electrodes for supplying a current to an active region. CONSTITUTION:The phase circulation of pi/2 is generated in the phase of a light by a phase displacing unit 6 of pi provided in a diffraction grating 1b. Thus, since the variation in the phase of the light reflected by the left and right diffraction gratings 1b is given by 4Neq.pi.Leff (L/lambda-1/lambdaB). where the lambdaB is Bragg's wavelength, Neq is equivalent refractive index, and Leff is the effective length of a distributed feedback structure. Accordingly, the wavelength lambdam for satisfying the phase matching condition is given by lambdaB+ or -mlambdaB<2>/(4 Neq.Leff), and in case of m=0, the phase matching condition in the wavelength lambdaB is satisfied. Thus, when a threshold current flows to one of the electrodes 2 and a wavelength selecting current I1 equal to the threshold current flows to the other, the selecting amplification in Bragg's wavelength can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は波長多重された信号光から1つの波長を選択
して増幅する波長選択増幅器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wavelength selective amplifier that selects and amplifies one wavelength from wavelength-multiplexed signal light.

〔従来の技術〕[Conventional technology]

第6図は信学技報0QE86−132に示された従来の
波長選択増幅器の概略構成図で、図において、1は波長
選択増幅器、1aは信号光を導く導波層、1bは導波層
1a周部に設けられた回折格子、ICは基板、1dは活
性層、leはクラッド層、2は電極、3は電極2に注入
する波長選択電流I−の導通路、4は波長選択増幅器1
に入力される波長多重された入力光、5ば波長選択増幅
器lからの出力光、12は安定化コイル、13は直流電
源である。
Figure 6 is a schematic configuration diagram of a conventional wavelength selective amplifier shown in IEICE Technical Report 0QE86-132. In the figure, 1 is a wavelength selective amplifier, 1a is a waveguide layer that guides signal light, and 1b is a waveguide layer. 1a is a diffraction grating provided around the circumference, IC is a substrate, 1d is an active layer, le is a cladding layer, 2 is an electrode, 3 is a conduction path for the wavelength selection current I- injected into the electrode 2, 4 is a wavelength selection amplifier 1
5 is the output light from the wavelength selective amplifier l, 12 is a stabilizing coil, and 13 is a DC power source.

DFBレーザを用いた波長選択増幅器1においては回折
格子1bの導波層1aの等偏屈折率Neqで決まるブラ
ッグ波長λa ’ZNeqΔ(1次のブラッグ回折)の
近傍で急激に反射率が高くなる。このときの様子を横軸
を波長、縦軸を反射鏡損失として示したのが第7図(a
)である。ただし、通常のDFBレーザでは、波長λの
光を回折格子により反射させた時に生ずる位相変化があ
るため、分布帰還構造の有効長をLeftとして第(1
)式を満たず波長の光でなければ位相整合条件を満たず
ことができない。
In the wavelength selective amplifier 1 using a DFB laser, the reflectance increases rapidly near the Bragg wavelength λa'ZNeqΔ (first-order Bragg diffraction) determined by the equipolarized refractive index Neq of the waveguide layer 1a of the diffraction grating 1b. Figure 7 (a
). However, in a normal DFB laser, there is a phase change that occurs when light with wavelength λ is reflected by a diffraction grating.
) and the wavelength of the light must satisfy the phase matching condition.

λつ! λm#λB±□ (H+m)     (114Neq
 Leff 今、電極2に波長選択電流l;を注入していくと活性層
ld内の全利得が第7図(alのαH−minと等しく
なり、波長λ。1°、れ、で発振が可能になる。“とこ
ろでレーザダイオード増幅器において、入力光jの電界
振幅Ainと共振器内のその電界振幅A10間には第(
2)式に示す関係がある。
λ two! λm#λB±□ (H+m) (114Neq
Leff Now, when a wavelength selective current l; is injected into the electrode 2, the total gain in the active layer ld becomes equal to αH-min of Fig. 7 (al), and oscillation is possible at the wavelength λ.1°. "By the way, in a laser diode amplifier, there is a difference between the electric field amplitude Ain of input light j and its electric field amplitude A10 in the resonator.
2) There is a relationship shown in the formula.

第(2)式で■は波長選択電流、1thは発振闇値での
波長選択電流である。第<1)式より波長選択電流Iを
発振闇値近傍にしたとき、共振器内での増幅率は最大と
なるため透過増幅率も最大となる。第7図(b)に波長
選択電流Iを闇値近傍に設定して全利得をαH−min
に近づけた場合について入力光4に対する出力光5の透
過増幅率の波長特性を示す。
In equation (2), ■ is the wavelength selection current, and 1th is the wavelength selection current at the oscillation dark value. From equation <1), when the wavelength selection current I is set near the oscillation dark value, the amplification factor within the resonator becomes maximum, and therefore the transmission amplification factor also becomes maximum. In Fig. 7(b), the wavelength selection current I is set near the dark value, and the total gain is αH-min.
The wavelength characteristics of the transmission amplification factor of the output light 5 with respect to the input light 4 are shown for the case where the wavelength is close to .

図の横軸は鎖長λ=1.3μm近傍において入力光4と
ブラッグ波長とのずれを示している。図において増幅率
が極大となる2つのピークが存在するが、このピークの
線幅Δfは波長選択電流r、t<闇値に近づくにつれて
零に漸近し、闇値から離れるにつれて増大する。このよ
うに闇値近傍では強い波長選択性が生ずる。
The horizontal axis of the figure shows the deviation between the input light 4 and the Bragg wavelength in the vicinity of chain length λ=1.3 μm. In the figure, there are two peaks where the amplification factor is maximum, and the line width Δf of these peaks approaches zero as the wavelength selection current r,t approaches the dark value, and increases as it moves away from the dark value. In this way, strong wavelength selectivity occurs near the dark value.

また、波長選択電流Iを変化させ注入キャリア密度を変
化させると上記のように全利得が変化するので等偏屈折
率も変化する。このため、ブラッグ波長及び位相整合条
件が変化し、位相整合条件を満たす波長は次式となる。
Further, when the wavelength selection current I is changed to change the injected carrier density, the total gain changes as described above, and therefore the equipolarized refractive index also changes. Therefore, the Bragg wavelength and phase matching condition change, and the wavelength that satisfies the phase matching condition is expressed by the following equation.

 − λ、′ λm°・  λIIl+Δλ± □ (%+m)4 (
Neq+Δn) ・Leff 第7図(C)に1つのピークに着目してI =0.99
1th。
− λ, ′ λm°・λIIl+Δλ± □ (%+m)4 (
Neq+Δn) ・Leff Focusing on one peak in Figure 7 (C), I = 0.99
1th.

■=0.951th、 I =0.901thとした時
のピーク値の波長変化を示す。
It shows the change in wavelength of the peak value when (2) = 0.951th and I = 0.901th.

図において、8は第7図(C)における波長のずれが2
60GHz付近に存在する次のピーク値の高さである。
In the figure, 8 indicates that the wavelength shift in Figure 7 (C) is 2.
This is the height of the next peak value that exists near 60 GHz.

ここで、S/Nを20dB以上とるためには波長選択電
流Iは0.950h以上必要であり、この時の可変選択
波長幅は高々14Gtlz程度である。
Here, in order to obtain an S/N of 20 dB or more, the wavelength selection current I needs to be 0.950 h or more, and the variable selection wavelength width at this time is about 14 Gtlz at most.

(発明が解決しようとする間′照点〕 従来の波長選択増幅器は以上のように構成されて°いた
ので、透過増幅率の波長特性は双峰形となり単一波長を
選択することが難しかった。また波長選択電流の注入に
より゛利得を闇値近傍に保ったまま選択波長を変えるこ
とができなかったので、可変選択波長幅は14GIIz
程度と限られており、かつ選択波長に依存して透過増幅
率が変化するなどの問題点があった。
(The point that the invention is trying to solve) Since the conventional wavelength selective amplifier was configured as described above, the wavelength characteristic of the transmission amplification factor was bimodal, making it difficult to select a single wavelength. Also, by injecting a wavelength selection current, it was not possible to change the selection wavelength while keeping the gain near the dark value, so the variable selection wavelength width was 14GIIz.
There were problems in that the transmission amplification factor changed depending on the selected wavelength.

この発明は上記の問題点を解決するためになされたもの
で、選択する波長を1つとし、かつ可変波長幅を広くと
れる波長選択増幅器を得ることを目的とする。
The present invention was made to solve the above problems, and an object of the present invention is to provide a wavelength selective amplifier that selects only one wavelength and can have a wide variable wavelength range.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る波長選択増幅器は、回折格子1bにπの
位相ずれ部6を設けるとと、もに活性領域に電流を流す
電極2を複数備えたことを特徴とするものである。
The wavelength selective amplifier according to the present invention is characterized in that the diffraction grating 1b is provided with a phase shift portion 6 of π, and both electrodes 2 are provided with a plurality of electrodes 2 through which a current flows through the active region.

C作用〕 回折格子1bに設けたπの位相ずれ部6により、光の位
相にπ/2の位相回りを生ずる。ここで、複数設けられ
た電極2の1つに闇値近傍の値の電流を流し、他の電極
に所定の値の電流を各々流すと、単峰性の波長選択特性
が得られる。
C Effect] The phase shift portion 6 of π provided in the diffraction grating 1b causes a phase rotation of π/2 in the phase of the light. Here, if a current with a value near the dark value is passed through one of the plurality of electrodes 2, and a current with a predetermined value is passed through the other electrodes, a unimodal wavelength selection characteristic can be obtained.

〔発明の実施例〕[Embodiments of the invention]

この発明の一実施例を図について説明する。第1図はこ
の発明の一実施例を示す構成図である。
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention.

なお、便宜上電極の分割数を2とした。第1図において
、6は単一波長を選択するために回折格子lb中に設け
たπの位相ずれ部、7は波長選択増幅器1のうち尋通路
3を流れる波長選択電流l、“に応じて、全利得を闇値
近傍に設定するために2分割した電極の片方に注入する
闇値設定電流■ユを流す導通路である。その他の部分は
従来のDFBレーザを用いた波長選択増幅器と同じであ
る。
Note that, for convenience, the number of electrode divisions was set to two. In FIG. 1, reference numeral 6 indicates a phase shift portion of π provided in the diffraction grating lb in order to select a single wavelength, and 7 indicates a phase shift portion of π provided in the diffraction grating lb in order to select a single wavelength. , is a conduction path through which a dark value setting current ``Y'' is injected into one of the two divided electrodes in order to set the total gain near the dark value.Other parts are the same as a wavelength selective amplifier using a conventional DFB laser. It is.

λ/4シフトDFBレーザでは、第2図(a)に示すよ
うに反射鏡損失は従来のDFBレーザと同じであるが、
回折格子中に設けた霧の位相ずれ部6により、光の位相
にπ/2の位相回りを生ずる。
In the λ/4 shift DFB laser, the reflector loss is the same as in the conventional DFB laser, as shown in Figure 2(a), but
The mist phase shift portion 6 provided in the diffraction grating causes a phase rotation of π/2 in the phase of the light.

このためλ/4シフト部をはさむ左右の回折格子によっ
て反射された光の位相変化φは4Neq・π・Leff
(1/λ−1/λ8)で与えられるので位相整合条件を
満足する波長λm(λ/4)は(4)式となる。
Therefore, the phase change φ of the light reflected by the left and right diffraction gratings sandwiching the λ/4 shift section is 4 Neq・π・Leff
Since it is given by (1/λ-1/λ8), the wavelength λm (λ/4) that satisfies the phase matching condition is given by equation (4).

、λ、′ λm(λ/4)−λ、±□・m 4 Neq  −Leff (mは整数)(4) (4)式よりm=0でブラッグ波長λ1での位相整合条
件は満足されることがわかる。
, λ,' λm (λ/4) - λ, ±□・m 4 Neq - Leff (m is an integer) (4) From equation (4), when m = 0, the phase matching condition at Bragg wavelength λ1 is satisfied. I understand that.

このため、波長選択電流上=をL 1 、閾値設定電流
−をI2とすると、11=1□の条件で、全利得を第2
図(a)に示すαH−win近傍の値に設定するとブラ
ッグ波長での選択増幅が可能となる。
Therefore, if the wavelength selection current upper = is L 1 and the threshold setting current - is I2, then under the condition of 11 = 1□, the total gain is
When set to a value near αH-win shown in Figure (a), selective amplification at the Bragg wavelength becomes possible.

第2図(blは人力光4に対する出力光5の透過増幅率
の波長特性を示したものである。図中横軸は波長λ=1
.3μmにおいてブラッグ波長からのずれを示している
。次に波長選択電流IIと閾値設定電流1bの値を変え
た場合の効果について説明する。説明の便宜上、波長選
択電流1.の流れ込む領域を領域I、閾値設定電流■4
の流れ込む領域を領域■として、各領域での反射鏡損失
と全領域での反射鏡損失の波長特性を模式的に第3図T
a)に示す。第3図(a)において、9aは領域■の反
射鏡損失の波長特性、9bは領域■の反射鏡損失の波長
特性、9Cは全領域での反射鏡損失の波長特性である。
Figure 2 (bl shows the wavelength characteristics of the transmission amplification factor of the output light 5 with respect to the human-powered light 4. In the figure, the horizontal axis is the wavelength λ = 1
.. It shows a deviation from the Bragg wavelength at 3 μm. Next, the effect of changing the values of the wavelength selection current II and the threshold setting current 1b will be explained. For convenience of explanation, wavelength selection current 1. The region into which the current flows is region I, and the threshold setting current ■4
The wavelength characteristics of the reflector loss in each region and the reflector loss in the entire region are schematically shown in Figure 3 T, with the region where the flow is defined as region ■.
Shown in a). In FIG. 3(a), 9a is the wavelength characteristic of the reflector loss in the region (2), 9b is the wavelength characteristic of the reflector loss in the region (2), and 9C is the wavelength characteristic of the reflector loss in the entire region.

また、λ□は領域■の等偏屈折率Neq。Moreover, λ□ is the equipolarized refractive index Neq of the region ■.

により決まる領域■でのブラッグ波長、λ。は領域■の
等偏屈折率Neqzにより決まる領域■でのブラッグ波
長、λ、Tはλ□とλ8.の平均値で表される全領域で
のブラッグ波長、11は全領域での反射鏡損失の最小値
である。第3図(blは領域Iの注入電流11と領域■
の注入電流I2の電流差が第3図(alの場合より大き
くλ□、λ8□の波長差が広がった場合を示したもので
ある。第2図(a)はλBl=λ8□=λ、ア=λ8゜
の場合である。
The Bragg wavelength in the region ■, determined by λ. is the Bragg wavelength in region ■ determined by the equipolarized refractive index Neqz of region ■, and λ, T are λ□ and λ8. The Bragg wavelength in the entire region expressed as the average value of 11 is the minimum value of the reflector loss in the entire region. Figure 3 (bl is the injection current 11 in region I and region ■
Figure 3 shows a case where the current difference in the injection current I2 is larger than in the case of al and the wavelength difference between λ□ and λ8□ has widened. Figure 2 (a) shows λBl=λ8□=λ, This is the case when A=λ8°.

第2図(a)、第3図(alに示したように1.とI2
の差が大きくなるに従?て反射鏡損失の最小値αイーw
inは大きくなり、また波長に対する反射鏡損失の変化
もゆるやかになる。更に、第3図(b)に示す程度に■
、とI2の差が広がると反射鏡損失の最小値は一つでな
くなり、またλ8Tでもなくなる。なお、位相整合条件
を満たす波長λ3は、領域■の等偏屈折率Neq、と領
域Hの等偏屈折率Neq2を用いて次式となる。
1. and I2 as shown in Figure 2 (a) and Figure 3 (al).
As the difference becomes larger? The minimum value of reflector loss αEw
in becomes large, and the reflector loss changes gradually with respect to wavelength. Furthermore, ■ to the extent shown in Figure 3(b)
, and I2 widens, the minimum value of the reflector loss is no longer one and is no longer λ8T. Note that the wavelength λ3 that satisfies the phase matching condition is expressed by the following equation using the equipolarized refractive index Neq of the region (2) and the equipolarized refractive index Neq2 of the region H.

Neqtleff++Neq21efft  Neq、
1eff++Neqzleffz(kは整数)(6) ここで1eff、、 1effzは領域1.IIの有効
長を示す。
Neqtleff++Neq21eft Neq,
1eff++Neqzleffz (k is an integer) (6) Here, 1eff,, 1effz are areas 1. Indicates the effective length of II.

上記第(6)式において1eff、 = 1eff、=
 1eff。
In the above equation (6), 1eff, = 1eff, =
1eff.

21eff=Leffとして分割された2つの電極の長
さが等しいとし、実にに=0とおくと位相整合条件を満
たす波長は第(7)式となり、全領域でのブラッグ波長
λ87と等しくなる。
Assuming that the lengths of the two divided electrodes are equal as 21eff=Leff, and indeed =0, the wavelength that satisfies the phase matching condition is expressed by equation (7), which is equal to the Bragg wavelength λ87 in the entire region.

λI11+ λam λo =(Neq++Neq=) A= −、λIIT
   (7)つまりλITでの反射鏡損失が最小値αH
−minである時、23丁で単一波長の増幅が可能であ
る。
λI11+ λam λo = (Neq++Neq=) A= -, λIIT
(7) In other words, the reflector loss at λIT is the minimum value αH
-min, a single wavelength can be amplified with 23 lenses.

第2図(a)に示した電流11とI2をI、=1.。Let the currents 11 and I2 shown in FIG. 2(a) be I, =1. .

−1゜と設定した時のブラッグ波長をλ、。、等偏屈折
率をNeqo 、I In I zの■。からのずれを
ΔII、Δ■2とするとλ8Tは次式で表せる。
The Bragg wavelength when set to -1° is λ. , the equipolarized refractive index is Neqo, I In I z ■. Letting the deviations from ΔII and Δ■2, λ8T can be expressed by the following formula.

λ、T−λ、。+(Δn+(Δ■υ+Δnz(Δ■2)
)Δここで、Δn+(ΔI、)、Δnz(ΔIJはΔI
l+Δtzによって等偏屈折率がNeq、からずれを示
す。また第3図(a)、第3図(blに示したようにλ
、Tでの発振閾値は、電流1’+ と[2とによる全領
域での全利得が最小の反射鏡損失αH−min 11と
等しくなる場合である。
λ, T-λ,. +(Δn+(Δ■υ+Δnz(Δ■2)
)ΔHere, Δn+(ΔI, ), Δnz(ΔIJ is ΔI
The equipolarized refractive index shows a deviation from Neq by l+Δtz. In addition, as shown in Fig. 3(a) and Fig. 3(bl), λ
, T is the case where the total gain in the entire region due to the currents 1'+ and [2 is equal to the minimum mirror loss αH-min 11.

ctH−min(Δrll+Δnz)”c(to+Δ1
..1.+Δb)ここでG(I。+Δ[+、I’o+Δ
It)は全領域での全利得を示す。第4図(al〜第4
図(f)に回折格子の結合定数K ”66.7cm−イ
 λ/4シフトDFBレーザの長さL=300μm、λ
/4シフト位置をレーザの中央においた場合の波長選択
電流!1を0.961oから1.4ioと変化させた場
合に閾値載支電流I2を第(9)式を用いて調整して闇
値に保つようにした場合の透過増幅率の波長特性を示す
。また第5図に波長選択電流■、に対する全領域のブラ
ッグ波長λII?とその時の全利得を闇値近傍に設定す
る闇値ゾ尤電流■2の値を示す。
ctH-min(Δrll+Δnz)”c(to+Δ1
.. .. 1. +Δb) where G(I.+Δ[+, I'o+Δ
It) indicates the total gain over the entire range. Figure 4 (al~4th
Figure (f) shows the coupling constant K of the diffraction grating, 66.7 cm-i, λ/4 shift DFB laser length L = 300 μm, λ
/4 Wavelength selection current when the shift position is placed at the center of the laser! 1 is changed from 0.961o to 1.4io and the threshold supporting current I2 is adjusted using equation (9) to maintain the dark value. Also, Fig. 5 shows the Bragg wavelength λII of the entire range for the wavelength selection current ■? and the value of the dark value potential current 2 which sets the total gain at that time near the dark value.

第5図で(ρ)はll−10を、(q)ばI t −1
,321゜を示す。第4B図〜第4E図から分かるよう
に、1、がI、−I。(p)と11士1.321 o 
(qlの間にある場合、波長選択増幅器lの透過増幅率
は選択波長に対して他の波長のものより20dB以上高
い状態が保たれている。つまり第5図に示した27.5
A(〜490 Gb)の波長範囲でS/N=20daを
確保しつつ単=波長の選択ができる。これは、従来のD
FBレーザを用いたものに比較して35倍程度の波長選
択可変幅をもつ。
In Figure 5, (ρ) is ll-10, and (q) is I t -1.
, 321°. As can be seen from FIGS. 4B to 4E, 1 is I, -I. (p) and 11shi 1.321 o
(If it is between ql, the transmission amplification factor of the wavelength selective amplifier l is maintained at least 20 dB higher than that of other wavelengths for the selected wavelength. In other words, 27.5 as shown in Figure 5)
It is possible to select a single wavelength while ensuring S/N=20 da in the wavelength range of A (~490 Gb). This is the conventional D
It has a wavelength selection variable width that is approximately 35 times larger than that using an FB laser.

なお、上記実施例では2分割電極で説明したが多分割電
極を用いて各分割電極に与える電流を調整することで同
様の機能を得ることも容易であり分割数を多(するにつ
れて制御精度が向上する。
Although the above embodiment was explained using a two-divided electrode, it is also easy to obtain the same function by adjusting the current given to each divided electrode using a multi-divided electrode. improves.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、回折格子にπの位相ず
れ部を設けるとともに上記活性領域に電流を流す電極を
複数備えたので、波長選択増幅器の透過増幅特性を単峰
性にできかつ注入電流による選択波長可変幅を従来のも
のに比べ35倍程度広くとれる効果がある。
As described above, according to the present invention, the diffraction grating is provided with a phase shift portion of π and a plurality of electrodes for passing current through the active region, so that the transmission amplification characteristic of the wavelength selective amplifier can be made unimodal and the injection This has the effect of making the selective wavelength variable range by current about 35 times wider than that of the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す構造の概略図、第2
図(alはλ/4シフトDFBレーザの反射鏡損失の波
長依存性を示す特性図、第2図中)はλ/4シフ)DF
Bレーザを用いた波長選択増幅器の増幅率の波長依存性
を示す特性図、第3図(a)及び第3図中)は2分割し
た電極に異なる注入電流を与えた場合の反射鏡損失の波
長依存性の特性図、第4図(a)ないし第4図(f)は
、2分割した電極に異なる電流を注入した場合の透過増
幅率の波長依存性を示す特性図、第5図は波長選択電流
値に対する透過増幅波長の変化とその時の闇値設定電流
の値の計算結果を示す特性図である。第6図は従来の波
長選択増幅器を示す構造の概略図、第7図(a)は通常
のDFBレーザの反射鏡損失の波長依存性を示す特性図
、第7図(b)は従来の波長選択増幅器の透過増幅率の
波長依存性を示す特性図、第7図(C)は従来の波長選
択増幅器の波長選択電流による透過増幅波長の変化を示
す特性図である。 図において、1aは導波層、1bは回折格子、ICは基
板、ldは活性層、1eはクラツど層、2は電極、工1
は波長選択電流、4は入力光、5は出力光、6はπの位
相ずれ部、1工は闇値設定電流をそれぞれ示す。 なお、図中、同一符号は同一、又は相当部分を示す。 代理人  大  岩  増  雄(ほか2名)第1)コ 1a;4;良肩 、Ib;回−rfr4−+、1c:苓
坂、 1c+;;t・bl 、1e:クラ・、712;
を極、3洟通称、4:Xでも、5;≦力え。 61几のl上相Cれ(シ4びトン、7;(μ藍飯宅!た
。12;宇仁lしフイlし13;L曳U、 名20(a) χ80  ’   浪表 名21刀(b) フ”う・・2°力ダtからのず孔(GHz)第4図(a
) 第4図(C) 五長〔入1 第4図(e) 第5)コ (1))’ r○ (C1) 1.32 I。 男61図 第70(b) フ゛う“・・フLQv\うav″に [G1−1z 1
第711(C)                  
’7“フ=7101tらつに収[G)lz〕−8: 、
LxL(==fiJ、hvトnt’A力t>kス、IJ
L手続補正書(自如 昭和  年  ル  8
Fig. 1 is a schematic diagram of a structure showing an embodiment of the present invention;
Figure (al is a characteristic diagram showing the wavelength dependence of reflector loss of λ/4 shift DFB laser, Figure 2) is λ/4 shift) DF
Characteristic diagrams showing the wavelength dependence of the amplification factor of a wavelength selective amplifier using a B laser, Figure 3 (a) and in Figure 3) show the reflection mirror loss when different injection currents are applied to the two divided electrodes. Characteristic diagrams of wavelength dependence, Figures 4 (a) to 4 (f) are characteristic diagrams showing the wavelength dependence of transmission amplification factor when different currents are injected into two divided electrodes, and Figure 5 is FIG. 3 is a characteristic diagram showing a change in a transmission amplification wavelength with respect to a wavelength selection current value and a calculation result of a dark value setting current value at that time. Fig. 6 is a schematic diagram of the structure of a conventional wavelength selective amplifier, Fig. 7(a) is a characteristic diagram showing the wavelength dependence of reflector loss of a normal DFB laser, and Fig. 7(b) is a diagram of the conventional wavelength selective amplifier. FIG. 7C is a characteristic diagram showing the wavelength dependence of the transmission amplification factor of the selective amplifier. FIG. 7C is a characteristic diagram showing the change in the transmission amplification wavelength due to the wavelength selection current of the conventional wavelength selective amplifier. In the figure, 1a is a waveguide layer, 1b is a diffraction grating, IC is a substrate, ld is an active layer, 1e is a cladding layer, 2 is an electrode,
is a wavelength selection current, 4 is an input light, 5 is an output light, 6 is a phase shift part of π, and 1 is a dark value setting current, respectively. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Agent Masuo Oiwa (and 2 others) 1st) Ko 1a; 4; Yoshikata, Ib; times-rfr4-+, 1c: Reizaka, 1c+;; t・bl, 1e: Kura, 712;
Kiwami, commonly known as 3sho, 4:X, but 5;≦power. 61 几 no l upper phase Cre (shi 4 biton, 7; (μAI池! ta. 12; Ujin lshi filli shi 13; L pull U, name 20 (a) χ80' namyo name 21 sword (b) Fu”... 2° hole from t (GHz) Fig. 4 (a
) Fig. 4 (C) Five length [Enter 1 Fig. 4 (e) 5) Ko (1))' r○ (C1) 1.32 I. Man 61 Figure 70(b) ``...F LQv\uav'' [G1-1z 1
Section 711(C)
'7"F=7101tRatsuni[G)lz]-8: ,
LxL(==fiJ, hvtnt'Aforcet>ksu, IJ
L procedural amendment (Jijo Showa year 8)

Claims (1)

【特許請求の範囲】[Claims] 波長多重された信号光を導波層に導き、導波層の周部に
設けた回折格子の反射を利用し、かつ活性領域に流す電
流を変化させて、特定の波長の信号を選択、増幅する波
長選択増幅器において、上記回折格子にπの位相ずれ部
を設けるとともに上記活性領域に電流を流す電極を複数
備えたことを特徴とする波長選択増幅器。
Wavelength-multiplexed signal light is guided to the waveguide layer, and a signal with a specific wavelength is selected and amplified by using the reflection of the diffraction grating provided around the waveguide layer and by changing the current flowing through the active region. What is claimed is: 1. A wavelength selective amplifier characterized in that the diffraction grating is provided with a phase shift portion of π and a plurality of electrodes for flowing a current through the active region are provided.
JP62263063A 1987-10-19 1987-10-19 Wavelength selective amplifier Expired - Fee Related JP2515824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62263063A JP2515824B2 (en) 1987-10-19 1987-10-19 Wavelength selective amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263063A JP2515824B2 (en) 1987-10-19 1987-10-19 Wavelength selective amplifier

Publications (2)

Publication Number Publication Date
JPH01105591A true JPH01105591A (en) 1989-04-24
JP2515824B2 JP2515824B2 (en) 1996-07-10

Family

ID=17384333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263063A Expired - Fee Related JP2515824B2 (en) 1987-10-19 1987-10-19 Wavelength selective amplifier

Country Status (1)

Country Link
JP (1) JP2515824B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429531B1 (en) * 2001-10-12 2004-05-03 삼성전자주식회사 Distributed feedback semiconductor laser

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63253335A (en) * 1987-04-09 1988-10-20 Nec Corp Optical filter element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63253335A (en) * 1987-04-09 1988-10-20 Nec Corp Optical filter element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429531B1 (en) * 2001-10-12 2004-05-03 삼성전자주식회사 Distributed feedback semiconductor laser

Also Published As

Publication number Publication date
JP2515824B2 (en) 1996-07-10

Similar Documents

Publication Publication Date Title
JP2689698B2 (en) Semiconductor device with inverted α parameter sign
He et al. Wavelength switchable semiconductor laser using half-wave V-coupled cavities
CA2029051C (en) Wavelength tunable optical filter
Matsuo et al. Microring-resonator-based widely tunable lasers
JP2017216384A (en) Tunable laser
JPH07263817A (en) Semiconductor laser and its adjustment method
GB2391692A (en) A lasing device with a ring cavity
US6693937B2 (en) Integrated tunable laser
EP1796231A2 (en) Wavelength tunable light source
JP5001239B2 (en) Semiconductor tunable laser
JPH01105591A (en) Wavelength selecting amplifier
JPH01293683A (en) Variable wavelength semiconductor laser
JP7277825B2 (en) semiconductor optical device
JPH08334796A (en) Optical wavelength conversion integrating element
Thiessen et al. Back-side-on-BOX heterogeneously integrated III-V-on-silicon O-band discrete-mode lasers
JP2819557B2 (en) Semiconductor light emitting device
Fessant Threshold and above-threshold analysis of corrugation-pitch-modulated DFB lasers with inhomogeneous coupling coefficient
JPS6362917B2 (en)
JP5092928B2 (en) Optical semiconductor device
JP2635649B2 (en) Distributed feedback semiconductor laser
US20240047941A1 (en) Wavelength Tunable Optical Transmitter
Jeong et al. Chirped ladder-type interferometric filter for widely tunable laser diode
KR102400522B1 (en) Wavelength tunable laser device
Arai Distributed Bragg reflector laser
JP3151755B2 (en) Distributed feedback semiconductor laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees