JPH02119287A - Semiconductor laser of variable wavelength - Google Patents

Semiconductor laser of variable wavelength

Info

Publication number
JPH02119287A
JPH02119287A JP27365288A JP27365288A JPH02119287A JP H02119287 A JPH02119287 A JP H02119287A JP 27365288 A JP27365288 A JP 27365288A JP 27365288 A JP27365288 A JP 27365288A JP H02119287 A JPH02119287 A JP H02119287A
Authority
JP
Japan
Prior art keywords
region
phase control
wavelength
bragg reflection
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27365288A
Other languages
Japanese (ja)
Other versions
JPH07105568B2 (en
Inventor
Takaaki Numai
沼居 貴陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27365288A priority Critical patent/JPH07105568B2/en
Publication of JPH02119287A publication Critical patent/JPH02119287A/en
Publication of JPH07105568B2 publication Critical patent/JPH07105568B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • H01S3/1055Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length one of the reflectors being constituted by a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent enlarging of spectral line width when the wavelength is varied by inserting a buffer region to reduce a leak current between active and phase control regions of a variable wavelength Bragg reflection type laser and by optically coupling the active region and a distribution Bragg reflection region. CONSTITUTION:After electrodes 400, 410 are formed, a groove 170 is formed which enables electrical separation of a distribution Bragg reflection region 300, a phase control region 200, a buffer region 210, and an active region 100. When a current is injected to the phase control region 200 and a distribution Bragg reflection region 300, the wavelength of transmitted light changes to the short wave side, and increase of spectral line width is small. This means that a leak current is reduced due to the insertion of the buffer region.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光伝送、光計測等に用いられる波長可変半導
体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wavelength tunable semiconductor laser used for optical transmission, optical measurement, etc.

〔従来の技術〕[Conventional technology]

波長可変半導体レーザは、FDM光通信、コヒーレント
光通信や、光計測等のキーデバイスの一つである。波長
可変半導体レーザの特性として、発振波長の広い可変同
調幅が必要とされているが、特にコヒーレント光°通信
や光計測においては、波長可変時にもスペクトル線幅が
狭いことが必要である。
A wavelength tunable semiconductor laser is one of the key devices for FDM optical communication, coherent optical communication, optical measurement, etc. Tunable semiconductor lasers require a wide tunable tuning width with a wide oscillation wavelength, but especially in coherent optical communications and optical measurements, a narrow spectral linewidth is required even when the wavelength is tunable.

従来から、波長可変半導体レーザとしては、いくつかの
検討がされている。その中で、活性領域、位相制御領域
、分布ブラッグ反射領域の3領域からなる波長可変ブラ
ッグ反射型(DBR)レーザは、波長可変範囲が100
人と広く、有望である。この文献として、1988年発
行の村田他著のエレクトロニクス・レターズ(Elec
tronicsLetters)誌第24巻第8号57
7ページ記載の論文をあげることが出来る。
Conventionally, several studies have been made on wavelength tunable semiconductor lasers. Among them, the wavelength tunable Bragg reflection (DBR) laser, which consists of three regions: an active region, a phase control region, and a distributed Bragg reflection region, has a wavelength tunable range of 100 nm.
Wide range of people and promising. An example of this document is Electronics Letters (Elec.
tronics Letters) Magazine Volume 24 No. 8 57
I can list a 7-page paper.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の波長可変DBRレーザには次のよ
うな課題が存在する。このレーザでは、発振波長の制御
のために位相制御領域とDBR領域への注入キャリア密
度を調整している。しかし、キャリアを注入すると、(
1)位相制御領域とDBR領域での吸収が増加する、(
2)位相制御領域へ注入したキャリアの一部が活性領域
へ漏れるため、活性領域のキャリア密度が揺らぐ、等の
理由により、発振スペクトル線幅がキャリアを注入しな
いときの3倍程度まで広がってしまっていた。
However, conventional wavelength tunable DBR lasers have the following problems. In this laser, the carrier density injected into the phase control region and the DBR region is adjusted to control the oscillation wavelength. However, when the carrier is injected (
1) Absorption increases in the phase control region and DBR region, (
2) Some of the carriers injected into the phase control region leak into the active region, which causes the carrier density in the active region to fluctuate, resulting in the oscillation spectrum linewidth expanding to about three times that when no carriers are injected. was.

本発明の目的は、波長可変時にもスペクトル線幅の広が
らない波長可変レーザを提供することにある。
An object of the present invention is to provide a wavelength tunable laser in which the spectral line width does not widen even when the wavelength is varied.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の波長可変半導体レーザは、活性領域と位相制御
領域と分布ブラッグ反射領域とが直列に配置され、かつ
前記各領域が光学的に結合している波長可変半導体レー
ザにおいて、前記活性領域と前記位相制御領域との間に
漏れ電流を低減するためのバッファ領域が挿入され、か
つ、このバッファ領域が前記活性領域と前記分布ブラッ
グ反射領域と光学的に結合していることを特徴としてい
る。
The wavelength tunable semiconductor laser of the present invention is a wavelength tunable semiconductor laser in which an active region, a phase control region, and a distributed Bragg reflection region are arranged in series, and each region is optically coupled. A buffer region for reducing leakage current is inserted between the phase control region and the buffer region is optically coupled to the active region and the distributed Bragg reflection region.

〔作用〕[Effect]

本発明の波長可変半導体レーザは、波長可変時にスペク
トル線幅が広がらないことを特徴としている。原理につ
いて述べる。
The wavelength tunable semiconductor laser of the present invention is characterized in that the spectral linewidth does not widen when the wavelength is tuned. Explain the principle.

従来の波長可変半導体レーザでは、位相制御領域に電流
を注入すると、スペクトル線幅の増大が著しかった。こ
れは、注入電流の一部が、活性領域に漏れ、活性領域の
キャリア密度の揺らぎを引き起こしているためと考えら
れている。そこで、活性領域と位相制御領域との間にバ
ッファ領域を設け、位相制御領域からの漏れ電流をバッ
ファ領域までにとどめることができれば、活性領域への
漏れ電流を低減させることができる。この構造では活性
領域でのキャリア密度の揺らぎが抑えられるため、スペ
クトル線幅の増加が抑制される。さらに、DBR領域に
活性層を設け、DBR領域につねにキャリアを注入した
状態で使用すれば、等価屈折率を制御すると同時にDB
R領域の吸収損失を低減するどころか、利得を与えるこ
とさえ出来る。このため、波長可変時にDBR領域の吸
収損失によるスペクトル線幅の増大を防ぐことが出来、
より一層のスペクトル線幅の低減が期待される。
In conventional wavelength tunable semiconductor lasers, when current is injected into the phase control region, the spectral linewidth increases significantly. This is thought to be because part of the injected current leaks into the active region, causing fluctuations in carrier density in the active region. Therefore, if a buffer region is provided between the active region and the phase control region and the leakage current from the phase control region can be limited to the buffer region, the leakage current to the active region can be reduced. In this structure, fluctuations in carrier density in the active region are suppressed, so an increase in spectral line width is suppressed. Furthermore, if an active layer is provided in the DBR region and used with carriers constantly injected into the DBR region, the equivalent refractive index can be controlled and the DB
Rather than reducing the absorption loss in the R region, it can even provide a gain. Therefore, it is possible to prevent an increase in the spectral line width due to absorption loss in the DBR region when tuning the wavelength.
Further reduction in spectral linewidth is expected.

〔実施例〕〔Example〕

図面を参照して、本実施例を詳細に説明する。 This embodiment will be described in detail with reference to the drawings.

第1図は、本発明の第1の実施例の波長可変半導体レー
ザの構造を示す斜視図である。第2図は、本発明の第2
の実施例の波長可変半導体レーザの構造を示す斜視図で
ある。第3図は、試作した素子の波長可変時のスペクト
ル線幅を測定した図である。以下、製作手順にしたがっ
て本実施例の構造について説明する。
FIG. 1 is a perspective view showing the structure of a wavelength tunable semiconductor laser according to a first embodiment of the present invention. FIG. 2 shows the second embodiment of the present invention.
FIG. 2 is a perspective view showing the structure of a wavelength tunable semiconductor laser according to an embodiment of the present invention. FIG. 3 is a diagram showing the measured spectral linewidth of the experimentally produced element when the wavelength is varied. The structure of this embodiment will be explained below according to the manufacturing procedure.

まず第1の実施例について説明する。フォトリソグラフ
ィ技術によりn形InP基板110の分布ブラッグ反射
領域300に周期2380人の回折格子を形成する。次
に、1回目のLPE成長によって、ノンドープInGa
A’sP光ガイドN120(λ、 =1.3 μm、厚
さ0.3 μm> 、n形1nPバッファ層130(厚
さ0.1μm)、ノンドープInGaAsP活性層14
0(λg =1.53μm、厚さ0.1 μm) 、p
形InPクラッド層150(厚さ0.2μm)を順次成
長する。位相制御領域200、バッファ領域210、分
布ブラッグ反射領域300のInPクラッド層150と
活性層140とを選択的に除去した後、2回目のLPE
成長によってバッファ領域、位相制御領域、分布ブラッ
グ反射領域にp形1nPクラッド層160を形成する。
First, a first example will be described. A diffraction grating with a period of 2380 is formed in the distributed Bragg reflection region 300 of the n-type InP substrate 110 by photolithography. Next, by the first LPE growth, non-doped InGa
A'sP light guide N120 (λ, = 1.3 μm, thickness 0.3 μm>), n-type 1nP buffer layer 130 (thickness 0.1 μm), non-doped InGaAsP active layer 14
0 (λg = 1.53 μm, thickness 0.1 μm), p
An InP type cladding layer 150 (thickness: 0.2 μm) is sequentially grown. After selectively removing the InP cladding layer 150 and active layer 140 in the phase control region 200, buffer region 210, and distributed Bragg reflection region 300, a second LPE is performed.
A p-type 1nP cladding layer 160 is formed in the buffer region, phase control region, and distributed Bragg reflection region by growth.

キャリアの閉じ込めと横モード制御のために埋め込み構
造とする。メサエッチングにより2本の平行な溝に挟ま
れたストライブ状のメサを形成した後、3回目のLPE
成長によってメサを埋め込む埋め込み成長を行う。ここ
では、埋め込み構造として、二重チャンネルプレーナ埋
め込み構造を用いた。最後に基板側と成長層側とに電極
400.410を形成した後、分布ブラッグ反射領域3
00と位相制御領域200、位相制御領域200とバッ
ファ領域210、バッファ領域210と活性領域100
との間の電気的な分離を行うために、中央のメサ付近を
除いて幅20μmの溝170を形成する。分布ブラッグ
反射領域、片側の位相制御領域の長さは、それぞれ30
0μm、100μmであり、素子の全長は500μmで
ある。
A buried structure is used for carrier confinement and transverse mode control. After forming a striped mesa sandwiched between two parallel grooves by mesa etching, the third LPE
Embedded growth is performed to embed a mesa through growth. Here, a double channel planar embedding structure was used as the embedding structure. Finally, after forming electrodes 400 and 410 on the substrate side and the growth layer side, the distributed Bragg reflection region 3
00 and phase control region 200, phase control region 200 and buffer region 210, buffer region 210 and active region 100
In order to provide electrical isolation between the two substrates, a groove 170 having a width of 20 μm is formed except for the vicinity of the central mesa. The length of the distributed Bragg reflection region and the phase control region on one side are each 30
0 μm and 100 μm, and the total length of the element is 500 μm.

こうして試作した素子の特性の一例を第3図に破線で示
す0位相制御領域200と分布ブラッグ反射領域300
に電流を注入すると透過波長は、100人短波側に変化
した。このときスペクトル線幅は、制御電流を注入しな
いときの1.5倍まで増加しな。従来の波長加変DBR
レーザのスペクトル線幅の増加(3倍)に比べるとかな
り小さくなっていることがわかる。これは、従来位相制
御領域から活性層へ漏れる電流が数mAであったのに対
し、バッファ領域の挿入により漏れ電流が0.1mA程
度まで低減されたことによる。
An example of the characteristics of the device prototyped in this way is shown in FIG.
When a current was injected into the wavelength, the transmission wavelength changed to the shorter wavelength side. At this time, the spectral linewidth increases to 1.5 times that when no control current is injected. Conventional wavelength variable DBR
It can be seen that this is considerably smaller than the increase (3 times) in the spectral line width of the laser. This is because the current leaking from the phase control region to the active layer was several mA in the prior art, but by inserting the buffer region, the leakage current was reduced to about 0.1 mA.

次に第2の実施例について説明する。n形In[’基板
110の分布ブラッグ反射領域300に周期2380人
の回折格子を形成する0次に、1回目のLPE成長によ
って、ノンドープInGaAsP光ガイド層120(λ
t=IAJ1m、厚さ0.3μm)、n形りn?バッフ
ァ層130(厚さ0.1μm)、ノンドープ活性層1n
GaAsP 140 (λ□= 1.53.u m、厚
さ0.1 μm) 、p形InPクラッドJ1150 
(厚さ0.2μm)を順次成長する。位相制御領域20
0、バッファ領域210のInPクラッド層150と活
性層140とを選択的に除去した後、2回目のLPE成
長によってバッファ領域と位相制御領域にp形InPク
ラッドM160を形成する。
Next, a second embodiment will be described. A non-doped InGaAsP light guide layer 120 (λ
t=IAJ1m, thickness 0.3μm), n-shaped n? Buffer layer 130 (thickness 0.1 μm), non-doped active layer 1n
GaAsP 140 (λ□=1.53.um, thickness 0.1 μm), p-type InP clad J1150
(thickness: 0.2 μm). Phase control area 20
0. After selectively removing the InP cladding layer 150 and the active layer 140 in the buffer region 210, a p-type InP cladding M160 is formed in the buffer region and the phase control region by second LPE growth.

キャリアの閉じ込めと横モード制御のために埋め込み構
造とする。メサエッチングにより2本の平行な溝に挟ま
れたストライプ状のメサを形成した後、3回目のLPE
成長によって埋め込み成長を行う、ここでは、埋め込み
構造として、二重チャンネルプレーナ埋め込み構造を用
いた。最後に基板側と成長層側とに電極400,410
を形成した後、分布ブラッグ反射領域300と位相制御
領域200、位相制御領域200とバッファ領域210
、バッファ領域210と活性領域100との間の電気的
な分離を行うために、中央のメサ付近を除いて幅20μ
mの溝170を形成する。
A buried structure is used for carrier confinement and transverse mode control. After forming a striped mesa sandwiched between two parallel grooves by mesa etching, the third LPE
Embedding growth is performed by growth. Here, a double channel planar embedding structure was used as the embedding structure. Finally, electrodes 400 and 410 are placed on the substrate side and the growth layer side.
After forming the distributed Bragg reflection region 300 and the phase control region 200, the phase control region 200 and the buffer region 210
, to provide electrical isolation between the buffer region 210 and the active region 100, the width is 20 μm except near the central mesa.
m grooves 170 are formed.

分布ブラッグ反射領域、片側の位相制御領域の長さは、
それぞれ300μm、100μmであり、素子の全長は
500μmである。
The length of the distributed Bragg reflection region and the phase control region on one side is
They are 300 μm and 100 μm, respectively, and the total length of the element is 500 μm.

こうして試作した素子の特性の一例を第3図に1点鎖線
で示す。位相制御領域200と分布ブラッグ反射領域3
00に電流を注入すると透過波長は、100人短波側に
変化した。この時スペクトル線幅の変化量は、制御電流
を注入しないときの10%以下であった。従来の波長可
変DBRレーザのスペクトル線幅の増加(3倍)に比べ
ると大変改善されていることがわかる。
An example of the characteristics of the device prototyped in this way is shown in FIG. 3 by a dashed line. Phase control region 200 and distributed Bragg reflection region 3
When a current was injected into 00, the transmission wavelength changed to 100 shorter wavelengths. At this time, the amount of change in the spectral line width was less than 10% of that when no control current was injected. It can be seen that this is a great improvement compared to the increase in spectral line width (3 times) of the conventional wavelength tunable DBR laser.

なお、素子の材料及び組成は、上述の実施例に限定する
必要はなく、他の半導体材料(例えばGaAs系の材料
)などであってもよい、また光導波路構造も光を導波す
る機能を持つならば、プレーナ構造や埋め込み構造に限
らず、如何なる構造であってもよい。
Note that the material and composition of the element need not be limited to the above-mentioned embodiments, and may be other semiconductor materials (for example, GaAs-based materials), and the optical waveguide structure may also have the function of guiding light. If it has, it may have any structure other than a planar structure or an embedded structure.

〔発明の効果〕〔Effect of the invention〕

従来の波長可変半導体レーザでは、波長可変時にスペク
トル線幅が3倍以上に増加していたが、本発明の波長可
変半導体レーザによって波長可変時にもスペクトル線幅
がほとんど変わらない特性が得られるようになった。
In conventional wavelength tunable semiconductor lasers, the spectral linewidth increases by more than three times when the wavelength is tuned, but with the wavelength tunable semiconductor laser of the present invention, the spectral linewidth hardly changes even when the wavelength is tuned. became.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の第1の実施例の波長可変半導体レー
ザの構造を示す斜視図である。第2図は、本発明の第2
の実施例の波長可変半導体レーザの構造を示す斜視図で
ある。第3図は、試作した素子の波長可変時のスペクト
ル線幅を測定した図である。 100・・・活性領域、110・・・基板、120・・
・光ガイド層、130・・・バッファ層、140・・・
活性層、150,160・・・クラッド層、200・・
・位相制御領域、210・・・バッファ領域、300・
・・分布ブラッグ反射領域、 0゜ 0・・・電極。
FIG. 1 is a perspective view showing the structure of a wavelength tunable semiconductor laser according to a first embodiment of the present invention. FIG. 2 shows the second embodiment of the present invention.
FIG. 2 is a perspective view showing the structure of a wavelength tunable semiconductor laser according to an embodiment of the present invention. FIG. 3 is a diagram showing the measured spectral linewidth of the experimentally produced element when the wavelength is varied. 100...active region, 110...substrate, 120...
- Light guide layer, 130...buffer layer, 140...
Active layer, 150, 160...Clad layer, 200...
・Phase control area, 210...Buffer area, 300・
...Distributed Bragg reflection area, 0°0...electrode.

Claims (1)

【特許請求の範囲】[Claims] 発光に与る活性層を内包する半導体多層構造体から成る
活性領域と光導波機構を有する半導体多層構造体から成
る位相制御領域と回折格子を内包する半導体多層構造体
から成る分布ブラッグ反射領域とが直列に配置され、か
つ前記各領域が光学的に結合している波長可変半導体レ
ーザにおいて、前記活性領域と前記位相制御領域との間
に光導波機構を備えた半導体多層構造体から成るバッフ
ァ領域が挿入され、かつ、このバッファ領域が前記活性
領域と前記分布ブラッグ反射領域と光学的に結合してい
ることを特徴とする波長可変半導体レーザ。
An active region made of a semiconductor multilayer structure containing an active layer that participates in light emission, a phase control region made of a semiconductor multilayer structure having an optical waveguide mechanism, and a distributed Bragg reflection region made of a semiconductor multilayer structure containing a diffraction grating. In the wavelength tunable semiconductor laser in which the regions are arranged in series and the respective regions are optically coupled, a buffer region made of a semiconductor multilayer structure including an optical waveguide mechanism is provided between the active region and the phase control region. A wavelength tunable semiconductor laser, wherein the buffer region is optically coupled to the active region and the distributed Bragg reflection region.
JP27365288A 1988-10-28 1988-10-28 Tunable semiconductor laser Expired - Lifetime JPH07105568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27365288A JPH07105568B2 (en) 1988-10-28 1988-10-28 Tunable semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27365288A JPH07105568B2 (en) 1988-10-28 1988-10-28 Tunable semiconductor laser

Publications (2)

Publication Number Publication Date
JPH02119287A true JPH02119287A (en) 1990-05-07
JPH07105568B2 JPH07105568B2 (en) 1995-11-13

Family

ID=17530669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27365288A Expired - Lifetime JPH07105568B2 (en) 1988-10-28 1988-10-28 Tunable semiconductor laser

Country Status (1)

Country Link
JP (1) JPH07105568B2 (en)

Also Published As

Publication number Publication date
JPH07105568B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
US4829535A (en) Variable wavelength semiconductor laser
EP0735635B1 (en) Optical semiconductor apparatus, driving method therefor, light source apparatus and optical communication system using the same
US6228670B1 (en) Method of manufacturing a semiconductor optical waveguide array and an array-structured semiconductor optical device
EP0546743A1 (en) Distributed phase shift semiconductor laser
US6594298B2 (en) Multi-wavelength semiconductor laser array and method for fabricating the same
JP2659187B2 (en) Optical filter element
US5606573A (en) Method and apparatus for control of lasing wavelength in distributed feedback lasers
EP0285104A2 (en) Distributed feedback semiconductor laser
EP0316194B1 (en) A tunable wavelength filter
JPH04783A (en) Semiconductor optical element
EP1363368A2 (en) Gain-coupled semiconductor laser device lowering blue shift
US11557876B2 (en) Semiconductor laser
US6363093B1 (en) Method and apparatus for a single-frequency laser
JP2655600B2 (en) Optical filter element
JPH02119287A (en) Semiconductor laser of variable wavelength
JPH0555689A (en) Distributed reflection type semiconductor laser provided with wavelength control function
JPS6373585A (en) Frequency tunable distributed bragg reflection-type semiconductor laser
JP3261679B2 (en) Driving method of distributed feedback semiconductor laser
JP4005519B2 (en) Semiconductor optical device and manufacturing method thereof
KR100526545B1 (en) Distributed feedback laser
JP2641296B2 (en) Semiconductor laser with optical isolator
JPH07335977A (en) Semiconductor laser and optical integrated device and manufacture thereof
JPH01244431A (en) Variable wavelength filter
JPH02263490A (en) Wavelength variable semiconductor laser
JPH02238686A (en) Semiconductor laser