JPH0656904B2 - Integrated distributed feedback semiconductor laser - Google Patents

Integrated distributed feedback semiconductor laser

Info

Publication number
JPH0656904B2
JPH0656904B2 JP59198033A JP19803384A JPH0656904B2 JP H0656904 B2 JPH0656904 B2 JP H0656904B2 JP 59198033 A JP59198033 A JP 59198033A JP 19803384 A JP19803384 A JP 19803384A JP H0656904 B2 JPH0656904 B2 JP H0656904B2
Authority
JP
Japan
Prior art keywords
phase control
layer
semiconductor laser
distributed feedback
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59198033A
Other languages
Japanese (ja)
Other versions
JPS6177381A (en
Inventor
光弘 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59198033A priority Critical patent/JPH0656904B2/en
Publication of JPS6177381A publication Critical patent/JPS6177381A/en
Publication of JPH0656904B2 publication Critical patent/JPH0656904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06258Controlling the frequency of the radiation with DFB-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/124Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts
    • H01S5/1243Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts by other means than a jump in the grating period, e.g. bent waveguides

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は集積化分布帰還型半導体レーザに関する。The present invention relates to an integrated distributed feedback semiconductor laser.

〔従来技術〕[Prior art]

高速変調時にも安定な単一軸モード発振を示し、光フア
イバ通信における伝送帯域を大きくとることのできる半
導体光源として分布帰還型半導体レーザ(DFB-LD)の開発
が進められている。DFB-LDは適当なピツチの回折格子に
よる波長選択機構を有しており、Gb/sレベルの高速度で
変調しても単一波長で安定に発振するという結果が得ら
れている。
A distributed feedback semiconductor laser (DFB-LD) is being developed as a semiconductor light source that exhibits stable single-axis mode oscillation even during high-speed modulation and can have a large transmission band in optical fiber communication. The DFB-LD has a wavelength selection mechanism using an appropriate pitch diffraction grating, and the result is that it oscillates stably at a single wavelength even when modulated at a high speed of Gb / s level.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで、通常のDFB-LDにおいて、端面反射がない場合
にはブラツグ波長をはさんだ2つの軸モードに対するし
きい値利得が等しくなるため、基本的には2軸モード発
振することが知られている。少なくとも一方の出力端面
が反射端面となつている場合には、ブラツグ波長をはさ
んだ発振波長としきい値利得との関係が非対称になつて
きて、1本の軸モードで発振することになる。その場合
にも片側の端面反射率が0のとき、反射面における回折
格子位相がπ/2,3π/2に近いと、2つの軸モードに対
するしきい値利得の差は小さくなるので2軸モード発振
しやすくなる。しかも回折格子周期は2400Å程度であ
り、「劈開」によつて形成する反射面において上述の回
折格子位相を制御することは不可能である。
By the way, it is known that the normal DFB-LD basically oscillates in the biaxial mode because the threshold gains for the two axial modes sandwiching the Bragg wavelength are equal when there is no end face reflection. . When at least one of the output end faces is a reflection end face, the oscillation wavelength and the threshold gain sandwiching the Bragg wavelength become asymmetrical, and oscillation occurs in one axis mode. Even in that case, when the reflectivity on one side is 0 and the diffraction grating phase on the reflecting surface is close to π / 2 and 3π / 2, the difference in threshold gain between the two axial modes becomes small, so the biaxial mode It becomes easy to oscillate. Moreover, the diffraction grating period is about 2400Å, and it is impossible to control the above-mentioned diffraction grating phase on the reflecting surface formed by "cleavage".

本発明の目的は上述の観点にたつて、安定に単一軸モー
ド発振が得られ、特性の向上した集積化分布帰還型半導
体レーザを提供することにある。
An object of the present invention is to provide an integrated distributed feedback type semiconductor laser which can obtain stable single axis mode oscillation and have improved characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は半導体基板上に、活性層と、前記活性層よりも
エネルギーギャップが大きく、かつ、一方の面に回折格
子が形成された光ガイド層との積層構造を有する集積化
分布帰還型半導体レーザにおいて、位相制御領域を備
え、前記位相制御領域の中の位相制御層が前記活性層よ
りもエネルギーギャップの大きな半導体層からなり、前
記位相制御領域に独立した電極を設けたことを特徴とす
る集積化分布帰還型半導体レーザである。
The present invention relates to an integrated distributed feedback semiconductor laser having a laminated structure of an active layer and an optical guide layer having a larger energy gap than the active layer and a diffraction grating formed on one surface on a semiconductor substrate. In the integrated circuit, a phase control region is provided, the phase control layer in the phase control region is a semiconductor layer having a larger energy gap than the active layer, and an independent electrode is provided in the phase control region. Distributed feedback semiconductor laser.

〔作用〕[Action]

従来のDFB-LDに対し、本発明においては、素子内部に光
波の位相を制御する領域を形成することにより、位相ず
れ量を適切に設定して、ブラツグ波長において単一軸モ
ード発振させている。この場合そのしきい値利得も通常
の場合と比べて大幅に下げることができる。
In contrast to the conventional DFB-LD, in the present invention, a region for controlling the phase of the light wave is formed inside the element, so that the phase shift amount is appropriately set and single axis mode oscillation is performed at the Bragg wavelength. In this case, the threshold gain can be greatly reduced as compared with the normal case.

位相シフトの効果は宇宮氏らにより計算結果が報告され
ている(Electron.Lett.20,p326(1984))。
The effect of phase shift was reported by Umiya et al. (Electron. Lett. 20 , p326 (1984)).

本発明ではそのような適切な位相シフトを行なうために
回折格子は通常どうりに形成しておいて部分的に光波に
対して透明な位相制御領域を形成した。通常のDFB-LDに
おいては、ブラツグ波長において光波の位相が一往復で
πラジアンだけずれるために互いに打ち消しあう。すな
わち、ブラツグ波長では発振せず、これがいわゆるスト
ツプバンドとなる。そこで前述のようにレーザ共振軸方
向にそつて位相制御領域を形成し、光波の位相をπラジ
アンだけずらせれば、ブラツグ波長において一往復で2
πずれることになり、したがつてブラツグ波長で発振す
る。このときには同時に、しきい値利得も低減し、発振
しきい値電流の低減,温度特性の改善,量子効率の向上
などが期待される。
In the present invention, in order to carry out such an appropriate phase shift, the diffraction grating is usually formed so as to form a phase control region which is partially transparent to a light wave. In an ordinary DFB-LD, the phases of the light waves at the Bragg wavelength are offset by π radian in one round trip, so they cancel each other out. That is, it does not oscillate at the Bragg wavelength, and this becomes a so-called stop band. Therefore, as described above, if a phase control region is formed along the laser resonance axis direction and the phase of the light wave is shifted by π radian, two round trips at the Bragg wavelength occur.
It will be deviated by π, and will therefore oscillate at the Bragg wavelength. At this time, at the same time, the threshold gain is also reduced, and it is expected that the oscillation threshold current will be reduced, the temperature characteristics will be improved, and the quantum efficiency will be improved.

〔実施例〕〔Example〕

以下実施例を示す図面を用いて本発明をより詳細に説明
する。
Hereinafter, the present invention will be described in more detail with reference to the drawings illustrating embodiments.

第1図に本発明による一実施例を示す。まず、n-InP基
板1上に回折格子2を形成し、そのうえに発光波長1.3
μmに相当するn-In0・22Ga0・28As0・61P0・39光ガイド層
3、発光波長1.55μmに相当するノンドープIn0・59Ga
0・41As0・90P0・10活性層4、p-InPクラツド層10等を順次
形成する。回折格子2はHe-Cdガスレーザを用いた2光
束干渉露光法および化学エツチング法によつて形成し
た。その周期は2400Å、深さ1000Å程度とした。光ガイ
ド層3、活性層4等の成長は回折格子2の消失を防ぐた
めに600℃以下の比較的低い温度で行なつた。その結果
結晶成長後にも500〜600Åの深さに回折格子2が保存さ
れた。位相制御領域6となる部分のみ活性層4、光ガイ
ド層3まで選択的にエツチングし、発光波長1.3μm組
成の位相制御層5を積層した。このときは640℃程度の
通常の温度で結晶成長を行ない、回折格子2はほぼ消失
した。位相制御層5は光波がスムーズに結合するような
高さに形成した。その後通常のプロセスでメサエツチン
グし、埋め込み構造に結晶成長を行ない、DFB電極8,
9、位相制御電極7を独立に形成し、所望のDFB-LDを得
た。埋め込み構造において活性層幅は1.5μmとした。
なお、電極形成の際電極間の絶縁を良好に行なうため
に、電極間にエツチング溝を形成したり、あるいはプロ
トン照射を行なう等により半絶縁性の半導体層を形成し
てもよい。
FIG. 1 shows an embodiment according to the present invention. First, the diffraction grating 2 is formed on the n-InP substrate 1, and then the emission wavelength 1.3
n-In 0 · 22 Ga 0 · 28 As 0 · 61 P 0 · 39 light guide layer 3 corresponding to μm, undoped In 0 · 59 Ga corresponding to emission wavelength of 1.55 μm
0 · 41 As 0 · 90 P 0 · 10 The active layer 4, the p-InP cladding layer 10, etc. are sequentially formed. The diffraction grating 2 was formed by a two-beam interference exposure method using a He-Cd gas laser and a chemical etching method. The cycle was 2400Å and the depth was 1000Å. The growth of the light guide layer 3, the active layer 4, etc. was carried out at a relatively low temperature of 600 ° C. or lower in order to prevent the diffraction grating 2 from disappearing. As a result, the diffraction grating 2 was stored at a depth of 500 to 600 Å even after crystal growth. Only the active layer 4 and the light guide layer 3 were selectively etched only in the portion to be the phase control region 6, and the phase control layer 5 having an emission wavelength of 1.3 μm was laminated. At this time, crystal growth was performed at a normal temperature of about 640 ° C., and the diffraction grating 2 almost disappeared. The phase control layer 5 is formed at a height such that light waves are smoothly coupled. After that, mesa etching is performed by a normal process, crystal growth is performed in the embedded structure, and the DFB electrode 8,
9. The phase control electrode 7 was independently formed to obtain the desired DFB-LD. In the embedded structure, the width of the active layer was 1.5 μm.
In order to ensure good insulation between the electrodes when forming the electrodes, an etching groove may be formed between the electrodes, or a semi-insulating semiconductor layer may be formed by performing proton irradiation.

以上のようにして作製したDFB-LDを素子長250μm、そ
のぼほ中央部分に長さ20μmの位相制御領域6が配置さ
れるように切り出して特性を評価した。その結果、位相
制御領域6に流す制御電流を数mAとすることにより、
室温CWにおいて発振しきい値電流20mA、片面からの微
分量子効率30%、最高単一軸モード出力30mWの特性を備
えた素子を再現性よく得られた。制御電流を適切に設定
してやることにより主モードと副モードとの強度比を常
に30〜40dB程度にとることができた。また制御電流を変
化させることにより10Å程度の波長変化が観測され、そ
のときの光出力の変化もごくわずかであつた。
The DFB-LD manufactured as described above was cut out so that the device length was 250 μm and the phase control region 6 having a length of 20 μm was arranged at the central portion thereof, and the characteristics were evaluated. As a result, by setting the control current flowing in the phase control region 6 to several mA,
At room temperature CW, an element having characteristics of oscillation threshold current of 20 mA, differential quantum efficiency of 30% from one side and maximum single axis mode output of 30 mW was obtained with good reproducibility. By setting the control current appropriately, the intensity ratio between the main mode and the sub mode could be kept at about 30 to 40 dB. In addition, a wavelength change of about 10 Å was observed by changing the control current, and the change of the optical output at that time was also very small.

さらにこのような位相制御領域6を有するDFB-LDにおい
ては反射端面における回折格子2の位相の影響も小さ
い。通常のDFB-LDにおいては反射端面における位相条件
によつてモードとびを生ずる素子が少なくなかつた。一
例として、1枚のウエフアから任意に切り出して特性歩
留りを調べたところ、通常のDFB-LDでは35%の素子が10
mW以内の出力レベルで反射端面位相条件によるモードと
びを示したが、実施例に示した位相制御DFB-LDにおいて
はその割合は5%に減少し、単一軸モード発振の等性歩
留りが大幅に向上した。
Further, in the DFB-LD having such a phase control region 6, the influence of the phase of the diffraction grating 2 on the reflection end face is small. In the usual DFB-LD, the number of elements that cause mode skipping was reduced due to the phase condition at the reflection end face. As an example, when the characteristic yield was investigated by arbitrarily cutting out from one wafer, 35% of the elements were 10% in the normal DFB-LD.
The mode jump due to the reflection end face phase condition was shown at the output level within mW, but in the phase control DFB-LD shown in the example, the ratio was reduced to 5%, and the uniform yield of single axis mode oscillation was significantly increased. Improved.

なお、以上の実施例においてはInPを基板、InGaAsPを活
性層等とする波長1μm帯の半導体材料を示したが、本
発明に用いる半導体材料はもちろんこれに限るものでは
なく、GaAlAs/GaAs系,InGaAs/InAlAs系等他の半導体材
料を用いて何ら差しつかえない。また、実施例において
は基板1に直接回折格子2を形成し、その上に光ガイド
層3、活性層4を成長したが、あらかじめ活性層、光ガ
イド層を積層し、光ガイド層の上に回折格子を形成して
もよい。さらに光ガイド層3、活性層4を積層した後に
位相制御層5を成長したが、この順序は逆でもさしつか
えない。また実施例ではDFB電極8,9を共通にして特
性を評価したが、3つの電極を別々に駆動させ、1つの
DFB領域を変調器として用いてもかまわない。
In the above embodiments, the semiconductor material of the wavelength 1 μm band, which uses InP as the substrate and InGaAsP as the active layer, is shown. However, the semiconductor material used in the present invention is not limited to this, and GaAlAs / GaAs series Other semiconductor materials such as InGaAs / InAlAs can be used without any problem. In the embodiment, the diffraction grating 2 is formed directly on the substrate 1, and the light guide layer 3 and the active layer 4 are grown on the diffraction grating 2. However, the active layer and the light guide layer are laminated in advance, and the light guide layer is formed on the light guide layer. A diffraction grating may be formed. Further, the phase control layer 5 was grown after the optical guide layer 3 and the active layer 4 were laminated, but the order may be reversed. Further, in the embodiment, the characteristics were evaluated with the DFB electrodes 8 and 9 in common, but three electrodes were driven separately,
The DFB region may be used as a modulator.

〔発明の効果〕〔The invention's effect〕

本発明の特徴は集積化分布帰還型半導体レーザにおい
て、発振波長に対して透明な位相制御領域を形成したこ
とにある。これにより、ブラツグ波長付近で安定に単一
軸モード発振させることが可能となり、発振しきい値電
流の低減、温度特性の改善、量子効率の向上等を図り、
レーザ特性、素子の特性歩留りを大幅に向上したDFB-LD
を得ることができる効果を有するものである。
A feature of the present invention is that in the integrated distributed feedback semiconductor laser, a phase control region transparent to the oscillation wavelength is formed. This makes it possible to stably oscillate the single axis mode near the Bragg wavelength, reduce the oscillation threshold current, improve temperature characteristics, improve quantum efficiency, etc.
DFB-LD with greatly improved laser characteristics and device characteristic yield
It has the effect of being able to obtain

【図面の簡単な説明】 第1図は本発明の一実施例であるDFB-LDの共振器方向の
断面模式図である。 図中、1はInP基板、2は回折格子、3は光ガイド層、
4は活性層、5は位相制御層、6は位相制御領域、7は
制御電極、8,9はDFB電極、10はp-InPクラツド層をそ
れぞれあらわす。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view in the resonator direction of a DFB-LD which is an embodiment of the present invention. In the figure, 1 is an InP substrate, 2 is a diffraction grating, 3 is an optical guide layer,
4 is an active layer, 5 is a phase control layer, 6 is a phase control region, 7 is a control electrode, 8 and 9 are DFB electrodes, and 10 is a p-InP cladding layer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に、活性層と、前記活性層よ
りもエネルギーギャップが大きく、かつ、一方の面に回
折格子が形成された光ガイド層との積層構造を有する集
積化分布帰還型半導体レーザにおいて、位相制御領域を
備え、前記位相制御領域の中の位相制御層が前記活性層
よりもエネルギーギャップの大きな半導体層からなり、
前記位相制御領域に独立した電極を設けたことを特徴と
する集積化分布帰還型半導体レーザ。
1. An integrated distributed feedback type having a laminated structure of an active layer and an optical guide layer having a larger energy gap than the active layer and a diffraction grating formed on one surface on a semiconductor substrate. In the semiconductor laser, a phase control region is provided, and the phase control layer in the phase control region comprises a semiconductor layer having a larger energy gap than the active layer,
An integrated distributed feedback semiconductor laser, wherein independent electrodes are provided in the phase control region.
JP59198033A 1984-09-21 1984-09-21 Integrated distributed feedback semiconductor laser Expired - Lifetime JPH0656904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59198033A JPH0656904B2 (en) 1984-09-21 1984-09-21 Integrated distributed feedback semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59198033A JPH0656904B2 (en) 1984-09-21 1984-09-21 Integrated distributed feedback semiconductor laser

Publications (2)

Publication Number Publication Date
JPS6177381A JPS6177381A (en) 1986-04-19
JPH0656904B2 true JPH0656904B2 (en) 1994-07-27

Family

ID=16384410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59198033A Expired - Lifetime JPH0656904B2 (en) 1984-09-21 1984-09-21 Integrated distributed feedback semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0656904B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2659199B2 (en) * 1987-11-11 1997-09-30 日本電気株式会社 Tunable wavelength filter
JPH01312881A (en) * 1988-06-09 1989-12-18 Nec Corp Variable wavelength transducer
JP2002084033A (en) * 2000-09-06 2002-03-22 Nec Corp Distributed feedback semiconductor laser
KR100526999B1 (en) * 2002-12-13 2005-11-08 한국전자통신연구원 Multi DFB Laser Diode

Also Published As

Publication number Publication date
JPS6177381A (en) 1986-04-19

Similar Documents

Publication Publication Date Title
JP2692913B2 (en) Grating coupled surface emitting laser device and modulation method thereof
US4754459A (en) Semiconductor lasers
JPH0632332B2 (en) Semiconductor laser device
JPH0770791B2 (en) Semiconductor laser and manufacturing method thereof
EP0516044B1 (en) Tunable optical source for producing a coherent optical beam with a wide range of wavelength tuning
JP2003046190A (en) Semiconductor laser
JP2943510B2 (en) Tunable semiconductor laser device
JPH06338659A (en) Laser element
JP2003289169A (en) Semiconductor laser
JP3463740B2 (en) Distributed feedback semiconductor laser
JPH0211027B2 (en)
JPH0656904B2 (en) Integrated distributed feedback semiconductor laser
JPH10178232A (en) Semiconductor laser and its manufacture
JPS63166281A (en) Distributed feedback semiconductor laser
JPS6114787A (en) Distributed feedback type semiconductor laser
JPS62173786A (en) Distributed feedback type semiconductor laser
JP5163355B2 (en) Semiconductor laser device
EP0306315B1 (en) A semiconductor laser device
JPH0680857B2 (en) Integrated distributed Bragg reflector semiconductor laser
JP3149959B2 (en) Semiconductor laser device and driving method thereof
KR100429531B1 (en) Distributed feedback semiconductor laser
KR20040034351A (en) Semiconductor laser and element for optical communication
JPS61164289A (en) Integrated semiconductor laser
JPS61220389A (en) Integrated type semiconductor laser
JP2004128372A (en) Distribution feedback semiconductor laser device