JPS61164289A - Integrated semiconductor laser - Google Patents

Integrated semiconductor laser

Info

Publication number
JPS61164289A
JPS61164289A JP60005440A JP544085A JPS61164289A JP S61164289 A JPS61164289 A JP S61164289A JP 60005440 A JP60005440 A JP 60005440A JP 544085 A JP544085 A JP 544085A JP S61164289 A JPS61164289 A JP S61164289A
Authority
JP
Japan
Prior art keywords
semiconductor laser
layer
diffraction grating
integrated
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60005440A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kitamura
北村 光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60005440A priority Critical patent/JPS61164289A/en
Publication of JPS61164289A publication Critical patent/JPS61164289A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Abstract

PURPOSE:To eliminate the instability of the uniaxial mode operation of an integrated semiconductor laser, which is due to the leakage-in of carriers, by a method wherein, in the integrated uniaxial mode semiconductor laser, the mutually different operating regions are optically coupled together with an organic material such as a polyimide or an insulating material. CONSTITUTION:A diffraction grating 2 is partially formed on an N-type InP substrate 1. An N-type In0.72Ga0.28As0.61P0.39 guide layer 3 to correspond to a luminous wavelength of 1.33mum, for example, and a non-doped In0.59Ga0.41As0.90P0.10 active layer 4 to corre spond to a luminous wavelength of 1.55mum are respectively laminated thereon in a thickness of 0.1mum from the mountain of the diffraction grating 2 and in a thickness of 0.1mum, and moreover, a P-type InP clad layer 5 is laminated in order on the grating 2. After an electrode is formed thereon, a dry etching is performed using chlorine mixed gas, whereby a groove 8 of a depth of 10mum or thereabouts is formed in the central part between a DFB region 6 having the diffraction grating 2 and a modulator 7 having the falt guide layer 3. An SiO2 layer 9 is laminated on the bottom surface of the groove 8. Then, a spin coating is performed on the SiO2 layer 9 with a polyimide 10 to form the integrated semiconductor laser into a waveguide structure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は集積型の単一軸モード半導体レーザに関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an integrated single-axis mode semiconductor laser.

(従来技術) 高速変調時にも安定な単一軸モード発振を示し、光フア
イバ通信における伝送帯域を大きくとることのできる半
導体光源として分布帰還型(DFB)、あるいは分布ブ
ラッグ反射型(D旧い半導体レーザ(LD)の開発が進
められている。これらの半導体レーザは適当なピッチの
回折格子による波長選択機構を有しておp、Gb/sレ
ベルの高速度で変調しても単一波長で安定に発振すると
いう結果が得られている。さらに、最近においては雑誌
[エレクトo=クス−vターズ(E 1ectron 
、 Lett、 ) j19(17)、1983の65
6頁において、東盛氏らが報告しているような集積型の
DBl’t−LDや、あるいは位相制御型のDFB−L
Dが開発され、発奈波長の制御や、スペクトル線幅、あ
るいは軸モード選択比等単一軸モード動作の安定性を制
御することが可能となった。
(Prior art) Distributed feedback (DFB) or distributed Bragg reflection type (D old semiconductor laser) is used as a semiconductor light source that exhibits stable single-axis mode oscillation even during high-speed modulation and can widen the transmission band in optical fiber communication. LD) is being developed.These semiconductor lasers have a wavelength selection mechanism using a diffraction grating with an appropriate pitch, and are stable at a single wavelength even when modulated at high speeds of Gb/s level. Furthermore, recently, the magazine [Electron
, Lett, ) j19(17), 65 of 1983
On page 6, there is an integrated type DBL't-LD as reported by Tomori et al., or a phase control type DFB-L.
With the development of D, it has become possible to control the emission wavelength, spectral linewidth, and stability of single-axis mode operation, such as axial mode selection ratio.

(発明が解決しようとする問題点) このような集積型のDFB/DBR−LDにおいては活
性領域と制御領域に、それぞれ独立の電極を形成するも
のであるが、これらの電極間の絶縁抵抗が十分に大きく
ないと、電流のもれ込みを生ずることがある。
(Problems to be Solved by the Invention) In such an integrated DFB/DBR-LD, independent electrodes are formed in the active region and control region, but the insulation resistance between these electrodes is If it is not large enough, current leakage may occur.

第2図は従来例の位相制御型DFB−LDの断面構造図
である。これは、n−InP基板1上に活性層4および
ガイド層3を積層したもので、ガイド層3には部分的に
回折格子2が形成されている。
FIG. 2 is a cross-sectional structural diagram of a conventional phase control type DFB-LD. This is a structure in which an active layer 4 and a guide layer 3 are laminated on an n-InP substrate 1, and a diffraction grating 2 is partially formed on the guide layer 3.

この回折格子2を形成した部分をDFB領域14、平担
なガイド層3を有する部分を位相制御領域15として動
作させる。この位相制御領域15側にギヤリア注入を行
なうことにより、そこでの屈折率を変化させることがで
き、その屈折率変化を通してDFB−LDにおける実効
的な端面位相を制御することができる。そのような位相
制御によってDFB−LDの発損軸モード乗件が制御で
き、例えばこの場合にはストップバンドをはさんだ+1
モード、−1モ一ド間での軸モード選択が可能となった
0 これらDFB領域14および位相制御領域15にはそれ
ぞれに独立した電極16.17が形成されているが、こ
れらの中央部分をエツチングなどの通常の絶縁方法で分
離した場合、これら両者間の抵抗が高々数百Ω程度しか
とれず、両者間で電気的なりロストークを生じてしまう
。この従来例においては、位相条件を適切に設定してや
ることによ、9.I)FB領域14に電流を流して数十
mWの高い光出力レベルまで安定に単一軸モード発振す
ることが期待されるが、前述のように電気的絶縁が不十
分の場合にDFB領域14に電流を流すとそれが位相制
御領域15側にも流れ込んでしまい、それによって位相
条件が最適なところからずれてモードのとび等を生じて
安定な単一軸モード発振が得られなくなるという問題が
あった。
The portion where this diffraction grating 2 is formed is operated as a DFB region 14, and the portion where the flat guide layer 3 is formed is operated as a phase control region 15. By performing gear injection on the phase control region 15 side, the refractive index there can be changed, and the effective end face phase in the DFB-LD can be controlled through the change in the refractive index. By such phase control, the output/loss axis mode multiplier of the DFB-LD can be controlled; for example, in this case, +1 across the stop band
It is now possible to select the axis mode between mode and -1 mode.Independent electrodes 16 and 17 are formed in these DFB areas 14 and phase control areas 15, respectively, but the central part of these If they are separated by a normal insulation method such as etching, the resistance between them can only be a few hundred ohms at most, and electrical losstalk will occur between them. In this conventional example, 9. I) It is expected that stable single-axis mode oscillation will occur up to a high optical output level of several tens of mW by passing current through the FB region 14, but as mentioned above, if electrical insulation is insufficient, When a current is applied, it also flows into the phase control region 15 side, which causes the phase condition to deviate from the optimum, causing mode skipping and the like, making it impossible to obtain stable single-axis mode oscillation. .

(発明の目的) 本発明の目的は、このような問題点を解決し、活性領域
と制御領域との間の電気的な絶縁をとり、十分安定に動
作させることが可能な集積型半導体レーザを提供するこ
とにある。
(Objective of the Invention) The object of the present invention is to solve the above-mentioned problems, provide electrical insulation between the active region and the control region, and provide an integrated semiconductor laser that can operate sufficiently stably. It is about providing.

(発明の構成) 本発明の構成は、半導体基板上に、少なくとも活性層と
、この活性層よりもエネルギーギャップが大きくかつ一
方の面に回折格子が形成された光ガイド層を有する集積
型半導体レーザにおいて、レーザ共振軸方向に少なくと
も前記活性層を含み第1の電極をもつ発光領域とこの発
光領域の出力光を制御し前記第1の電極と異る領域に第
2の電極をもつ制御領域が形成され、−゛ とれら各領域の境界領域に光波が結合される有機材料あ
るいは絶縁材料を挿入した溝を設けたことを特徴とする
(Structure of the Invention) The structure of the present invention is an integrated semiconductor laser having, on a semiconductor substrate, at least an active layer and a light guide layer having a larger energy gap than the active layer and having a diffraction grating formed on one surface. A light emitting region including at least the active layer and having a first electrode in the direction of the laser resonance axis; and a control region controlling output light of the light emitting region and having a second electrode in a region different from the first electrode. It is characterized in that a groove into which an organic material or an insulating material is inserted into which light waves are coupled is provided in the boundary region of each region.

(発明の原理) 本発明においては、活性層領域と制御領域との境界領域
の電気的絶縁を十分良好にとるためには、例えばエツチ
ング等の技術を用いて両者間に深い溝を形成している。
(Principle of the Invention) In the present invention, in order to obtain sufficient electrical insulation in the boundary region between the active layer region and the control region, a deep groove is formed between the two using a technique such as etching. There is.

この場合、電気的に絶縁しても光学的には良好に結合す
ることが重要である。
In this case, it is important to have good optical coupling even if electrically insulated.

そのためには両者間を光に対しては透明な絶縁性の媒質
、例えばポリイミドのような有機材料で導=5− 波させればよい。
To achieve this, it is sufficient to conduct 5-waves between the two using an insulating medium that is transparent to light, such as an organic material such as polyimide.

(実施例) 以下図面を用いて本発明の詳細な説明する。(Example) The present invention will be described in detail below using the drawings.

第1図は本発明による集積型半導体レーザの一実施例の
レーザ共振軸方向に平行な方向の断面模式図を示す。こ
の素子を得るには、まずn−InP基板1上に部分的に
回折格子2を形成し、その上に、例えば発光波長1.3
μmに相当するn−Ino、7□Ga(1,21As6
.61 Fo、39ガイド層3を回折格子の山から厚さ
018m9発光波長1655μmに相当するノンドープ
In、)、5gGa0041As6.g(IF5.10
活性層4を厚さ01μm1さらにp−InPクラッド層
5を順次積層する。また、回折格子2はHe−caガス
レーザを用いだレーザ干渉露光法および化学エツチング
によって形成し、周期2400Aとした。この回折格子
2を部分的に形成するには、それ以外の領域をマスクし
て干渉露光するか、あるいはあらかじめポジタイプのレ
ジストを部分的に露光しておき続けて干渉露光を行なう
ことによシ、回折格子2以外の部分を平担にエツチング
してもよい。本実施例6一 は後者を用いて作製した。
FIG. 1 shows a schematic cross-sectional view of an embodiment of an integrated semiconductor laser according to the present invention in a direction parallel to the laser resonance axis direction. To obtain this element, first, a diffraction grating 2 is partially formed on an n-InP substrate 1, and then, for example, a diffraction grating 2 with an emission wavelength of 1.3
n-Ino, 7□Ga(1,21As6
.. 61 Fo, 39 guide layer 3 from the peak of the diffraction grating to a thickness of 018 m9, non-doped In corresponding to the emission wavelength of 1655 μm), 5 g Ga0041 As6. g(IF5.10
The active layer 4 has a thickness of 01 μm1, and the p-InP cladding layer 5 is sequentially laminated. The diffraction grating 2 was formed by laser interference exposure using a He-Ca gas laser and chemical etching, and had a period of 2400A. In order to partially form this diffraction grating 2, it is possible to mask other areas and perform interference exposure, or to partially expose a positive type resist in advance and continue to perform interference exposure. The portion other than the diffraction grating 2 may be etched flat. This Example 6-1 was produced using the latter.

さらにエツチングを行なってメサストライプを成し、通
常の埋め込み構造の半導体レーザに埋め込み成長を行な
った。この上に電極を形成した後、塩素系の混合ガスを
用いてドライエツチングを行なうことにより、回折格子
2を有するD F B領域6と平担なガイド層を有する
変調器7の中央部に10μm程度の溝8を形成し、そこ
に8102層9を積層した。次にポリイミド10をスピ
ンコーティングし、導波構造とした。
Further etching was performed to form a mesa stripe, and buried growth was performed in a semiconductor laser having a normal buried structure. After forming an electrode on this, dry etching is performed using a chlorine-based mixed gas to form a 10 μm thick film in the center of the DFB region 6 having the diffraction grating 2 and the modulator 7 having a flat guide layer. 8102 layers 9 were laminated therein. Next, polyimide 10 was spin-coated to form a waveguide structure.

このSiO2膜9は通常のCVD法によって堆積させ、
その上面が活性l1i4よりも下になるようにした。8
i02の屈折率は約1.48.ポリイミドは1.75程
度の屈折率であった。この場合、溝8は幅10μm程度
であシ、特に5in2膜9を堆積しなくても光波の結合
は80q6以上が得られた。この光波の結合をよくする
にはポリイミド10の上下をよシ屈折率の低い材料でお
おって導波構造としてもよい。
This SiO2 film 9 is deposited by the usual CVD method,
Its upper surface was positioned below active l1i4. 8
The refractive index of i02 is approximately 1.48. Polyimide had a refractive index of about 1.75. In this case, the groove 8 had a width of about 10 μm, and a light wave coupling of 80q6 or more was obtained even without depositing the 5 in 2 film 9. In order to improve the coupling of light waves, the top and bottom of the polyimide 10 may be covered with a material having a lower refractive index to form a waveguide structure.

このように作製した集積型DFB−LDの変調器7側の
出力端面に8iNOARコーテイング膜11を形成した
。これはプラズマCVD法によって形成し、150℃程
度の比較的低い温度でも良好なARコーティング膜を形
成することができだ。
An 8iNOAR coating film 11 was formed on the output end face of the integrated DFB-LD thus fabricated on the modulator 7 side. This is formed by the plasma CVD method, and a good AR coating film can be formed even at a relatively low temperature of about 150°C.

この素子のDFB領域6に電流を注入してレーザ発振さ
せ、変調器7の電流を加減してその部分の光損失を変化
させることによp、lGb/sの高速変調時でも線幅0
.5 Aと十分に小さく抑えることができた。
By injecting current into the DFB region 6 of this element to cause laser oscillation, and adjusting the current of the modulator 7 to change the optical loss in that part, the linewidth is zero even during high-speed modulation of p, lGb/s.
.. We were able to keep it sufficiently small at 5 A.

通常のI)l”B−LDを高速変調するとキャリア変動
にともなう屈折率の変化によって単一の発振軸モードの
幅が1〜2人程度に拡がってしまい、そのため光フアイ
バ通信の伝送帯域を制限していた。
When a normal I)l"B-LD is modulated at high speed, the width of a single oscillation axis mode expands to about 1 to 2 due to the change in refractive index due to carrier fluctuation, which limits the transmission band of optical fiber communication. Was.

また、集積型DFB−Li)でも電極だけを独立に形成
した場合には変調器7に電流を加えたときにDF B領
域6にも流れ込んでしまい、変調時の波長変化が大きく
安定な単一軸モード発振が得られにくかった。
Furthermore, even in the case of integrated DFB-Li), if only the electrodes are formed independently, when current is applied to the modulator 7, it will flow into the DFB region 6, and the wavelength change during modulation will be large, resulting in a stable single axis. It was difficult to obtain mode oscillation.

一方、本発明の実施例においては、前述の電気的クロス
トークを十分小さく抑えることができ、高速変調時にも
狭いスペクトル線幅で安定に動作させることができた。
On the other hand, in the embodiment of the present invention, the electrical crosstalk described above could be suppressed to a sufficiently low level, and stable operation with a narrow spectral linewidth could be achieved even during high-speed modulation.

溝8部分における光波の結合が十分でないと、DFB発
振光が変調器7に結合せず散乱光となる場合もあるが、
そのような散乱光は光ファイバには結合口ないので実用
上問題はない。この光波の結合をさらに良好にするには
、変調器7の導波路サイズを大きくすることも有効であ
る。また半絶縁性の半導体基板を用い、そこまで溝8が
遅っするように形成すると電気的絶縁はよシ良好になる
If the coupling of light waves in the groove 8 portion is not sufficient, the DFB oscillation light may not be coupled to the modulator 7 and become scattered light.
Such scattered light poses no practical problem since there is no coupling port in the optical fiber. In order to further improve the coupling of light waves, it is also effective to increase the size of the waveguide of the modulator 7. Further, if a semi-insulating semiconductor substrate is used and the grooves 8 are formed so as to be late, the electrical insulation will be improved.

なお、本実施例においてはInPを基板、InGaAs
Pを活性層とする波長1μm帯の半導体材料を示したが
、これらに限らずGaAlAs/GaAs系。
Note that in this example, InP is used as the substrate, and InGaAs is used as the substrate.
Although a semiconductor material with a wavelength of 1 μm in which P is used as an active layer is shown, the present invention is not limited to these, and includes GaAlAs/GaAs systems.

InGaAs/InA7As系等の他の半導体材料を用
いてもよい。また、本実施例にはロス変調器7を集積し
た集積型DFB−LDを示したが、これに限らず波長制
御壓のDBR−LD 、反射端面位相制御型のDIi”
B−LD等の集積型の単一軸モード半導体レーザは全て
含まれる。さらに、用いる有機/絶縁材料もSiO□や
ポリイミドに限ることなく、他の材料を用いてさしつか
えない。
Other semiconductor materials such as InGaAs/InA7As may also be used. In addition, although this embodiment shows an integrated type DFB-LD in which the loss modulator 7 is integrated, the present invention is not limited to this, and it is not limited to a wavelength control type DBR-LD, and a reflective end face phase control type DIi''.
All integrated single-axis mode semiconductor lasers such as B-LDs are included. Furthermore, the organic/insulating material used is not limited to SiO□ and polyimide, and other materials may be used.

(発明の効果) 本発明によれば、集積型の単一軸モード半導体レーザに
おいて異なる動作領域間をポリイミドのような有機材料
、あるいは絶縁材料で光学的に結合したことによって、
良好な電気的絶縁、光学的結合を得ることができ、キャ
リアのもれ込みに起因する単一軸モード動作の不安定性
を取シ除くことができた。
(Effects of the Invention) According to the present invention, by optically coupling different operating regions in an integrated single-axis mode semiconductor laser with an organic material such as polyimide or an insulating material,
Good electrical insulation and optical coupling could be obtained, and instability in single-axis mode operation caused by carrier leakage could be eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に、少なくとも活性層と、この活性層より
もエネルギーギャップが大きくかつ一方の面に回折格子
が形成された光ガイド層とを有する集積型半導体レーザ
において、レーザ共振軸方向に少なくとも前記活性層を
含み第1の電極をもつ発光領域とこの発光領域の出力光
を制御し前記第1の電極と異る領域に第2の電極をもつ
制御領域とが形成され、これら各領域の境界領域に光波
が結合される有機材料あるいは絶縁材料を挿入した溝を
設けたことを特徴とする集積型半導体レーザ。
In an integrated semiconductor laser having at least an active layer and a light guide layer having a larger energy gap than the active layer and having a diffraction grating formed on one surface on a semiconductor substrate, at least the active layer is disposed on a semiconductor substrate. A light emitting region including a layer and having a first electrode, and a control region having a second electrode in a region different from the first electrode for controlling the output light of the light emitting region, and a boundary region between these regions. An integrated semiconductor laser characterized by having a groove in which an organic material or an insulating material is inserted into which light waves are coupled.
JP60005440A 1985-01-16 1985-01-16 Integrated semiconductor laser Pending JPS61164289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60005440A JPS61164289A (en) 1985-01-16 1985-01-16 Integrated semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60005440A JPS61164289A (en) 1985-01-16 1985-01-16 Integrated semiconductor laser

Publications (1)

Publication Number Publication Date
JPS61164289A true JPS61164289A (en) 1986-07-24

Family

ID=11611252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60005440A Pending JPS61164289A (en) 1985-01-16 1985-01-16 Integrated semiconductor laser

Country Status (1)

Country Link
JP (1) JPS61164289A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042192A (en) * 1989-12-26 1992-01-07 American Teleph & Telegr Co <Att> Hybrid laser device for frequency modulation
EP0696747A2 (en) * 1994-08-12 1996-02-14 Mitsubishi Denki Kabushiki Kaisha Integrated semiconductor optical waveguide device and fabrication methode
JP2009070835A (en) * 2007-09-10 2009-04-02 Opnext Japan Inc Semiconductor element and manufacturing method thereof
WO2024012895A1 (en) * 2022-07-13 2024-01-18 Ams-Osram International Gmbh Optoelectronic semiconductor component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042192A (en) * 1989-12-26 1992-01-07 American Teleph & Telegr Co <Att> Hybrid laser device for frequency modulation
EP0696747A2 (en) * 1994-08-12 1996-02-14 Mitsubishi Denki Kabushiki Kaisha Integrated semiconductor optical waveguide device and fabrication methode
EP0696747A3 (en) * 1994-08-12 1996-11-20 Mitsubishi Electric Corp Integrated semiconductor optical waveguide device and fabrication methode
JP2009070835A (en) * 2007-09-10 2009-04-02 Opnext Japan Inc Semiconductor element and manufacturing method thereof
WO2024012895A1 (en) * 2022-07-13 2024-01-18 Ams-Osram International Gmbh Optoelectronic semiconductor component

Similar Documents

Publication Publication Date Title
US5678935A (en) Semiconductor optical waveguide and method of fabricating the same
US7463663B2 (en) Semiconductor laser diode and integrated semiconductor optical waveguide device
JPS6155981A (en) Semiconductor light-emitting element
JPH0632332B2 (en) Semiconductor laser device
JPH0770791B2 (en) Semiconductor laser and manufacturing method thereof
US4811352A (en) Semiconductor integrated light emitting device
JPH06338659A (en) Laser element
JPH0793473B2 (en) Optical semiconductor device
JPH01319986A (en) Semiconductor laser device
JPS61164289A (en) Integrated semiconductor laser
KR100576299B1 (en) Semiconductor laser and element for optical communication
JPS6232680A (en) Integrated type semiconductor laser
JPH10242577A (en) Semiconductor laser and manufacture thereof
JP3264179B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH0656904B2 (en) Integrated distributed feedback semiconductor laser
JP2920950B2 (en) Integrated optical semiconductor device
JPS61212082A (en) Integrated semiconductor laser
JPS59184585A (en) Semiconductor laser of single axial mode
JP2776381B2 (en) Semiconductor laser device
JPH0582888A (en) Distributed feedback semiconductor laser
WO2021209115A1 (en) Electroabsorption modulated laser
JPH084178B2 (en) Method for manufacturing distributed Bragg reflection semiconductor laser
JPS6188584A (en) Distributed feedback type semiconductor laser having phase shift structure
JPH07202338A (en) Optical semiconductor device
JPH0446477B2 (en)