JPS62173785A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS62173785A
JPS62173785A JP61016294A JP1629486A JPS62173785A JP S62173785 A JPS62173785 A JP S62173785A JP 61016294 A JP61016294 A JP 61016294A JP 1629486 A JP1629486 A JP 1629486A JP S62173785 A JPS62173785 A JP S62173785A
Authority
JP
Japan
Prior art keywords
layer
region
resonator
laminated
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61016294A
Other languages
Japanese (ja)
Inventor
Shinji Takano
信司 高野
Ikuo Mito
郁夫 水戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61016294A priority Critical patent/JPS62173785A/en
Publication of JPS62173785A publication Critical patent/JPS62173785A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • H01S5/2277Buried mesa structure ; Striped active layer mesa created by etching double channel planar buried heterostructure [DCPBH] laser

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve the uniformity and the high output characteristic of a semiconductor laser operated in a single axis mode by forming a non-ion implanted region at the center in the active layer toward a resonator axis and current regulating regions made of high resistance regions at both sides of the region. CONSTITUTION:A diffraction grating having lambda/4 shift region 50 is formed substantially at the center of a resonator on a (001) azimuth substrate 1, and an optical guide layer 2, a non-doped active layer 3 and a clad layer 4 are laminated on the substrate 1. Two parallel grooves 71, 72 are formed at both sides of a mesa stripe 70 therebetween in (110) direction, a block layer 5 and a current enclosure layer 6 are further so laminated as not to grow only on the top of the stripe 70, a buried layer 7 and a cap layer 8 are so laminated as to cover the entirety to form a double channel planarly buried structure. Then, ions are implanted to the both end sides to form current regulating regions 9 made of high resistance regions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザに関し、特に光通信用あるいは光
計測器用の光源として用いられる半導体レーザに関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser, and more particularly to a semiconductor laser used as a light source for optical communications or optical measuring instruments.

〔従来の技術〕[Conventional technology]

単一軸モードで動作する分布帰還形半導体レーザ(以下
DFB  LDと記す)あるいは分布ブラッグ反射形半
導体レーザ(以下DBRLDと記す)は、高速および長
距離の光フアイバ通信用光源として、また、発振波長の
単一性が良いことから、コヒーレントな光学系を組んだ
光計測器の光源として期待され開発が急ピッチで進めら
れている。InGaAsP/InP系材料を用いたDF
B  LDでは4 Gb/sという超高速で1100k
を越える伝送距離の光フアイバ通信システム実験の光源
として用いられ良好な結果が得られている。また特性が
良好な素子では単一軸モード動作で100mWを越える
高出力CW動作や、140℃に達する高温CW動作が得
られ、従来のファブリ・ペロー(Fabry−Pero
t)形半導体レーザとほぼ同等の特性が得られている。
Distributed feedback semiconductor lasers (hereinafter referred to as DFBLDs) or distributed Bragg reflection semiconductor lasers (hereinafter referred to as DBRLDs) that operate in a single-axis mode are used as light sources for high-speed and long-distance optical fiber communications. Because of its good unity, it is expected to be used as a light source for optical measuring instruments that incorporate coherent optical systems, and its development is progressing at a rapid pace. DF using InGaAsP/InP material
1100k at ultra high speed of 4 Gb/s in BLD
It has been used as a light source in experiments on optical fiber communication systems with transmission distances exceeding In addition, devices with good characteristics can achieve high-output CW operation of over 100 mW in single-axis mode operation and high-temperature CW operation of up to 140°C.
Almost the same characteristics as the t) type semiconductor laser were obtained.

しかしながら、従来のファブリ・ペロー形半導体レーザ
と異なりDFB  LDでは、発振軸モードを1本に制
御することに製作上の難しさを有している。即ち、ファ
ブリ・ペロー形半導体レーザでは、発振横モードを制御
しさえすればほぼ所要条件を満足させることができる素
子を安定して作製することができたが、DFB  LD
では回折格子が光射出端面でどの様な回折格子位相で切
れているか、などにより発振スペクトルが単一軸モード
であったり、複数の軸モードであったり複雑に変化する
ため、安定した単・−軸モードで動作する素子を高い歩
留りで製作することが難しかった。
However, unlike conventional Fabry-Perot semiconductor lasers, DFB LDs have manufacturing difficulties in controlling the oscillation axis mode to one. In other words, in the Fabry-Perot semiconductor laser, it was possible to stably fabricate a device that could almost satisfy the required conditions as long as the oscillation transverse mode was controlled, but the DFB LD
In this case, the oscillation spectrum changes in a complex manner, such as in a single axis mode or in multiple axis modes, depending on the phase of the diffraction grating at which the diffraction grating is cut at the light exit end face. It has been difficult to produce devices that operate in this mode with a high yield.

更に、単一軸モードで動作可能なりFB  LDでも、
高出力で端−軸モード発振が可能というわけではない。
Furthermore, even FB LD can operate in single axis mode.
End-axis mode oscillation is not possible at high output.

第5図は従来のDFB  LDの一例を示すレーザ・チ
ップの主要部の断面図である。
FIG. 5 is a sectional view of the main part of a laser chip showing an example of a conventional DFB LD.

この従来例は、素子のほぼ中央部のブラック波長に対し
1/4波長分だけ回折枯子の位相を変化させるλ/4シ
フ仁領域50が設けられたDFB2L、 Dであり、両
側m面での反射による影響を避けるため両端面には低反
射膜30.31が形成されている。
This conventional example is a DFB2L, D in which a λ/4 shift region 50 is provided that changes the phase of the diffraction rays by 1/4 wavelength with respect to the black wavelength at approximately the center of the element. In order to avoid the influence of reflection, low reflection films 30 and 31 are formed on both end faces.

このようなりFB  LDでは単一軸モードの発振特性
が改善されることが分っている(例えば、宇高等により
、昭和59年度電子通信学会全国大会予稿集1017号
に報告されている)。
It is known that the oscillation characteristics of the single-axis mode are improved in such an FB LD (for example, reported by Utaka in Proceedings of the 1981 Institute of Electronics and Communication Engineers National Conference No. 1017).

し7かし、このようなりFB  LDにおいても、高出
力を得ようとして注入電流を増加させてい・くと、ブラ
ック波長で発振するモードと同時に、あるいはブラッグ
波長でのモードが発振を停止し副モードが発振するよう
になる。
However, even in such an FB LD, if the injected current is increased in an attempt to obtain high output, the mode that oscillates at the Black wavelength or the mode at the Bragg wavelength stops oscillating and becomes secondary. mode begins to oscillate.

この現象は次のように考えると理解できる。This phenomenon can be understood in the following way.

第6図(a)、(b)は第5図に示した従来例における
利得と光の電界強度の分布を説明するための特性図であ
る。
FIGS. 6(a) and 6(b) are characteristic diagrams for explaining the distribution of gain and electric field intensity of light in the conventional example shown in FIG.

第6図(a>に示すように、共振軸方向に−)kな利得
分布を仮定すると、0次の軸モードにおける光の電界強
度分布は実線で示したようになる。
Assuming a gain distribution of −)k in the direction of the resonance axis, as shown in FIG.

但し、注入電流密度は共振器の軸方向で一様と仮定して
計算した4 電界強度は素子中央のλ/4シフト領域50 ”1所で
最も大きく端面に向って減衰して行く形になることがわ
かる。λ/′4シフト領域50を内部に形成した素子は
ブラッグ波長で発振し、副モードとの発振しきい値利得
差を大きくとることができる優れた構造て゛あり、その
時の共振器内の光の電界強度分布は第6図(a)に示し
たような形になるわけである。ところで第6図(a)で
は利得は共振器軸方向で一様とした。ところが実際は共
振器のほぼ中央では光の電界強度が大きいため、共振器
の両端部に比較し、より多くの注入キャリヤが消費され
ており、実際は利得の飽和が起きる。
However, calculations were made assuming that the injected current density is uniform in the axial direction of the resonator4.The electric field strength is highest at one point in the λ/4 shift region 50' at the center of the element and attenuates toward the end face. The element in which the λ/'4 shift region 50 is formed oscillates at the Bragg wavelength, and has an excellent structure that allows a large difference in oscillation threshold gain with the submode. The electric field strength distribution of the light inside the cavity takes the form shown in Figure 6(a).By the way, in Figure 6(a), the gain is assumed to be uniform in the resonator axis direction.However, in reality, the resonator Since the electric field strength of the light is large near the center of the resonator, more injected carriers are consumed than at both ends of the resonator, and the gain actually saturates.

この効果を考えると光の電界強度分布および利得の分布
は第6図(b)に示されるような中央での光の電界強度
が第6図(a>に比べ若干小さくなった形状となる。と
ころで、高出力を得ようとして注入電流を次第に増加さ
せたとき、共振器内部の光の電界強度が更に増大するた
め、共振器中央付近での注入キャリヤの消費が更に増大
し、逆に中央部に比べ注入キャリヤの消費が小さい共振
器の両端部での利得が大きいという傾向が助長されてい
く。従って、ブラッグ波長で発振するモードとは異なっ
た光の電界強度分布が共振器の両端部において大きくな
る様な副モードが発振し易くなって行き、最後にはブラ
ッグ波長で発振するモードと同時にあるいはブラッグ波
長でのモードが発振を停止して副モードが発振する。こ
の様な現象は従来の計算が、はとんどの場合共振器内で
の利得が一様であると仮定していたため、十分に理解さ
れていなかった。実際、本発明の発明者等は第5図の構
造の類似の構造の素子を試作して評価したところ、最初
予測されていた以」二に、副モードの発振が観測されて
おり、これを説明するには上述した様な共振器軸方向で
の光の電界強度分布を考慮する必要があることがわかっ
た。
Considering this effect, the electric field strength distribution and gain distribution of light will have a shape as shown in FIG. 6(b), in which the electric field strength of light at the center is slightly smaller than that in FIG. 6(a>). By the way, when the injected current is gradually increased in an attempt to obtain high output, the electric field strength of the light inside the resonator further increases, which further increases the consumption of injected carriers near the center of the resonator. The tendency for the gain to be large at both ends of the resonator, where the consumption of injected carriers is smaller than that at As the secondary mode increases in size, it becomes easier to oscillate, and eventually the secondary mode oscillates at the same time as the mode that oscillates at the Bragg wavelength, or when the mode at the Bragg wavelength stops oscillating. The calculations were not well understood because they mostly assumed that the gain within the resonator was uniform.In fact, the inventors of the present invention used a similar structure of When we prototyped and evaluated a device with this structure, we observed sub-mode oscillation, which was different from what was initially predicted.The explanation for this is that the electric field of the light in the direction of the resonator axis as described above. It was found that it is necessary to consider the intensity distribution.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体レーザは、最も安定に単一軸モー
ドで発振するものにおいても、注入電流を増していくと
副モードが表われ、単一軸モード発振しなくなるという
問題点があった。
The above-mentioned conventional semiconductor lasers have a problem in that even if the laser oscillates most stably in a single-axis mode, as the injection current is increased, a sub-mode appears and the semiconductor laser no longer oscillates in the single-axis mode.

本発明の目的は、安定した単一軸モードで動作し、かつ
高い歩留りで製作可能な半導体レーザを提供することに
ある。
An object of the present invention is to provide a semiconductor laser that operates in a stable single-axis mode and that can be manufactured with high yield.

1、問題点を解決するための手段〕 本発明の半導体レーザは、所定の軸モードにおける活性
層内の共振器軸方向の光の電界強度分布に少なくとも近
似的に整合した注入電流密度分布を与える電流調整領域
を有するものである。
1. Means for Solving the Problems] The semiconductor laser of the present invention provides an injection current density distribution that at least approximately matches the electric field intensity distribution of light in the cavity axis direction within the active layer in a predetermined axial mode. It has a current adjustment area.

r実施例〕 次に、本発明の実施例について図面を参照して説明する
Embodiment] Next, an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例を示すレーザ・チップの
斜視図である。
FIG. 1 is a perspective view of a laser chip showing a first embodiment of the present invention.

この実施例は、0次の軸モードにおける活性層3内の共
振器軸方向の光の電界強度分布に近似的に整合した注入
電流密度分布を与える、プロトン注入領域からなる電流
調整領域9−1.9−2を有している。
In this embodiment, a current adjustment region 9-1 consisting of a proton injection region provides an injection current density distribution that approximately matches the electric field intensity distribution of light in the cavity axis direction within the active layer 3 in the zero-order axial mode. .9-2.

次に、この実施例の製造工程を説明する。Next, the manufacturing process of this example will be explained.

(001)面方位のn形InP(Soドープ、キャリヤ
濃度I X 1018cm−’)からなる基板1の上に
、共振器のほぼ中央部に、λ/4シフト領域50を有す
る深さ1000人、周期2000人の回折格子60を形
成する。この基板1の上に発光波長にして1.15μm
の禁制帯幅のn形InGaAsP  (膜厚が回折格子
の谷の部分で0.15μry3Snドープ、キャリヤ濃
度7X10”cm−4)からなる光ガイド層2゜発光波
長にしてl、30μmの禁制帯幅のノンドープInGa
AsP  (膜厚0.1μm)からなる活性層3および
p形1nP (Znドープ、キャリヤ濃度1×1()1
80.−3、膜厚0.7μm)からなるクラッド層4を
積層する。この後<110>方向に、間に上部の幅約1
.5μmのメサストライプ70を挟んで、深さ3μm、
幅約8μmの2本の平行な溝71゜72を形成し、更に
、p形1oP(Znドープ、キャリヤ濃度1×1018
CII+−3、平坦部での厚さ0.5 am)からなる
電流ブロック層5、n形1nP(Teドープ、キャリヤ
濃度5 X 10 ”cm−’、平坦部での厚さ0.5
μm)からなる電流閉込め層6をメサストライプ70の
上部のみには成長しない様に積層させ、更に全体を覆っ
てp形1nP(Znドープ、キャリヤ濃度lXl0”Ω
−3、平坦部での厚さ1.5μm〉からなる埋込み層7
、p形1nGaAsP(Znドープ、キャリヤ濃度I 
X 1019cm−3、平坦部での厚さ1.0μm)か
らなるキャップ層8を積層させ、水戸等が昭和57年度
電子通信学会総合全国大会の予稿集857で報告した二
重チャネルプレーナ埋込み形構造を形成する。次に、両
端面側に40μmの幅でイオンを注入する(注入イオン
はH+、25〜200 keVの多重打ち込みで総注入
M3×10 ”H” / am2)。このDFBL、D
の共振器長は200μmであり、従って、共振器方向中
央部に120μmの長さのイオン注入をしない領域と、
その両側に各40μmの高抵抗領域からなる電流調整領
域9−1.9−2が形成されている6p側電極80.n
側型ff181を形成した後、襞間によって得られた両
側の端面には、反射率が2%以下の窒化シリコン膜から
なる低反射膜3o、31が形成されている。
On a substrate 1 made of (001)-oriented n-type InP (So-doped, carrier concentration I x 1018 cm-'), a λ/4 shift region 50 is located approximately in the center of the resonator, and the depth is 1000. A diffraction grating 60 with a period of 2000 is formed. On this substrate 1, the emission wavelength is 1.15 μm.
A light guide layer made of n-type InGaAsP (film thickness 0.15 μry3Sn doped at the valleys of the diffraction grating, carrier concentration 7×10”cm−4) with a forbidden band width of 2° emission wavelength, 30 μm. non-doped InGa
Active layer 3 made of AsP (film thickness 0.1 μm) and p-type 1nP (Zn doped, carrier concentration 1×1()1
80. -3, film thickness 0.7 μm) is laminated. After this, in the <110> direction, the upper width is about 1 in between.
.. A depth of 3 μm, with a mesa stripe 70 of 5 μm in between.
Two parallel grooves 71 and 72 with a width of about 8 μm are formed, and p-type 1oP (Zn doped, carrier concentration 1×10 18
Current blocking layer 5 consisting of n-type 1nP (Te-doped, carrier concentration 5 x 10 "cm-', thickness 0.5 am in the flat part), CII+-3, thickness 0.5 am in the flat part)
A current confinement layer 6 consisting of a p-type 1nP (Zn doped, carrier concentration l
-3, buried layer 7 with a thickness of 1.5 μm at the flat part
, p-type 1nGaAsP (Zn doped, carrier concentration I
x 1019 cm-3, thickness 1.0 μm at the flat part) is laminated to form a double channel planar embedded structure, which was reported by Mito et al. in Proceedings 857 of the 1985 IEICE General Conference. form. Next, ions are implanted into both end faces in a width of 40 μm (the implanted ions are H+, and multiple implantations of 25 to 200 keV are performed for a total implantation of M3×10 “H”/am2). This DFBL, D
The resonator length is 200 μm, so there is a 120 μm long region in the center in the direction of the resonator where no ions are implanted;
6p side electrode 80. Current adjustment regions 9-1 and 9-2 each consisting of a high resistance region of 40 μm are formed on both sides thereof. n
After forming the side mold ff181, low reflection films 3o and 31 made of a silicon nitride film with a reflectance of 2% or less are formed on both end faces obtained by the creases.

第2図は第1回の実施例の動作時の光の電界強度分布(
実線)と注入電流密度分布(破線)を示す特性図である
Figure 2 shows the electric field strength distribution of light (
FIG. 4 is a characteristic diagram showing the injection current density distribution (solid line) and the injection current density distribution (broken line).

この図はp側電極80とn側電極81間に順方向に電圧
を加えたときの特性図であって、光の電界強度分布に近
似的に整合した注入電流密度分布を有している。
This figure is a characteristic diagram when a voltage is applied in the forward direction between the p-side electrode 80 and the n-side electrode 81, and has an injection current density distribution that approximately matches the electric field intensity distribution of light.

このようにして作製した素子の特性を測定したところ、
25℃での発振しきい値は25mA、また前方端面90
からの光出力に関しての微分量子効率は20〜25%で
あった。発振スペクトルに関してはイオン注入を行なわ
なかった同一のウェーハロットの素子では軸モードの跳
びゃ、多軸モード発振するものが数多く見られたのに比
べ、本発明の構造では、70%程度の素子が片側出力3
0mW程度以上の高出力域まで単一軸モード動作を示し
な。
When we measured the characteristics of the device fabricated in this way, we found that
The oscillation threshold at 25°C is 25 mA, and the front end face is 90 mA.
The differential quantum efficiency in terms of light output from was 20-25%. Regarding the oscillation spectrum, in the devices of the same wafer lot that were not ion-implanted, many axial mode oscillations occurred and multi-axis mode oscillation was observed, but with the structure of the present invention, about 70% of the devices oscillated in multiple axial modes. One side output 3
Do not exhibit single-axis mode operation up to a high power range of about 0mW or more.

第3図は本発明の第2の実施例を示すレーザ・チップの
斜視図である。
FIG. 3 is a perspective view of a laser chip showing a second embodiment of the invention.

第1の実施例と異なる点は、まず第1に後方端面に、厚
さ0.2μmの5i02/厚さQ、1μmのアモルフ・
rスSi、/厚さ0.2μmの5i02/厚さ0.1μ
mのアモルファスSiの4層からなる反射率90%の高
反射膜32が設けられていることであり、第2に、λ/
4シフト領域はこの構造では必要がなく、形成されてい
ないことであり、第3図に、プロトン注入領域からなる
電流調整領域9−3がレーザ・チップの左端部にのみ設
けられていることである。プロトン注入の条件は第1の
実施例と同じである。
The difference from the first embodiment is that first of all, on the rear end surface, there is a 5i02/thickness Q of 0.2 μm, and an amorph film of 1 μm.
rs Si, / 0.2 μm thick 5i02 / 0.1 μm thick
The second feature is that a high reflection film 32 with a reflectance of 90% consisting of four layers of amorphous Si of λ/m is provided.
The 4-shift region is not needed in this structure and is not formed, and as shown in FIG. 3, the current adjustment region 9-3 consisting of the proton injection region is provided only at the left end of the laser chip. be. The conditions for proton injection are the same as in the first example.

第4図は第3図の実施例の動作時の光の電界強度分布(
実線)と注入電流密度分布(破線)を示す特性図である
Figure 4 shows the electric field intensity distribution of light during operation of the embodiment shown in Figure 3 (
FIG. 4 is a characteristic diagram showing the injection current density distribution (solid line) and the injection current density distribution (broken line).

この素子の特性を評価したところ発振しきい値は20m
A、前方端面90から出射する光の最大出力100mW
、また、微分量子効率は室温で50%であった。単一軸
モード動作の安定性も良好であり、はとんどの素子が5
0mWを越える光出力域まで安定な単一軸モードで動作
した。
When the characteristics of this element were evaluated, the oscillation threshold was 20 m.
A. Maximum output of light emitted from the front end face 90 100mW
, and the differential quantum efficiency was 50% at room temperature. The stability of single-axis mode operation is also good, with most elements
It operated in a stable single-axis mode up to an optical power range exceeding 0 mW.

以上の説明では、単一の注入条件により形成した高抵抗
領域を有する場合を実施例として示したが、加速電圧を
変化させることによって注入深さを変えたり、注入量を
変えて抵抗率を制御したり、また、これらを組合せて一
層、光の電界強度分布に整合した注入電流密度分布を得
ることができるのは明らかである。
In the above explanation, an example is shown in which a high resistance region is formed under a single implantation condition, but the resistivity can be controlled by changing the implantation depth by changing the accelerating voltage or by changing the implantation amount. It is clear that it is possible to obtain an injection current density distribution that matches the electric field intensity distribution of light even more by combining these methods.

又、プロトン以外のイオンを注入してもよいし、イオン
注入法に限らず、実質的に抵抗値を制御できればよい。
Further, ions other than protons may be implanted, and the method is not limited to the ion implantation method, as long as the resistance value can be substantially controlled.

例えば、キャップ層とn側電極の間に、適当な多きさの
開孔部を分布させた絶縁膜を設けてもよい。
For example, an insulating film having openings of an appropriate size may be provided between the cap layer and the n-side electrode.

更に二重チャネルプレーナ埋込み形のLDを例に説明し
たが、他の構造のLD、例えば単純な埋込み形のLDや
りブガイド形のLD等へも適用可能である。
Furthermore, although the explanation has been given using a double channel planar embedded type LD as an example, it is also applicable to other structured LDs, such as a simple embedded type LD or a guide type LD.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、電流調整領域を設けるこ
とにより、半導体レーザ内部の光の電界強度分布にほぼ
整合した注入電流密度分布を実現できるので、単一軸モ
ードで動作する半導体レーザの均一性と高出力特性の改
善とが得られる効果がある。
As explained above, by providing the current adjustment region, the present invention can realize an injection current density distribution that almost matches the electric field intensity distribution of light inside the semiconductor laser, thereby improving the uniformity of the semiconductor laser operating in a single axis mode. This has the effect of providing improved high output characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示ずレーザ・チ・ツブ
の斜視図、第2図は第1図の実施例の動作時の光の電界
強度分布(実線)と注入電流密度分布く破線)を示す特
性図、第3図は本発明の第2の実施例を示すレーザ・チ
ップの斜視図、第4図は第3図の実施例の動作時の光の
電界強度分布(実線)と注入電流密度分布(破線)を示
す特性図、第5図は従来のDFB  LDの一例を示す
レーザ・チップの主要図の断面図、第6図(a>、(b
)は第5図に示した従来例における利得と光の電界強度
の分布を説明するための特性図である。 1・・・基板、2・・・光ガイド層、3・・・活性層、
4・・・タラ・ソド層、5・・・電流プロ・ツク層、6
・・・電流閉込め層、7・・・埋込み層、8・・・キャ
ップ層、9−1゜9−2.9−3・・・電流調整領域、
30.31・・・低反射膜、32・・・高反射膜、50
・・・λ2/′4シフト領域、60・・・回折格子、7
0・・・メサストライプ、71.72・・・渦、80・
・・n側電極、81・・・n側電極、90・・・前方端
面。 第1図 第7図 翁30 外3゛電ンL淵苧?引残 第4図
Figure 1 is a perspective view of the laser chip, not showing the first embodiment of the present invention, and Figure 2 is the electric field intensity distribution (solid line) and injection current density during operation of the embodiment of Figure 1. 3 is a perspective view of a laser chip showing the second embodiment of the present invention, and FIG. 4 is a characteristic diagram showing the electric field intensity distribution of light during operation of the embodiment of FIG. Figure 5 is a cross-sectional view of the main diagram of a laser chip showing an example of a conventional DFB LD; Figures 6 (a>, (b)
) is a characteristic diagram for explaining the distribution of gain and electric field intensity of light in the conventional example shown in FIG. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Light guide layer, 3... Active layer,
4... Tara-sodo layer, 5... Current pro-tsuku layer, 6
... Current confinement layer, 7... Buried layer, 8... Cap layer, 9-1°9-2.9-3... Current adjustment region,
30.31...Low reflection film, 32...High reflection film, 50
...λ2/'4 shift region, 60... Diffraction grating, 7
0... Mesa stripe, 71.72... Vortex, 80.
. . . n-side electrode, 81 . . . n-side electrode, 90 . . . front end surface. Figure 1 Figure 7 Old man 30 Outside 3゛den L Fuchiyoshi? Remaining figure 4

Claims (1)

【特許請求の範囲】[Claims] 所定の軸モードにおける活性層内の共振器軸方向の光の
電界強度分布に少なくとも近似的に整合した注入電流密
度分布を与える電流調整領域を有することを特徴とする
半導体レーザ。
1. A semiconductor laser comprising a current adjustment region that provides an injection current density distribution that at least approximately matches the electric field intensity distribution of light in the cavity axis direction within an active layer in a predetermined axial mode.
JP61016294A 1986-01-27 1986-01-27 Semiconductor laser Pending JPS62173785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61016294A JPS62173785A (en) 1986-01-27 1986-01-27 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61016294A JPS62173785A (en) 1986-01-27 1986-01-27 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS62173785A true JPS62173785A (en) 1987-07-30

Family

ID=11912523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61016294A Pending JPS62173785A (en) 1986-01-27 1986-01-27 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS62173785A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205003A (en) * 2010-03-26 2011-10-13 Oki Electric Industry Co Ltd Distributed feedback semiconductor laser
JPWO2020105095A1 (en) * 2018-11-19 2021-05-13 三菱電機株式会社 Optical semiconductor device and manufacturing method of optical semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205003A (en) * 2010-03-26 2011-10-13 Oki Electric Industry Co Ltd Distributed feedback semiconductor laser
JPWO2020105095A1 (en) * 2018-11-19 2021-05-13 三菱電機株式会社 Optical semiconductor device and manufacturing method of optical semiconductor device

Similar Documents

Publication Publication Date Title
US5327448A (en) Semiconductor devices and techniques for controlled optical confinement
AU752828B2 (en) High power laterally antiguided semiconductor light source with reduced transverse optical confinement
US4754459A (en) Semiconductor lasers
EP0177221B1 (en) Semiconductor laser
EP0480697A2 (en) Tunable semiconductor laser
JP2003046190A (en) Semiconductor laser
US4701930A (en) Distributed feedback semiconductor laser
JP2943510B2 (en) Tunable semiconductor laser device
Kaminow et al. Lateral confinement InGaAsP superluminescent diode at 1.3 µm
JPS6332988A (en) Distributed feedback semiconductor laser
JP2003289169A (en) Semiconductor laser
CN109038215A (en) A kind of high power high velocity vertical cavity surface emitting lasers in dual oxide aperture
JPS62173785A (en) Semiconductor laser
JP2002111125A (en) Distributed feedback semiconductor laser
JPS62173786A (en) Distributed feedback type semiconductor laser
JPS6195592A (en) Integrated distribution bragg&#39;s reflection type semiconductor laser
JPS62245692A (en) Distributed feedback semiconductor laser with external resonator
JPH0656904B2 (en) Integrated distributed feedback semiconductor laser
JPS61283190A (en) Semiconductor laser device
JP3149962B2 (en) Multi-wavelength semiconductor laser device and driving method thereof
CN117175349B (en) Low-sensitivity low-divergence angle semiconductor light-emitting device and preparation method thereof
JPS58225681A (en) Semiconductor laser element
JPH03214683A (en) Variable wavelength semiconductor laser
JPS6066490A (en) Uniaxial mode semiconductor laser
JP2683092B2 (en) Semiconductor laser device