JPS62169120A - Space optical modulator - Google Patents

Space optical modulator

Info

Publication number
JPS62169120A
JPS62169120A JP61011383A JP1138386A JPS62169120A JP S62169120 A JPS62169120 A JP S62169120A JP 61011383 A JP61011383 A JP 61011383A JP 1138386 A JP1138386 A JP 1138386A JP S62169120 A JPS62169120 A JP S62169120A
Authority
JP
Japan
Prior art keywords
film
light
transparent electrode
liquid crystal
photoconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61011383A
Other languages
Japanese (ja)
Inventor
Ryosuke Araki
亮輔 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61011383A priority Critical patent/JPS62169120A/en
Publication of JPS62169120A publication Critical patent/JPS62169120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To increase the intensity of reading out light by forming a reflective surface of thin metallic films arranged in matrix. CONSTITUTION:A substrate formed with a transparent electrode 2, a photoconductive film 3, a light absorptive film 4 and a metallic reflective film 5 on a glass substrate 1 and a substrate formed with a transparent electrode 7 on a glass substrate 6 are subjected to an orientation treatment of a liquid crystal and a liquid crystal 8 is sealed therebetween to form a space optical modulator. The transparent electrode is constituted of the transparent conductor such as ITO or tin oxide film, etc. to be normally used. The photoconductive film is constituted of a photoconductive material such as CdS or a-Si. The metallic reflective film is the thin metallic film of Al, etc., and is formed with a picture element pattern into the matrix of a mosaic shape by photoetching. The pattern which is electrically separated and has large light absorptivity is selected for the metallic reflective picture element pattern formed to the mosaic shape. The light output is considerably increased by using the reflection of the metal for the reflective surface in the above-mentioned manner.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光アドレス型の空間光変調器に関するO 〔発明の概要〕 本発明は・光アドレス型の空間光変調器において、反射
面をマ) IJクス配列した金属薄膜とすることにより
、読み出し光の光強度を増加したものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to an optically addressed spatial light modulator. M) The light intensity of the readout light is increased by using a metal thin film arranged in an IJ pattern.

〔従来の技術〕[Conventional technology]

従来の光アドレス型の空間光変調器は、第2図に示すよ
うにガラス基21.28をはさんで透明電極22一液晶
23−反射膜24−光吸収膜25−光導電膜26−透明
電極27の構造となっており、光導電膜26に照射され
る光量により光導電膜の抵抗値が変化し・透明電極22
.27の間に一定電圧が印加されているため、光量によ
り液晶に印加される電圧は変化する。
As shown in FIG. 2, a conventional optically addressed spatial light modulator includes a transparent electrode 22, a liquid crystal 23, a reflective film 24, a light absorbing film 25, a photoconductive film 26, and a transparent conductive film 26. The structure of the electrode 27 is such that the resistance value of the photoconductive film changes depending on the amount of light irradiated onto the photoconductive film 26.
.. Since a constant voltage is applied between 27 and 27, the voltage applied to the liquid crystal changes depending on the amount of light.

すなわち、光社変化による光情報を液晶に印加する電圧
変化に変換し、■L電圧変化よる液晶の複屈折効果を利
用してUM偏光した光を照射することで、反射面で反射
して来る光は楕円偏光となり、光情報に変換される。し
たがって出力側に偏光子を置くことにより空間強度分布
を得ることができる0 〔発明が解決しようとする問題点〕 しかし、前述の従来技術では、反射膜が誘電性物質から
なっている。これは導電性物質で反射膜を形成した場合
、光導電膜の変化による電圧変化が導電反射膜で平均化
され液晶に加わる電圧が平均化され光情報が伝達されな
くなる0誘電性膜の反射面は金属面に比べ反射率が低い
ため、光出力が小さくなる。また誘電体であることから
反射膜による電圧損失がありl!接極間印加する電圧は
高くなる。そこで本発明はこのような問題点を解決する
もので、その目的とするところは光出力を大きくするこ
とにある。
In other words, the optical information caused by the light change is converted into a voltage change applied to the liquid crystal, and the birefringence effect of the liquid crystal due to the L voltage change is used to irradiate UM polarized light, which is reflected on the reflective surface. The light becomes elliptically polarized and converted into optical information. Therefore, by placing a polarizer on the output side, a spatial intensity distribution can be obtained. [Problems to be Solved by the Invention] However, in the above-mentioned prior art, the reflective film is made of a dielectric material. This is because when a reflective film is formed with a conductive material, voltage changes due to changes in the photoconductive film are averaged out by the conductive reflective film, and the voltage applied to the liquid crystal is averaged, resulting in no longer transmitting optical information on the reflective surface of the zero-dielectric film. has a lower reflectance than a metal surface, resulting in lower light output. Also, since it is a dielectric material, there is voltage loss due to the reflective film! The voltage applied between the electrodes becomes higher. The present invention is intended to solve these problems, and its purpose is to increase the optical output.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の空間光変調器は、反射面を金属薄膜で形成し、
しかも金属薄膜はマトリクス状に配列し、それぞれが電
気的に分離されていることを特徴とする〇 〔作 用〕 本発明の上記の構成によれば、反射面を金属膜とするこ
とにより、反射率が高くなり光出力の大きな空間光変調
器が得られる。
The spatial light modulator of the present invention has a reflective surface formed of a metal thin film,
Moreover, the metal thin film is arranged in a matrix -shaped shape, and each is characterized by being electrically separated. As a result, a spatial light modulator with a high light output can be obtained.

しかも金属反射膜はマトリクス状に小片状に分離されて
いることから電気的に独立しており光入力情報はそのま
ま液晶に伝達され光出力される◇〔実施例1〕 第1図は、本発明の実施例における空間光変調器の断面
図である。ガラス基板1上に透明電極2、光導電膜3、
光吸収膜4、金属反射膜5を形成した基板と、ガラス基
板6上に透明電極7を形成した基板とを液晶の配向処理
して液晶8を封入して空間光変調器となすり 透明電極は、工To(工ndium  Tin 0xi
de)あるいはスズ酸化膜等通常使用されている透明導
電体で構成し、光導電膜はCaSやσ−31等の光導電
物で構成する・金属反射膜は・kl、、Ni、Cデ、M
O9Ta、W等の金属薄膜であり、フォトエツチングに
よりモザイク形状に画素パターンをマトリクス状に形成
しである。モザイク状に形成した金属反射画素パターン
は、電気的に分離されている。
Moreover, since the metal reflective film is separated into small pieces in a matrix, they are electrically independent, and the optical input information is directly transmitted to the liquid crystal and output as light. FIG. 2 is a cross-sectional view of a spatial light modulator in an embodiment of the invention. A transparent electrode 2, a photoconductive film 3, on a glass substrate 1,
A substrate on which a light absorption film 4 and a metal reflection film 5 are formed, and a substrate on which a transparent electrode 7 is formed on a glass substrate 6 are subjected to liquid crystal alignment treatment, and a liquid crystal 8 is sealed therein to form a spatial light modulator and a transparent electrode is formed. is To(Indium Tin 0xi)
de) Or it is made of a commonly used transparent conductor such as a tin oxide film, and the photoconductive film is made of a photoconductor such as CaS or σ-31.The metal reflective film is made of kl, Ni, C de, etc. M
It is a metal thin film of O9Ta, W, etc., and has a pixel pattern formed in a mosaic shape in a matrix by photo-etching. The metal reflective pixel patterns formed in a mosaic shape are electrically isolated.

光吸収率の大きなものを選ぶ。Choose one with high light absorption.

〔実施例2〕 実施例1における光吸収膜のかわりに金属反射膜5を遮
光膜として、金属反射膜の隙間は、対向基板上に遮光膜
を形成して光がもれるのを防止する0 第3図に示すようにガラス基板1上に透明電極2を形成
するつ透明電極としては、工TOやスズ酸化膜等の透過
率がよく抵抗の小さなものがよい。
[Example 2] The metal reflective film 5 is used as a light-shielding film instead of the light-absorbing film in Example 1, and the gap between the metal reflective films is filled with a light-shielding film formed on the opposing substrate to prevent light from leaking. As shown in FIG. 3, the transparent electrode 2 formed on the glass substrate 1 is preferably one having high transmittance and low resistance, such as a tin oxide film or a tin oxide film.

透明[極2の上に光センサとして光導電膜3を形成する
0光導電膜としては、0(18,σ−E3i等が使用さ
れる。この光導電膜上に金属膜を形成してフォトエツチ
ングによりモザイク状の画素パターンをマ) IJクス
状に形成して金属反射膜5となす。
0(18,σ-E3i, etc.) is used as the photoconductive film that forms the photoconductive film 3 as a photosensor on the transparent [pole 2].A metal film is formed on this photoconductive film and the photo By etching, a mosaic pixel pattern is formed in the shape of an IJ box to form the metal reflective film 5.

他方のガラス基板6に透明電極7を形成し、さらに透明
電極Z上に遮光膜9を前記画素パターンの隙間をおおう
ようにパターン形成する。遮光材としては、金属、半導
体、無機及び有機の吸収光材が考えられる。第3図は透
明電極上に遮光膜を形成したが、遮光膜を形成して遮光
腰上に形成してもよい。以上の2基板を実施例1と同様
にして液晶8を封入して空間光変調器となす。
A transparent electrode 7 is formed on the other glass substrate 6, and a light shielding film 9 is further patterned on the transparent electrode Z so as to cover the gap between the pixel patterns. As the light shielding material, metals, semiconductors, inorganic and organic light absorbing materials can be considered. In FIG. 3, a light-shielding film is formed on the transparent electrode, but a light-shielding film may be formed on the light-shielding plate. The above two substrates are sealed with liquid crystal 8 in the same manner as in Example 1 to form a spatial light modulator.

〔実施例3〕 実施例1における光吸収膜のかわりに金属反射膜5を遮
光膜として金属反射膜の隙間は、遮光膜パターンにより
光がもれるのを防止する。
[Example 3] A metal reflective film 5 is used as a light shielding film instead of the light absorbing film in Example 1, and the gap between the metal reflective films prevents light from leaking due to the light shielding film pattern.

第4図に示すようにガラス基板1上に透明1!極2を形
成し、透明電極2上に遮光膜9を形成し、フォトエツチ
ングにより所定の形状になす。さらに光導電膜3、金属
膜を積層し、金N膜を7オトエノチングにより所定の形
状にして金属反射膜5となす。このとき金属反射膜5の
隙間には平面的に見て前記遮光膜9が位置するようにす
る。
As shown in FIG. 4, transparent 1! A pole 2 is formed, a light shielding film 9 is formed on the transparent electrode 2, and a predetermined shape is formed by photo-etching. Further, a photoconductive film 3 and a metal film are laminated, and the gold-N film is formed into a predetermined shape by etching to form a metal reflective film 5. At this time, the light shielding film 9 is positioned in the gap between the metal reflective films 5 when viewed from above.

以後、実施例1と同様にして対向する基板を形成し、液
晶封入をして空間光変調器となす◇なお、遮光膜9と透
明電極2の順番は上記と逆の順番でも効果はかわらない
Thereafter, opposing substrates are formed in the same manner as in Example 1, and a liquid crystal is encapsulated to form a spatial light modulator. ◇ Note that the effect does not change even if the order of the light shielding film 9 and the transparent electrode 2 is reversed to the above. .

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、反射面を金属の反射
を使うことにより・従来の誘電体反射面の場合に比べ、
光出力を大巾に増大出来るようなるとともに、誘電体反
射膜を必要としないことから電圧損失を小さくすること
が出来、その結果として低電圧化、低消費電力化が実現
出来る◇また、金属反射面は、一定電圧となるため液晶
に印加される電圧は、その面内で一定となり、このこと
は、同一反射面からの光出力は均一であるため、シャー
プな空間光出力が得られることを意味する。すなわちキ
ャラクタやグラフィック等の像を出力する場合、像にに
じみが発生していたが、本発明により非常にシャープな
像が得られるようになった。
As described above, according to the present invention, by using metal reflection as the reflective surface, compared to the conventional dielectric reflective surface,
In addition to being able to greatly increase the optical output, it is also possible to reduce voltage loss because a dielectric reflective film is not required, resulting in lower voltage and lower power consumption. Since the surface has a constant voltage, the voltage applied to the liquid crystal is constant within that surface.This means that the light output from the same reflective surface is uniform, so sharp spatial light output can be obtained. means. That is, when outputting images such as characters and graphics, blurring occurred in the images, but with the present invention, very sharp images can now be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の空間光変調器の一実施例を示す主要断
面図。 第2図は従来の空間光変調器の主要断面図・第3図、第
4図は本発明による空間光変調器の実施例を示す主要断
面図。 2.7・・・・・・透明1!極 3・・・・・・光導電膜 4・・・・・・光吸収膜 5・・・・・・金属反射膜 8・・・・・・液晶 以  上
FIG. 1 is a main sectional view showing an embodiment of the spatial light modulator of the present invention. FIG. 2 is a main sectional view of a conventional spatial light modulator, and FIGS. 3 and 4 are main sectional views showing embodiments of a spatial light modulator according to the present invention. 2.7...Transparent 1! Pole 3...Photoconductive film 4...Light absorption film 5...Metal reflective film 8...Liquid crystal or higher

Claims (1)

【特許請求の範囲】 1、液晶を用いた空間光変調器において、透明電極−液
晶−金属反射膜−光導電膜−透明電極の構造を有し、金
属反射膜はモザイク状にマトリクス配列され、かつ各モ
ザイク状反射膜は、電気的に分離されていることを特徴
とする空間光変調器。 2、金属反射膜と光導電膜の間に光吸収膜を有すること
を特徴とする特許請求の範囲第一項記載の空間光変調器
。 3、光導電膜と透明電極の間に遮光膜を形成し、かつ金
属反射膜の隙間をおおうように配置したことを特徴とす
る特許請求の範囲第一項記載の空間光変調器。 4、透明電極とガラス基板との間に遮光膜を形成し、か
つ金属反射膜の隙間をおおうように配置したことを特徴
とする特許請求の範囲第一項記載の空間光変調器。 5、対向するガラス基板上に遮光膜を形成し、かつ金属
反射膜の隙間をおおうように配置したことを特徴とする
特許請求の範囲第一項記載の空間光変調器。
[Claims] 1. A spatial light modulator using liquid crystal, which has a structure of transparent electrode-liquid crystal-metal reflective film-photoconductive film-transparent electrode, and the metal reflective film is arranged in a mosaic matrix, A spatial light modulator characterized in that each mosaic reflective film is electrically isolated. 2. The spatial light modulator according to claim 1, further comprising a light absorbing film between the metal reflective film and the photoconductive film. 3. The spatial light modulator according to claim 1, characterized in that a light shielding film is formed between the photoconductive film and the transparent electrode, and is disposed to cover the gap between the metal reflective films. 4. The spatial light modulator according to claim 1, wherein a light shielding film is formed between the transparent electrode and the glass substrate, and is arranged to cover the gap between the metal reflective films. 5. The spatial light modulator according to claim 1, characterized in that a light shielding film is formed on the opposing glass substrates and is arranged to cover the gap between the metal reflective films.
JP61011383A 1986-01-22 1986-01-22 Space optical modulator Pending JPS62169120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61011383A JPS62169120A (en) 1986-01-22 1986-01-22 Space optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61011383A JPS62169120A (en) 1986-01-22 1986-01-22 Space optical modulator

Publications (1)

Publication Number Publication Date
JPS62169120A true JPS62169120A (en) 1987-07-25

Family

ID=11776484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61011383A Pending JPS62169120A (en) 1986-01-22 1986-01-22 Space optical modulator

Country Status (1)

Country Link
JP (1) JPS62169120A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179018A (en) * 1987-12-31 1989-07-17 Hamamatsu Photonics Kk Light valve device
JPH01179015A (en) * 1987-12-31 1989-07-17 Hamamatsu Photonics Kk Light valve device
JPH0211A (en) * 1987-10-15 1990-01-05 Displaytech Inc Electrooptical switching apparatus using ferrodielectric liquid crystal
JPH0497135A (en) * 1990-08-09 1992-03-30 Nec Corp Liquid crystal light valve
US5384649A (en) * 1991-12-26 1995-01-24 Matsushita Electric Industrial Co., Ltd. Liquid crystal spatial light modulator with electrically isolated reflecting films connected to electrically isolated pixel portions of photo conductor
US5428711A (en) * 1991-01-09 1995-06-27 Matsushita Electric Industrial Co., Ltd. Spatial light modulator and neural network
JP2009258689A (en) * 2008-03-24 2009-11-05 Citizen Holdings Co Ltd Optical modulation device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211A (en) * 1987-10-15 1990-01-05 Displaytech Inc Electrooptical switching apparatus using ferrodielectric liquid crystal
JPH01179018A (en) * 1987-12-31 1989-07-17 Hamamatsu Photonics Kk Light valve device
JPH01179015A (en) * 1987-12-31 1989-07-17 Hamamatsu Photonics Kk Light valve device
JPH0497135A (en) * 1990-08-09 1992-03-30 Nec Corp Liquid crystal light valve
US5428711A (en) * 1991-01-09 1995-06-27 Matsushita Electric Industrial Co., Ltd. Spatial light modulator and neural network
US5384649A (en) * 1991-12-26 1995-01-24 Matsushita Electric Industrial Co., Ltd. Liquid crystal spatial light modulator with electrically isolated reflecting films connected to electrically isolated pixel portions of photo conductor
JP2009258689A (en) * 2008-03-24 2009-11-05 Citizen Holdings Co Ltd Optical modulation device
US8466906B2 (en) 2008-03-24 2013-06-18 Citizen Holdings Co., Ltd. Optical modulation apparatus

Similar Documents

Publication Publication Date Title
KR100187329B1 (en) A reflective substrate, a method for producing the same and liquid crystal display device using the same
JP2698218B2 (en) Reflective liquid crystal display device and method of manufacturing the same
JP2812851B2 (en) Reflective liquid crystal display
US5808712A (en) Transmission liquid crystal display device with a liquid crystal panel having high luminance and wide view field angle
KR0162262B1 (en) Liquid crystal display device and its production
JPH0627481A (en) Reflective active matrix substrate, its production and liquid crystal display device
JPH05323371A (en) Reflection type liquid crystal display device and its production
US4619501A (en) Charge isolation in a spatial light modulator
TWI413829B (en) Reflective touch display panel and manufacturing method thereof
JPH043121A (en) Liquid crystal display and manufacture thereof
JPS62169120A (en) Space optical modulator
KR20070042615A (en) Array substrate and method of manufacturing the same
JP2930517B2 (en) Method for manufacturing reflective liquid crystal display device
US5220445A (en) Optical image processor
JPS58215626A (en) Light intensity-space frequency transducing element
KR20040049540A (en) Thin film transistor substrate, method of manufacturing the same and liquid crystal display device having the same
KR20020067885A (en) transflective liquid crystal display device
JPS6240430A (en) Liquid crystal light valve
JPS6328308B2 (en)
KR100707035B1 (en) Method for adjusting light transmission field and transflective type liquid crystal display using the same
JPH01177020A (en) Active matrix display device
JPS63182632A (en) Filter
KR100948621B1 (en) Trans-reflective liquid crystal display and method of manufacturing the same
KR100693649B1 (en) Reflector and liquid-crystal display
JP2844075B2 (en) Reflective active matrix liquid crystal display