JPH0497135A - Liquid crystal light valve - Google Patents

Liquid crystal light valve

Info

Publication number
JPH0497135A
JPH0497135A JP21109290A JP21109290A JPH0497135A JP H0497135 A JPH0497135 A JP H0497135A JP 21109290 A JP21109290 A JP 21109290A JP 21109290 A JP21109290 A JP 21109290A JP H0497135 A JPH0497135 A JP H0497135A
Authority
JP
Japan
Prior art keywords
liquid crystal
photoconductor
photodiode
light valve
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21109290A
Other languages
Japanese (ja)
Inventor
Susumu Tsujikawa
晋 辻川
Kureeberu Gomesu
ゴメス・クレーベル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21109290A priority Critical patent/JPH0497135A/en
Publication of JPH0497135A publication Critical patent/JPH0497135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain specific performance without using any dielectric mirror by setting a transient rise and a fall in voltage applied to liquid crystal below the inverted threshold voltage of the liquid crystal. CONSTITUTION:A photoconductor or photodiode is formed by sequentially laminating a transparent electrode 103, a photoconductive film 104, and a metallic picture element electrode 105 which serves as a reflecting film, and the transient voltage rise and drop DELTAVLC in the voltage applied to the liquid crystal 106 which is shown by an equation I is set below the inverted threshold voltage of the liquid crystal 106. Here, Cpc is the capacity of the photoconductor or photodiode, CLC is the capacity of the liquid crystal on the metallic picture element electrode, and DELTAV is variation in the amplitude of applied driving pulses. The electric inversion of the liquid crystal is therefore eliminated. Namely, basic operation which controls the liquid crystal inversion according to whether or not there is write light is enabled. Consequently, the basic operation can be obtained by using a metallic reflecting film which is easily manufactured and provides high reflection over a wide wavelength range instead of a dielectric mirror.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光情報処理及び光コンピユーテイングなどに使
われる、光信号を別の光信号に変換する光書き込み型の
液晶ライトバルブに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical writing type liquid crystal light valve that converts an optical signal into another optical signal and is used in optical information processing, optical computing, and the like.

とくに、光導電体またはフォトダイオードを一方の基板
上に有する液晶ライトバルブであって光によって液晶に
掛かる電界を制御する方式の液晶ライトバルブに関する
In particular, the present invention relates to a liquid crystal light valve that has a photoconductor or a photodiode on one substrate and that uses light to control the electric field applied to the liquid crystal.

(従来の技術) 液晶ライトバルブは光投射型デイスプレィや光情報処理
、光コンピユーテイングなどに使われる光学的スイッチ
ング素子であり、高速応答性を有する強誘電性結晶を用
いた光書き込み型のデバイスとして第3図のようなもの
が知られている。液晶ライトバルブは、第3図(a)に
示すようにITO電極302、光導電性膜301、誘電
体ミラー303を積層したガラス基板308と、ITO
電極307を設けたがガラス基板309との間に強誘電
性液晶306を挟持した構造となっている。光導電性膜
301には非晶質シリコンが用いられている。
(Prior art) Liquid crystal light valves are optical switching elements used in optical projection displays, optical information processing, optical computing, etc., and are optical writing devices using ferroelectric crystals with high-speed response. The one shown in Figure 3 is known. As shown in FIG. 3(a), the liquid crystal light valve consists of a glass substrate 308 on which an ITO electrode 302, a photoconductive film 301, a dielectric mirror 303 are laminated, and an ITO
Although an electrode 307 is provided, the structure is such that a ferroelectric liquid crystal 306 is sandwiched between it and a glass substrate 309. Amorphous silicon is used for the photoconductive film 301.

動作原理について説明する。液晶ライトバルブの等価回
路を第3図(b)に示す。第3図(b)では第3図(a
)の光導電性膜301とITO電極307を含めて光導
電体としている。ライトバルブにはパルス状の駆動電圧
201が印加される。光導電体に書き込み光206が照
射されていないときには、光導電体の抵抗204は高抵
抗状態にある。従って、液晶に分圧される電圧は、その
反転閾値電圧よりも低くなっているため、液晶分子の配
向状態は変化しない。一方、光導電体に書き込み光20
6が照射されると光導電体の光が照射された部分の抵抗
204は大きく低下する。
The operating principle will be explained. The equivalent circuit of the liquid crystal light valve is shown in FIG. 3(b). In Figure 3(b), Figure 3(a)
) includes the photoconductive film 301 and the ITO electrode 307 to form a photoconductor. A pulsed driving voltage 201 is applied to the light valve. When the photoconductor is not irradiated with write light 206, the photoconductor resistor 204 is in a high resistance state. Therefore, since the voltage applied to the liquid crystal is lower than its inversion threshold voltage, the alignment state of the liquid crystal molecules does not change. On the other hand, write light 20 on the photoconductor.
When 6 is irradiated, the resistance 204 of the portion of the photoconductor that is irradiated with light decreases significantly.

そのため、駆動電圧のほとんどが液晶に分圧され、液晶
分子を反転させる。このように、光導電体に光が当たっ
た部分と当たらない部分で液晶の配向が異なるため、偏
光板を用いることで読み出し光を強度変調として得るこ
とができる。
Therefore, most of the driving voltage is divided into the liquid crystal, inverting the liquid crystal molecules. In this way, since the orientation of the liquid crystal differs between the portions of the photoconductor that are hit by light and the portions that are not hit by light, readout light can be obtained as intensity modulation by using a polarizing plate.

(発明が解決しようとする課題) 従来の液晶ライトバルブの課題は、書き込み光と読み出
し光を分離する誘電体ミラーの形成が困難なことである
。通常、誘電体ミラーはTiOZnS2ゝ 等の高屈折率の透明な誘電体とMgF2等の低屈折率の
誘電体を交互にλ/4の膜厚で積層する。積層膜厚は2
〜4ミクロン程度必要であり、この形成に多大な時間を
要し、かつ全面に均一な膜厚を得るのが難しい。更に金
属膜と異なり、反射波長領域が限定されてしまう。
(Problems to be Solved by the Invention) A problem with conventional liquid crystal light valves is that it is difficult to form a dielectric mirror that separates writing light and reading light. Usually, a dielectric mirror is made by alternately laminating a transparent dielectric material with a high refractive index such as TiOZnS2 and a dielectric material with a low refractive index such as MgF2 with a film thickness of λ/4. Laminated film thickness is 2
The film needs to have a thickness of about 4 microns, takes a lot of time to form, and is difficult to obtain a uniform film thickness over the entire surface. Furthermore, unlike a metal film, the reflection wavelength range is limited.

本発明の目的は上記従来技術の課題を解決し、誘電体ミ
ラーを使わず所定の性能を得ることのできる液晶ライト
バルブを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a liquid crystal light valve that solves the above-mentioned problems of the prior art and can achieve a predetermined performance without using a dielectric mirror.

(課題を解決するための手段) 本発明の液晶ライトバルブは、光導電体またはフォトダ
イオードを画素状に形成した透明絶縁性基板と透明電極
付き透明絶縁性基板とを対向させ、前記両基板の間に液
晶を挾み込んだ液晶ライトバルブであって、前記光導電
体またはフォトダイオードは順次積層した透明電極と光
導電性膜と反射膜を兼ねる金属画素電極とからなり、前
記光導電体またはフォトダイオードの容量をC1゜、前
記金属画素電極上の液晶の容量をC5゜、印加する駆動
パルスの振幅変化をΔVとしたとき、 △聞。=(C1゜/(C1゜十CLo))×ΔVで表わ
される液晶に印加される過渡的な電圧上昇及び降下△V
LCが液晶の反転閾値電圧以下であることを特徴として
いる。
(Means for Solving the Problems) The liquid crystal light valve of the present invention has a transparent insulating substrate on which a photoconductor or photodiode is formed in a pixel shape and a transparent insulating substrate with a transparent electrode facing each other. The photoconductor or photodiode is a liquid crystal light valve with a liquid crystal sandwiched between the photoconductor or the photodiode, and the photoconductor or photodiode is composed of a transparent electrode laminated in sequence, a photoconductive film, and a metal pixel electrode that also serves as a reflective film. When the capacitance of the photodiode is C1°, the capacitance of the liquid crystal on the metal pixel electrode is C5°, and the amplitude change of the applied driving pulse is ΔV, then ΔV. Transient voltage rise and drop △V applied to the liquid crystal expressed as = (C1° / (C1° 0 CLo)) × ΔV
It is characterized in that LC is less than or equal to the inversion threshold voltage of the liquid crystal.

(作用) 本発明の液晶ライトバルブでは、書き込み光と読み出し
光を分離し、読み出し光を反射させるために、分割され
た金属画素電極を用いている。このため、形成の困難で
ある誘電体ミラーは不用である。更に金属膜であるため
、広い波長域にわたり高反射を得ることができる。
(Function) In the liquid crystal light valve of the present invention, a divided metal pixel electrode is used to separate writing light and readout light and reflect the readout light. Therefore, a dielectric mirror, which is difficult to form, is unnecessary. Furthermore, since it is a metal film, high reflection can be obtained over a wide wavelength range.

このように、本発明の液晶ライトバルブでは誘電体ミラ
ーの代わりに金属反射膜を用いているわけだが、第3図
(a)の誘電体ミラー303を画素状の金属反射膜に代
えただけでは基本動作は得られない。その理由について
第2図を用いて説明する。第2図は、誘電体ミラーの代
わりに画素状の金属反射膜を用いた液晶ライトバルブの
1画素の等価回路と駆動電圧を示している。従って、第
3図(b)の誘電体ミラーの容量304と抵抗305が
含まれていない。駆動電圧201はパルス状であるため
、その立ち上がり、立ち下がりに過渡応答が生じる。こ
の過渡応答は液晶に掛かる電圧の上昇及び降下Δy、。
In this way, the liquid crystal light valve of the present invention uses a metal reflective film instead of a dielectric mirror, but it is not possible to simply replace the dielectric mirror 303 in FIG. 3(a) with a pixel-shaped metal reflective film. Basic movements cannot be obtained. The reason for this will be explained using FIG. 2. FIG. 2 shows an equivalent circuit and driving voltage for one pixel of a liquid crystal light valve using a pixel-shaped metal reflective film instead of a dielectric mirror. Therefore, the capacitor 304 and resistor 305 of the dielectric mirror shown in FIG. 3(b) are not included. Since the drive voltage 201 is in the form of a pulse, a transient response occurs at its rise and fall. This transient response is the rise and fall of the voltage applied to the liquid crystal, Δy.

である。ここで、パルスの振幅変化をΔV、光導電体の
容量202をC1゜、画素電極上の液晶の容量203を
CL。
It is. Here, the amplitude change of the pulse is ΔV, the capacitance 202 of the photoconductor is C1°, and the capacitance 203 of the liquid crystal on the pixel electrode is CL.

とすると、 △V、。=(CPo/(CPo+CL6))×△V、、
、、、、、、、、、 (1)となる。第3図(a)の誘
電体ミラー303を画素状の金属反射膜に代えた場合、
光導電体と液晶の面積が同一になる。従って、誘電率を
ほぼ同じとすると、通常の光導電体の厚みが1ミクロン
程度、液晶層の厚みが2〜5ミクロン程度であるから、
光導電体の容量が液晶の容量の2〜5倍になってしまう
。(1)式により、ΔV、。=(2/3)Δ■〜(5/
6)ΔVであり、これは液晶の閾値電圧を越えるので、
書き込み光の有無にかかわらず電気的に反転してしまう
。すなわち、書き込み光がなく本来液晶の反転が行なわ
れてはならない場合でも、駆動パルスの立ち上がりによ
って、過渡的に液晶が反転してしまうことになる。この
ように、誘電体ミラーを画素状の金属反射膜に代えただ
けでは基本動作は得られない。
Then, △V,. =(CPo/(CPo+CL6))×△V,,
, , , , , , (1). When the dielectric mirror 303 in FIG. 3(a) is replaced with a pixel-shaped metal reflective film,
The areas of the photoconductor and liquid crystal are the same. Therefore, assuming that the dielectric constant is approximately the same, the thickness of a normal photoconductor is about 1 micron, and the thickness of a liquid crystal layer is about 2 to 5 microns.
The capacity of the photoconductor becomes 2 to 5 times the capacity of the liquid crystal. According to equation (1), ΔV. = (2/3) Δ■ ~ (5/
6) ΔV, which exceeds the threshold voltage of the liquid crystal,
It is electrically reversed regardless of the presence or absence of writing light. That is, even if there is no writing light and the liquid crystal should not be inverted, the liquid crystal will be transiently inverted due to the rising edge of the drive pulse. In this way, basic operation cannot be obtained simply by replacing the dielectric mirror with a pixel-shaped metal reflective film.

本発明の液晶ライI・バルブでは、(1)式で表わされ
る液晶に印加される過渡的な電圧上昇及び加工△■ が
、液晶の反転閾値電圧以下になっている。
In the liquid crystal light valve of the present invention, the transient voltage rise and processing Δ■ applied to the liquid crystal expressed by equation (1) are below the inversion threshold voltage of the liquid crystal.

Lに のため、液晶を電気的に反転させてしまうことはない。to L Therefore, the liquid crystal will not be electrically inverted.

すなわち書き込み光の有無によって、液晶反転を制御す
る基本動作が得られる。
That is, the basic operation of controlling liquid crystal inversion can be obtained depending on the presence or absence of writing light.

以上、本発明によると、誘電体ミラーの代わりに作製が
容易で、広い波長域にわたり高反射である金属反射膜を
用いて基本動作を得ることができる。
As described above, according to the present invention, basic operation can be obtained by using a metal reflective film that is easy to manufacture and highly reflective over a wide wavelength range instead of a dielectric mirror.

(実施例) 本発明の液晶ライトバルブの実施例を、その製造プロセ
スと共に説明する。(1)式で表わされるΔV を液晶
の反転閾値電圧より小さくするためにC は、光導電体の容量CPCが液晶の容量CLCに対し十
分小さくなればよい。容量は、物質固有の誘電率、膜厚
、電極面積で決まるが、最も簡単なのは電極面積で調整
することである。ここでは電極面積で調整する実施例を
挙げる。なお、△Vを小さくすることは、コントラスト
の低減につながるので根本的な解決にならない。
(Example) An example of the liquid crystal light valve of the present invention will be described together with its manufacturing process. In order to make ΔV expressed by equation (1) smaller than the inversion threshold voltage of the liquid crystal, it is sufficient that the capacitance CPC of the photoconductor is sufficiently smaller than the capacitance CLC of the liquid crystal. Capacitance is determined by the material's inherent dielectric constant, film thickness, and electrode area, but the easiest way to adjust it is by adjusting the electrode area. Here, we will give an example in which the electrode area is adjusted. Note that reducing ΔV leads to a reduction in contrast and is not a fundamental solution.

第1図に本発明の実施例の一例の液晶ライトバルブ構造
を示す。(a)が断面図、(b)が平面図である。
FIG. 1 shows the structure of a liquid crystal light valve according to an embodiment of the present invention. (a) is a cross-sectional view, and (b) is a plan view.

まず、透明絶縁性基板101上に例えばITO(Ind
iumuTin 0xide)等の透明導電性膜を形成
し、例えば、第1図(b)に示すように帯状にパターン
ニングして、透明電極103とする。この上に非晶質シ
リコン等の光導電性膜104を形成する。次にその上に
画素電極105となる例えばクロム等の金属を形成し、
第1図(b)に示すように画素状にパターンニングする
。この時、透明電極1030幅を画素電極の幅の例えば
10分の1程度としておく。このようなパターンニング
により、1画素の光導電体の実効面積が液晶画素部の面
積に比べて小さくなり、光導電体の容量CPo202が
液晶の容量C0゜203に対して十分小さくなる。従っ
て、(1)式で表わされるΔV、。が、液晶の反転閾値
電圧より小さくなり、基本動作が得られる。
First, on the transparent insulating substrate 101, for example, ITO (Ind.
A transparent conductive film such as iumuTin oxide) is formed and patterned into a strip shape, for example, as shown in FIG. 1(b) to form a transparent electrode 103. A photoconductive film 104 made of amorphous silicon or the like is formed thereon. Next, a metal such as chromium, which will become the pixel electrode 105, is formed on it,
Patterning is performed in a pixel shape as shown in FIG. 1(b). At this time, the width of the transparent electrode 1030 is set to, for example, about one-tenth of the width of the pixel electrode. Due to such patterning, the effective area of the photoconductor of one pixel becomes smaller than the area of the liquid crystal pixel portion, and the capacitance CPo202 of the photoconductor becomes sufficiently smaller than the capacitance C0°203 of the liquid crystal. Therefore, ΔV is expressed by equation (1). becomes smaller than the inversion threshold voltage of the liquid crystal, and basic operation is obtained.

ここで透明電極及び画素電極のパターン形状自体は特に
問題ではなく、1画素の光導電体の実効面積が画素電極
の面積に対して十分に小さくなるようにすることが重要
である。なお、透明電極103と光導電性膜104と金
属画素電極105の接合が光導電体となるか、ショット
キ型フォトダイオードとなるかは界面の状態による。
Here, the pattern shapes of the transparent electrode and the pixel electrode are not particularly important, but it is important that the effective area of the photoconductor of one pixel is sufficiently smaller than the area of the pixel electrode. Note that whether the junction between the transparent electrode 103, the photoconductive film 104, and the metal pixel electrode 105 becomes a photoconductor or a Schottky photodiode depends on the state of the interface.

次に、以上説明した基板と、対向基板となる透明電極1
07の付いた透明絶縁性基板102の両方に配向膜とな
るポリイミド膜B膜の付着を行う。第1図(a)は配向
膜は省略しである。更に両基板を貼り合わせ、その間に
液晶106を詰め込み、本発明の液晶ライトバルブが完
成する。液晶には高速応答を有する強誘電性液晶が通常
使用される。
Next, the substrate explained above and the transparent electrode 1 which will be the counter substrate
Polyimide film B, which will become an alignment film, is attached to both transparent insulating substrates 102 marked with 07. In FIG. 1(a), the alignment film is omitted. Further, the two substrates are bonded together, and a liquid crystal 106 is packed between them to complete the liquid crystal light valve of the present invention. Ferroelectric liquid crystals with high-speed response are usually used as liquid crystals.

なお、本実施例では光導電性膜のパターンニングは行っ
ていないが、隣の画素とのリークを防ぐために画素電極
の形状にパターンニングしてもよい。また、配向膜はL
B膜ではなく、スピンコードで塗布したポリイミド膜に
ラビングを施してもよい。
Although the photoconductive film was not patterned in this example, it may be patterned in the shape of a pixel electrode in order to prevent leakage from adjacent pixels. In addition, the alignment film is L
Instead of the B film, rubbing may be applied to a polyimide film coated with a spin cord.

このように本実施例では、光導電体を構成する透明電極
を帯状のパターンに形成することで光導電体の容量C1
゜と液晶の容量CLoを調整し、液晶の過渡的反転が起
こらないようにしたが、これに限らす膜厚、誘電率など
を変化させることでも同様の効果を得ることができる。
In this example, the capacitance C1 of the photoconductor is increased by forming the transparent electrodes constituting the photoconductor into a band-like pattern.
Although the liquid crystal capacitance CLo was adjusted to prevent transient inversion of the liquid crystal, the same effect can be obtained by changing the film thickness, dielectric constant, etc.

(発明の効果) 本発明の液晶ライトバルブでは、誘電体ミラーの代わり
に作製が容易で、広い波長域にわたり高反射である金属
反射膜を用いて基本動作を得ることができる。このよう
に本発明による液晶ライトバルブは産業上非常に有用で
ある。
(Effects of the Invention) In the liquid crystal light valve of the present invention, basic operation can be achieved by using a metal reflective film that is easy to manufacture and highly reflective over a wide wavelength range instead of a dielectric mirror. As described above, the liquid crystal light valve according to the present invention is industrially very useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(aXb)は本発明の液晶ライトバルブの構造の
一例を示す断面図および平面図、第2図は本発明の液晶
ライトバルブの等価回路を示す図、第3図(aXb)は
従来の液晶ライトバルブの構造と等価回路を示す図であ
る。 101、102・・・透明絶縁性基板、103.107
・・・透明電極、104.301・・・光導電性膜、1
05・・・金属画素電極、10660.液晶、201・
・・駆動電圧、202・・・光導電体の容量C1゜、2
03・・・液晶の容量C5゜、 204・・・光導電体の抵抗悔。、
FIG. 1 (aXb) is a cross-sectional view and a plan view showing an example of the structure of the liquid crystal light valve of the present invention, FIG. 2 is a diagram showing an equivalent circuit of the liquid crystal light valve of the present invention, and FIG. 3 (aXb) is a conventional FIG. 2 is a diagram showing the structure and equivalent circuit of a liquid crystal light valve. 101, 102...Transparent insulating substrate, 103.107
...Transparent electrode, 104.301...Photoconductive film, 1
05...Metal pixel electrode, 10660. LCD, 201・
... Drive voltage, 202... Capacity C1° of photoconductor, 2
03...Liquid crystal capacitance C5°, 204...Resistance of photoconductor. ,

Claims (1)

【特許請求の範囲】 光導電体またはフォトダイオードを画素状に形成した透
明絶縁性基板と透明電極付き透明絶縁性基板とを対向さ
せ、前記両基板の間に液晶を挟み込んだ液晶ライトバル
ブであって、前記光導電体またはフォトダイオードは順
次積層した透明電極と光導電性膜と反射膜を兼ねる金属
画素電極とからなり、前記光導電体またはフォトダイオ
ードの容量をC_P_C、前記金属画素電極上の液晶の
容量をC_L_C、印加する駆動パルスの振幅変化をΔ
Vとしたとき、 ΔV_L_C=(C_P_C/(C_P_C+C_L_
C))×ΔVで表わされる液晶に印加される過渡的な電
圧上昇及び降下ΔV_L_Cが液晶の反転閾値電圧以下
であることを特徴とする液晶ライトバルブ。
[Scope of Claims] A liquid crystal light valve in which a transparent insulating substrate on which a photoconductor or photodiode is formed in the shape of a pixel and a transparent insulating substrate with a transparent electrode face each other, and a liquid crystal is sandwiched between the two substrates. The photoconductor or photodiode is composed of a transparent electrode, a photoconductive film, and a metal pixel electrode that also serves as a reflective film, which are laminated in sequence, and the capacitance of the photoconductor or photodiode is C_P_C, and the capacitance on the metal pixel electrode is The capacitance of the liquid crystal is C_L_C, and the amplitude change of the applied driving pulse is Δ.
When V, ΔV_L_C=(C_P_C/(C_P_C+C_L_
C)) A liquid crystal light valve characterized in that a transient voltage rise and fall ΔV_L_C applied to the liquid crystal, expressed as ΔV, is less than or equal to the inversion threshold voltage of the liquid crystal.
JP21109290A 1990-08-09 1990-08-09 Liquid crystal light valve Pending JPH0497135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21109290A JPH0497135A (en) 1990-08-09 1990-08-09 Liquid crystal light valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21109290A JPH0497135A (en) 1990-08-09 1990-08-09 Liquid crystal light valve

Publications (1)

Publication Number Publication Date
JPH0497135A true JPH0497135A (en) 1992-03-30

Family

ID=16600283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21109290A Pending JPH0497135A (en) 1990-08-09 1990-08-09 Liquid crystal light valve

Country Status (1)

Country Link
JP (1) JPH0497135A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713188A (en) * 1993-04-30 1995-01-17 Matsushita Electric Ind Co Ltd Spatial optical modulating element and its driving method
JP2001066628A (en) * 1999-08-25 2001-03-16 Stanley Electric Co Ltd Switching element of optical address system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169120A (en) * 1986-01-22 1987-07-25 Seiko Epson Corp Space optical modulator
JPS63121026A (en) * 1986-10-31 1988-05-25 インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション Optically active type light valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169120A (en) * 1986-01-22 1987-07-25 Seiko Epson Corp Space optical modulator
JPS63121026A (en) * 1986-10-31 1988-05-25 インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション Optically active type light valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713188A (en) * 1993-04-30 1995-01-17 Matsushita Electric Ind Co Ltd Spatial optical modulating element and its driving method
JP2001066628A (en) * 1999-08-25 2001-03-16 Stanley Electric Co Ltd Switching element of optical address system

Similar Documents

Publication Publication Date Title
US7362391B2 (en) In-plane switching LCD device
JPS6280626A (en) Liquid crystal display element
JPH0627481A (en) Reflective active matrix substrate, its production and liquid crystal display device
US5521731A (en) Reflective type liquid crystal display device and method of making the same whereby the switching MIM has its first electrode used for signal wiring and its second electrode used as pixel electrodes
JPS60117283A (en) Improvement in liquid crystal display unit
US4790631A (en) Liquid crystal device with ferroelectric liquid crystal adapted for unipolar driving
JPH0497135A (en) Liquid crystal light valve
JPS6328308B2 (en)
KR100288767B1 (en) Liquid crystal display device having new liquid driving function
JPH0225A (en) Driving device
JPS63311235A (en) Manufacture of liquid crystal electrooptical device
US5726729A (en) Liquid crystal display device
KR20050114862A (en) Single gap transflective liquid crystal display
JPH086052A (en) Liquid crystal optical element
JPH02306222A (en) Liquid crystal display device
JPH02289827A (en) Space optical modulating element and space optical modulator
RU2017184C1 (en) Multielement electrooptic transducer and method for controlling the same
JPH0430125A (en) Active matrix type liquid crystal display device
JP2610031B2 (en) Bistable spatial light modulator and light modulation method
JP2843861B2 (en) Driving method of liquid crystal electro-optical device
JPH0414328B2 (en)
JPH02131218A (en) Liquid crystal electrooptic device
RU2017183C1 (en) Multielement electrooptic transducer and method for controlling the same
JP2816425B2 (en) Spatial light modulator using a-Si: H
JPH06242419A (en) Method for driving liquid crystal device