JPS62168587A - Seawater desalination system - Google Patents

Seawater desalination system

Info

Publication number
JPS62168587A
JPS62168587A JP61006431A JP643186A JPS62168587A JP S62168587 A JPS62168587 A JP S62168587A JP 61006431 A JP61006431 A JP 61006431A JP 643186 A JP643186 A JP 643186A JP S62168587 A JPS62168587 A JP S62168587A
Authority
JP
Japan
Prior art keywords
water
amount
solar cell
seawater desalination
desalination system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61006431A
Other languages
Japanese (ja)
Other versions
JPH03118B2 (en
Inventor
Yoshio Eguchi
吉雄 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61006431A priority Critical patent/JPS62168587A/en
Publication of JPS62168587A publication Critical patent/JPS62168587A/en
Publication of JPH03118B2 publication Critical patent/JPH03118B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To secure fresh water even on rainy days by providing a water collection device around the light receiving face of a solar cell and a controlling device working in compliance with the quantity of water of collecting device in the seawater desalination system. CONSTITUTION:Rain water fallen on the surface of a solar cell module 1 moves towards the lower side of inclined plane and is collected in a rainwater guttering 3 installed at the lower side of inclined plane. Then the same passes through a water driving pipe 5 and is stored in a water storage tank 4. By providing a rain gauge 6 halfway on a water driving line 5, electric signals in proportion to rainfall are taken out. Said electrical signals are amplified adequately by an amplifier 7 and added to instructed value issued from an instruction device 8 for distillation amount. The instructed value of distillation amount is corrected by a rainfall signal of the amplifier 7 to vary signals to distillation amount controller 9 and control the amount of distilling fresh water out of the seawater desalination system.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は海水淡水化システムに係り、特に太陽電池を電
源として作動する海水淡水化システムに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a seawater desalination system, and particularly to a seawater desalination system that operates using a solar cell as a power source.

〔発明の背景〕[Background of the invention]

一般に電源システムとして太陽電池を利用することは周
知のことであり、電卓や海上灯台など多く利用されてい
るが、最近海水淡水化システムにおいても採用されるよ
うになってきた。
It is generally known that solar cells are used as a power supply system, and they are often used in calculators and marine lighthouses, but recently they have also been used in seawater desalination systems.

太陽電池を電源とした海水淡水化システムにおいては、
太陽電池の発電々力が気象条件に左右されてしまうため
悪天候時でも安定に電力が供給できるように蓄電池を設
置する等の対策をほどこしているのが普通である。現在
電力用として一般に使用されている太陽電池モジュール
は、出力約50W(日射量1kW/メ、28℃)のもの
で幅406mm、長さ1216mnの寸法のものが多い
In a seawater desalination system powered by solar cells,
Since the power generated by solar cells is affected by weather conditions, it is common practice to take measures such as installing storage batteries to ensure a stable power supply even in bad weather. Most of the solar cell modules commonly used for electric power at present have an output of about 50 W (solar radiation: 1 kW/metre, 28° C.), and have dimensions of 406 mm in width and 1216 mm in length.

つまり面積的0.5 n−rで約50W出力できるわけ
である。
In other words, it is possible to output approximately 50 W with an area of 0.5 n-r.

しかし前述もしたように雨天の場合には発生電力が小さ
く、そのときのために蓄電池が用いられるわけであるが
、雨天がある程度続くことを想定と、従来は大きな容量
の蓄電池が必要であり、又雨天の場合などには発生電力
の関係で充分淡水を確保することが難しかった。
However, as mentioned above, in the case of rainy weather, the generated power is small, and storage batteries are used for that purpose, but conventionally, storage batteries with a large capacity are required, assuming that the rainy weather will continue for some time. Furthermore, in the case of rainy weather, it was difficult to secure sufficient fresh water due to the amount of electricity generated.

尚この種のものに関連するものとしては、実開昭59−
61548号があげられる。
In addition, related to this kind of thing,
No. 61548 is mentioned.

〔発明の目的〕[Purpose of the invention]

本発明はこれにかんがみなされたもので、雨天時太陽電
池出力が低下した場合においても、充分淡水を確保する
ことが可能で、かつ雨天時のために準備される蓄電池の
容量を低減することが可能なこの種の海水淡水化システ
ムを提供するにある。
The present invention was developed with this in mind, and it is possible to secure sufficient fresh water even when the output of solar cells decreases during rainy weather, and to reduce the capacity of storage batteries prepared for rainy weather. It is possible to provide this kind of seawater desalination system.

(′発明の概要〕 すなわち本発明は、太陽電池の受光面周辺に集水装置を
設け、かつ海水淡水化装置に集水装置の水量に応じて作
動する制御装置を設け、集水された雨量により海水淡水
化装置の造水量を自動制御するようになし所期の目的を
達成するようにしたものである。
('Summary of the invention) In other words, the present invention provides a water collection device around the light-receiving surface of a solar cell, and also provides a seawater desalination device with a control device that operates according to the amount of water in the water collection device. This system automatically controls the amount of water produced by the seawater desalination equipment to achieve the intended purpose.

〔発明の実施例〕 以下図示した実施例に基づいて本発明の詳細な説明する
[Embodiments of the Invention] The present invention will be described in detail below based on the illustrated embodiments.

図において1は太陽電池モジュールであり、10は海水
淡水化装置である。
In the figure, 1 is a solar cell module, and 10 is a seawater desalination device.

太陽電池モジュール1は太陽電池架台2上に取付けられ
電気的には電圧、電流の関係から適当に直並列接続され
、そして図示はしていないが海水淡水化装置]0に電力
を供給している。太陽電池架台2は太陽との対向関係、
すなわち太陽電池出力増大のため緯度と同程度の傾斜を
有するように形成されている。
The solar cell module 1 is mounted on a solar cell mount 2, electrically connected in series and parallel as appropriate due to voltage and current relationships, and supplies power to a seawater desalination device (not shown). . The solar cell mount 2 faces the sun,
That is, in order to increase the output of the solar cell, it is formed to have an inclination comparable to the latitude.

太陽電池の受光面周辺、すなわち太陽電池架台2の傾斜
下方部には雨樋3が設けられ、雨樋の端部は導水管5を
介して貯水槽4に結合されている。
A rain gutter 3 is provided around the light-receiving surface of the solar cell, that is, at the lower inclined portion of the solar cell mount 2, and an end of the rain gutter is connected to a water tank 4 via a water conduit 5.

導水管5の途中に設けられている6は雨量計で、この雨
量計の電気信号は増巾器7を介して造水量指令装置8の
指令値に合わされる。
A rain gauge 6 is provided in the middle of the water pipe 5, and an electric signal from this rain gauge is adjusted to a command value of a water production amount command device 8 via an amplifier 7.

この合わされた信号は造水量制御器9に与えられるよう
になっている。尚雨樋3、導通管5、貯水槽4にて集水
装置が形成され、11は造水量の制御装置を示す。
This combined signal is given to the water production amount controller 9. A water collection device is formed by the rain gutter 3, the conductive pipe 5, and the water storage tank 4, and 11 indicates a control device for the amount of water produced.

このような構成で、雨天時に太陽電池モジュール1の面
に降った雨水は、傾斜面下方に移動し傾斜面下方に取け
られた雨樋3に集められる。雨樋3の端部には導水管5
が取付けられているから、雨樋3により集められた雨水
はこの導水管5を通り貯水槽4に貯えられる。
With such a configuration, rainwater that falls on the surface of the solar cell module 1 during rainy weather moves below the slope and is collected in the rain gutter 3 provided below the slope. A water pipe 5 is installed at the end of the rain gutter 3.
is installed, rainwater collected by the rain gutter 3 passes through the water pipe 5 and is stored in the water tank 4.

このようにして太陽電池表面に降水した雨水は貯水槽4
に貯えられるが、この場合導水路5の途中に雨量計6が
設置され、この雨量計により雨量に比例した電気信号が
とり出される。この電気信号は増幅器7を通して適当な
大きさに増幅され造水量指令装置8の指令値に、図中の
付量、すなわち造水量を差し引く関係に加え合わせられ
る。これにより造水量指令値は増幅器7゛の雨量信号に
より補正を受け、造水量制御器9への信号が変化し海水
淡水装置の淡水造水量が制御される。以上により降雨量
によって海水淡水装置の造水量が制御される。
The rainwater that has fallen on the surface of the solar cells in this way is collected in a water storage tank 4.
In this case, a rain gauge 6 is installed in the middle of the headrace waterway 5, and an electric signal proportional to the amount of rain is extracted by this rain gauge. This electrical signal is amplified to an appropriate magnitude through an amplifier 7 and added to the command value of the water production amount commanding device 8 according to the relationship shown in the figure, that is, the amount of water produced is subtracted. As a result, the water production amount command value is corrected by the rainfall signal from the amplifier 7', the signal to the water production amount controller 9 changes, and the fresh water production amount of the seawater freshwater apparatus is controlled. As described above, the amount of fresh water produced by the seawater freshwater device is controlled depending on the amount of rainfall.

このようにこの構成であると、雨天時太陽電池出力が低
下した場合においても淡水を確保することが可能であり
、さらに降雨量によって海水淡水化装置の造水量を制御
することができるので淡水化のための消費電力の低下を
計ることができ蓄電池の容量を低減することができる。
With this configuration, it is possible to secure fresh water even when the solar battery output decreases during rainy days, and furthermore, the amount of water produced by the seawater desalination equipment can be controlled depending on the amount of rainfall, so the desalination It is possible to measure the reduction in power consumption and reduce the capacity of the storage battery.

今この太陽電池モジュールを使用し最大出力25kWの
電源を構成した場合の太陽電池面に降水する雨量を計算
してみる。太陽電池設置角度30’、雨が降水する太陽
電池面積をAとすると0W となる。年間の降雨量が1800mnの土地について考
えると上記の太陽電池面に降雨する雨量は一日平均する
と 1 、8 m X 217 rrf X −= 1 、
1 rrr /日365日 となり平均1.1  r&/日の淡水が太陽電池面から
得られることになる。ところで日射量3400Kca 
Q/留日の土地に最大出力25kWの太陽電池と100
0Ah−110Vの蓄電池を設置した電気透析海水淡水
化システムの場合では一日平均の淡水造水量は7〜8ポ
/日と試算されている。これから太陽電池面に降水する
雨水を利用することにより約15%前後淡水が多く得ら
れることがわかる。
Now let's calculate the amount of rain that falls on the solar cell surface when this solar cell module is used to configure a power source with a maximum output of 25 kW. If the solar cell installation angle is 30' and the area of the solar cell where rain falls is A, then the power is 0W. Considering a land with an annual rainfall of 1800 mn, the average amount of rain falling on the solar cell surface per day is 1,8 m x 217 rrf X -= 1,
1 rrr/day for 365 days, and an average of 1.1 r&/day of fresh water can be obtained from the solar cell surface. By the way, the amount of solar radiation is 3400Kca.
Q/A solar cell with a maximum output of 25kW and 100
In the case of an electrodialysis seawater desalination system equipped with a 0Ah-110V storage battery, the average daily amount of fresh water produced is estimated to be 7 to 8 po/day. It can be seen from this that by using rainwater that falls on the solar cell surface, approximately 15% more fresh water can be obtained.

また雨水により得られた淡水量だけ海水淡水装置 置の造水量を減少するとすれば約15%の電力量の節約
となる。
Furthermore, if the amount of fresh water generated by the seawater freshwater device is reduced by the amount of fresh water obtained from rainwater, the amount of electricity will be saved by about 15%.

面図では太陽電池と蓄電池や海水淡水化装置との電力系
及び海水・淡水の水路系は省略しである。
In the top view, the power system for solar cells, storage batteries, and seawater desalination equipment, and the seawater/freshwater waterway system are omitted.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、本発明は太陽電池の受光面周
辺に集水装置を設け、かつ海水淡水化装置に前記集水装
置の水量に応じて作動する制御装置を設け、集水された
雨量により海水淡水化装置の造水量を自動制御するよう
にしたから雨天時太陽電池出力が低下した場合において
も淡水を充分確保することが可能であり、さらに降雨量
によって海水淡水化装置の造水量を制御することができ
るので淡水化のための消費電力の低下を計ることができ
蓄電池の容量を低減することができる。
As explained above, the present invention provides a water collection device around the light-receiving surface of a solar cell, and also provides a seawater desalination device with a control device that operates according to the amount of water in the water collection device. Since the amount of water produced by the seawater desalination equipment is automatically controlled, it is possible to secure a sufficient amount of fresh water even when the solar battery output decreases during rainy days. Since it can be controlled, the power consumption for desalination can be reduced, and the capacity of storage batteries can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の海水淡水化システムの一実施例を示す斜視
図である。 1・・・太陽電池モジュール、2・・・太陽電池架台、
3・・・雨樋、4・・・貯水槽、5・・・導水路、6・
・・雨量計、7・・・増幅器、8・・・造水量指令値、
9・・・造水量制御器、10・・・海水淡水化装置、1
1・・・造水量制御装置。
The figure is a perspective view showing an embodiment of the seawater desalination system of the present invention. 1...Solar cell module, 2...Solar cell mount,
3... Rain gutter, 4... Water tank, 5... Headrace, 6...
...Rain gauge, 7...Amplifier, 8...Water production command value,
9... Water production amount controller, 10... Seawater desalination device, 1
1... Water production amount control device.

Claims (1)

【特許請求の範囲】[Claims] 1、電力により海水を淡水に変える海水淡水化装置と、
この海水淡水化装置の電源として用いる太陽電池とを備
え、太陽電池の電力により海水を淡水にするようになし
た海水淡水化システムにおいて、前記太陽電池の受光面
周辺に集水装置を設け、かつ前記海水淡水化装置に前記
集水装置の水量に応じて作動する造水量制御装置を設け
、集水された雨量により海水淡水化装置の造水量を自動
制御するようにしたことを特徴とする海水淡水化システ
ム。
1. A seawater desalination device that converts seawater into freshwater using electricity,
In a seawater desalination system that is equipped with a solar cell used as a power source for the seawater desalination device and turns seawater into fresh water using the power of the solar cell, a water collection device is provided around the light receiving surface of the solar cell, and The seawater desalination device is provided with a water production amount control device that operates according to the amount of water in the water collection device, and the amount of water production in the seawater desalination device is automatically controlled based on the amount of collected rain. Desalination system.
JP61006431A 1986-01-17 1986-01-17 Seawater desalination system Granted JPS62168587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61006431A JPS62168587A (en) 1986-01-17 1986-01-17 Seawater desalination system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61006431A JPS62168587A (en) 1986-01-17 1986-01-17 Seawater desalination system

Publications (2)

Publication Number Publication Date
JPS62168587A true JPS62168587A (en) 1987-07-24
JPH03118B2 JPH03118B2 (en) 1991-01-07

Family

ID=11638202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61006431A Granted JPS62168587A (en) 1986-01-17 1986-01-17 Seawater desalination system

Country Status (1)

Country Link
JP (1) JPS62168587A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01288391A (en) * 1988-05-17 1989-11-20 Agency Of Ind Science & Technol Method and apparatus for treatment of waste water
JP2010203995A (en) * 2009-03-05 2010-09-16 Daiwa House Industry Co Ltd Rainfall data collection system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01288391A (en) * 1988-05-17 1989-11-20 Agency Of Ind Science & Technol Method and apparatus for treatment of waste water
JP2010203995A (en) * 2009-03-05 2010-09-16 Daiwa House Industry Co Ltd Rainfall data collection system

Also Published As

Publication number Publication date
JPH03118B2 (en) 1991-01-07

Similar Documents

Publication Publication Date Title
CN205029614U (en) Showy formula solar altitude angle tracking means on water
Alawaji et al. PV-powered water pumping and desalination plant for remote areas in Saudi Arabia
KR20090015263A (en) Hybrid generation and control system for buoy using solar light, wind and wave energy
EP0849524A3 (en) Pole having solar cells
KR100999934B1 (en) Floating solar power generating system using geomagnetic sensor and controlling method thereof
CN110921839A (en) Photovoltaic mobile ecological floating island
CN204821192U (en) Stake of solar energy electric vehicle charging
JPS62168587A (en) Seawater desalination system
CN204993202U (en) Response automatic adjustment solar energy collecting electrode
JPH04200245A (en) Solar cell system
CN106049958A (en) Solar power generation communication tower
CN107311310B (en) Sewage treatment system with photovoltaic power and commercial power cooperatively supplied power and power supply method
KR102074348B1 (en) Complex System of Solar Energy Generation and Ocean Aquaculture
CN205992790U (en) A kind of floating of photovoltaic power supply charging pile waterborne
JPH09322661A (en) Apparatus for growing plant
CN106300617A (en) A kind of floating charging pile waterborne of photovoltaic power supply
CN110190800A (en) One kind floating on the photovoltaic independently-powered system of water surface packaged type
CN209563290U (en) A kind of photovoltaic intelligent irrigation system
CN213881422U (en) Independent photovoltaic cell power supply aerator
CN220772199U (en) Hydrologic data intelligent acquisition device
CN217786949U (en) Soil moisture content detection device
CN218997761U (en) Solar floating lamp charging and discharging system
CN213779106U (en) Wetland remote sensing monitoring devices
CN204013333U (en) A kind of for high power load on buoy from net photovoltaic power supply system
CN210470539U (en) Irrigation type protection system for natural forest protection

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees