JPH09322661A - Apparatus for growing plant - Google Patents

Apparatus for growing plant

Info

Publication number
JPH09322661A
JPH09322661A JP8162400A JP16240096A JPH09322661A JP H09322661 A JPH09322661 A JP H09322661A JP 8162400 A JP8162400 A JP 8162400A JP 16240096 A JP16240096 A JP 16240096A JP H09322661 A JPH09322661 A JP H09322661A
Authority
JP
Japan
Prior art keywords
solar cell
secondary battery
type secondary
solution type
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8162400A
Other languages
Japanese (ja)
Other versions
JP3652013B2 (en
Inventor
Naoaki Kogure
直明 小榑
Yuichi Akai
勇一 赤井
Taketaka Wada
雄高 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP16240096A priority Critical patent/JP3652013B2/en
Publication of JPH09322661A publication Critical patent/JPH09322661A/en
Application granted granted Critical
Publication of JP3652013B2 publication Critical patent/JP3652013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for growing plants capable of remarkably enhancing the utilization ratio of solar energy and realizing a reduction in cost of field crops by embedding an outer electrolytic bath of a solution type secondary battery capable of accumulating electric power generated by a solar cell in the interior of a culture medium for the cultivation of the plants in a greenhouse. SOLUTION: This apparatus for growing plants is equipped with an agricultural greenhouse 1, a solar cell 30 installed separately from the agricultural greenhouse 1 and a solution type secondary battery 31 capable of accumulating electric power generated by the solar cell 30 such as a redox flow battery. An outer electrolytic bath 7 of the solution type secondary battery 31 is embedded in the interior of a culture medium 5 for the cultivation of the plants in the agricultural greenhouse 1 to thereby suppress the mass consumption of a conventional line electric power or fossil fuel. The solar cell 31 is preferably integrally formed with the solution type secondary battery 31 and an electrolyte in the interior of the solution type secondary battery 31 is preferably made to flow by the heat convection.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、無公害な太陽エネ
ルギーを最大限に利用して、植物の成長に必要なエネル
ギーの大部分又は全部を太陽光から得るようにした植物
成長装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plant growth apparatus which makes maximum use of pollution-free solar energy and obtains most or all of the energy required for plant growth from sunlight.

【0002】[0002]

【従来の技術】農作物を含めた全ての植物が成長するた
めには、それぞれの種類に応じた適切な環境を必要とす
る。例えば、日照(強度、時間)、温度、湿度、大気成
分、圧力、水分、肥料、通風等を適当な値に保持しなく
てはならない。
2. Description of the Related Art In order for all plants including agricultural products to grow, an environment suitable for each type is required. For example, sunshine (intensity, time), temperature, humidity, atmospheric components, pressure, moisture, fertilizer, ventilation, etc. must be maintained at appropriate values.

【0003】従来、人工的に制御した環境下で有用な植
物の成長促進や増産を図るために、水耕栽培、ハウス栽
培、温室栽培又は屋内栽培等が広く行われている。これ
らの栽培の多くには、植物の周囲温度を所望の値に保持
するための空調装置が備えられ、この空調装置に莫大な
量のエネルギーが消費されている。そのため、収穫した
作物価格の上昇を招くばかりでなく、多量の化石燃料の
燃焼に伴う弊害が生じてしまう。
Conventionally, hydroponic cultivation, greenhouse cultivation, greenhouse cultivation, indoor cultivation and the like have been widely carried out in order to promote the growth and increase the production of useful plants under artificially controlled environments. Many of these cultivations are equipped with an air conditioner for keeping the ambient temperature of the plant at a desired value, and this air conditioner consumes a huge amount of energy. Therefore, not only will the price of harvested crops rise, but the harmful effects of burning a large amount of fossil fuel will also occur.

【0004】このため、上記弊害を多少なりとも回避す
るための手段として、使用する電力の一部を太陽電池を
用いた太陽光発電システムで賄う試みが行われている。
更に、この太陽電池単独の発電システムでは本質的に不
安定であるので、これを補佐して安定した信頼性ある電
源を構成するため、系統電力から独立した設備では鉛蓄
電池を用いた充電システムを太陽電池と組合わせて用い
ることも広く行われている。
Therefore, as a means for avoiding the above-mentioned harmful effects to some extent, attempts have been made to cover a part of the electric power used by a solar power generation system using a solar cell.
Furthermore, since the power generation system using this solar cell alone is inherently unstable, in order to assist this and construct a stable and reliable power source, a charging system using lead-acid batteries should be used for equipment independent of grid power. It is also widely used in combination with solar cells.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来例にあっては、太陽光発電に必然的に付随する低エネ
ルギー密度、低エネルギー変換効率によって、既存の系
統電力や化石燃料を代替できる割合が極端に少なく、こ
のため、太陽光発電システムを設備するための初期費用
が相対的に大きいにも拘らず、単位期間当りの償却割合
が少ないのが現状であった。
However, in the above-mentioned conventional example, due to the low energy density and low energy conversion efficiency that are inevitably associated with solar power generation, the ratio of existing grid power and fossil fuel that can be replaced is limited. It is extremely small, and thus the depreciation rate per unit period is small even though the initial cost for installing the solar power generation system is relatively large.

【0006】更に、鉛蓄電池は比較的安価で簡単なもの
である反面、 各セル毎の性能のバラツキが大きい。 併用中の充・放電状態のモニタリングが難しい。 充電するための所要時間が長い。 電極が劣化し易い。 等の欠点がある。
Further, the lead storage battery is relatively inexpensive and simple, but on the other hand, the performance of each cell varies widely. It is difficult to monitor the charge / discharge status during combined use. It takes a long time to charge. The electrodes are easily deteriorated. There are drawbacks such as.

【0007】本発明は、上記に鑑み、太陽エネルギーの
利用効率を最大限に高めて、より高効率で経済的な電源
を得ることによって、農作物の低価格化を実現できるよ
うにした植物栽培装置を提供することを目的とする。
[0007] In view of the above, the present invention is a plant cultivating apparatus capable of reducing the price of agricultural crops by maximizing the utilization efficiency of solar energy and obtaining a more efficient and economical power source. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】請求項1に記載の発明
は、農業用ハウスと、この農業用ハウスとは別に設置さ
れた太陽電池と、該太陽電池によって発電された電力を
蓄電する溶液型2次電池とを備え、上記溶液型2次電池
の外部電解液槽を上記ハウス内の植物栽培用の培地の内
部に埋設したことを特徴とする植物成長装置である。
According to a first aspect of the present invention, there is provided an agricultural house, a solar cell installed separately from the agricultural house, and a solution type for storing electric power generated by the solar cell. A plant growing apparatus comprising a secondary battery, and an external electrolytic solution tank of the solution type secondary battery is embedded inside a medium for cultivating a plant in the house.

【0009】このような構成においては、太陽電池によ
り電気に変換された太陽エネルギーを、培地に覆われて
保温されている溶液型2次電池の外部電解液槽の中に効
率良く化学エネルギーとして貯蔵するので、電解液温度
が維持されて溶液型2次電池の安定な動作を確保し、太
陽エネルギーの有効利用を図ることができるとともに、
必要に応じてこれを利用することで外部電源不要の独立
システムの構築が容易となり、農作物の低コスト化に寄
与する。
In such a structure, the solar energy converted into electricity by the solar cell is efficiently stored as chemical energy in the external electrolytic solution tank of the solution type secondary battery which is covered with the medium and kept warm. Therefore, the temperature of the electrolytic solution is maintained, the stable operation of the solution type secondary battery is ensured, and the effective use of solar energy can be achieved.
By using this as needed, it is easy to build an independent system that does not require an external power source, and contributes to lowering the cost of agricultural products.

【0010】請求項2に記載の発明は、上記太陽電池と
溶液型2次電池が一体に形成されていることを特徴とす
る請求項1に記載の植物成長装置であり、太陽電池で発
電された電気的エネルギーの他に、溶液型2次電池の電
解液に顕熱として蓄えられた熱エネルギーをも外部電解
槽に蓄えることができ、さらなる効率向上が期待でき
る。
The invention according to claim 2 is the plant growing apparatus according to claim 1, characterized in that the solar cell and the solution type secondary battery are integrally formed. In addition to the electrical energy, the thermal energy stored as sensible heat in the electrolytic solution of the solution type secondary battery can also be stored in the external electrolytic cell, and further improvement in efficiency can be expected.

【0011】請求項3に記載の発明は、前記溶液型2次
電池として、レドックス・フロー電池を用いたことを特
徴とする請求項1に記載の植物成長装置である。請求項
4に記載の発明は、上記溶液型2次電池の内部におい
て、電解液を熱対流によって流動させることを特徴とす
る請求項1に記載の植物成長装置であるので、これによ
り、溶液型2次電池の動作がさらに安定して一層の効率
向上が図られる。熱対流を起こす方法としては、内部に
ヒータを設ける該溶液型2次電池内部に上下の環流管を
設ける等がある。
The invention described in claim 3 is the plant growing apparatus according to claim 1, wherein a redox flow battery is used as the solution type secondary battery. The invention according to claim 4 is the plant growth apparatus according to claim 1, characterized in that the electrolytic solution is caused to flow by thermal convection inside the solution-type secondary battery. The operation of the secondary battery is further stabilized, and the efficiency is further improved. As a method of causing heat convection, there is a method of providing a heater inside and providing upper and lower reflux tubes inside the solution type secondary battery.

【0012】請求項5に記載の発明は、上記外部電解液
槽に、上記太陽電池及び/又は溶液型2次電池の電力に
より電解液を加熱するヒータが設けられていることを特
徴とする請求項1に記載の植物成長装置であるので、余
剰の電力を条件に応じて熱エネルギーに変換して蓄え、
あるいは用いてさらなる効率向上を図ることができる。
The invention according to a fifth aspect is characterized in that the external electrolytic solution tank is provided with a heater for heating the electrolytic solution by the electric power of the solar cell and / or the solution type secondary battery. Since it is the plant growth apparatus according to Item 1, the surplus power is converted into heat energy according to the conditions and stored,
Alternatively, it can be used to further improve efficiency.

【0013】請求項6に記載の発明は、さらに、上記農
業用ハウス内部の環境条件を検知するセンサの検出値に
基づいて該環境条件を制御する制御装置が設けられてい
ることを特徴とする請求項1に記載の植物成長装置であ
る。これにより、農業用ハウスの環境条件を自動的に植
物成長に適したものに変換し、成長を促進させつつ省力
化を図ることができる。
According to a sixth aspect of the present invention, there is further provided a control device for controlling the environmental condition based on a detection value of a sensor for detecting the environmental condition inside the agricultural house. The plant growth apparatus according to claim 1. As a result, the environmental conditions of the agricultural house can be automatically converted into those suitable for plant growth, and growth can be promoted while saving labor.

【0014】請求項7に記載の発明は、上記制御装置
は、太陽電池で発電される余剰の電力を熱エネルギー又
は電気化学的エネルギーのいずれの形態で蓄えるかを判
断する機能を有していることを特徴とする請求項6に記
載の植物成長装置であるので、その時の気象条件や蓄電
量等の種々の条件を自動的に判断して最も効率的なエネ
ルギー保存形態が選択される。
According to a seventh aspect of the present invention, the control device has a function of determining whether the surplus electric power generated by the solar cell is stored in the form of thermal energy or electrochemical energy. Since it is the plant growing apparatus according to claim 6, various conditions such as the weather condition and the amount of stored electricity at that time are automatically judged, and the most efficient energy storage form is selected.

【0015】[0015]

【発明の実施の形態】以下、本発明の一つの実施の形態
を図面を参照して説明する。この実施の形態は、ハウス
栽培に適用して、ハウスの作動に必要なエネルギーの殆
どを太陽光から得るようにした例を示すものである。
DETAILED DESCRIPTION OF THE INVENTION One embodiment of the present invention will be described below with reference to the drawings. This embodiment shows an example in which most of the energy required to operate the house is obtained from sunlight by applying it to the house cultivation.

【0016】この農業ハウス1は、断熱性を有する側壁
2、透光性を有する屋根3及び床板4によって周囲を包
囲された断熱性を高めた構造となっており、これによっ
て、地面や外気との接触熱伝導や対流による熱の移動を
極限まで抑制している。
This agricultural house 1 is surrounded by a side wall 2 having a heat insulating property, a translucent roof 3 and a floor plate 4 and has a structure having a high heat insulating property. The contact heat conduction and heat transfer due to convection are suppressed to the utmost limit.

【0017】農業ハウス1内には、必要量の培地5が導
入され、この培地5内に電気抵抗発熱体(ヒータ)6を
内部に封入した外部電解液槽7が埋設されている。これ
によって培地5が断熱材の役目をして外部電解液槽7を
保温している。
A necessary amount of culture medium 5 is introduced into the agricultural house 1, and an external electrolytic solution tank 7 having an electric resistance heating element (heater) 6 enclosed therein is embedded in the culture medium 5. As a result, the culture medium 5 serves as a heat insulating material to keep the external electrolytic solution tank 7 warm.

【0018】更に、農業ハウス1の室内には、植物栽培
に必要な空調、保温、換気、散水、照明等のための機器
が設けられている。すなわち、空調ポンプ10及び空調
吹出し口11を備えた暖房、送風及び加・除湿のための
空調ユニット12、ドレン水ポンプ13及び浄化装置1
4が設けられ、培地5の下部に設置したドレン水溜め1
5に蓄えられたドレン水を噴出するスプリンクラ16及
び照明器具17が設けられている。また、室内及び外部
電解液槽7内には、温度モニタ20,21が、室内及び
培地5内には、湿り度モニタ22,23がそれぞれ配置
されている。
In addition, equipment for air conditioning, heat retention, ventilation, water sprinkling, lighting, etc. necessary for plant cultivation is provided in the room of the agricultural house 1. That is, an air conditioning unit 12 for heating, blowing, humidifying and dehumidifying, including an air conditioning pump 10 and an air conditioning outlet 11, a drain water pump 13, and a purification device 1.
4 is provided and the drain water reservoir 1 is installed at the bottom of the medium 5.
A sprinkler 16 and a lighting device 17 for ejecting the drain water stored in FIG. Further, temperature monitors 20 and 21 are arranged in the room and the external electrolytic solution tank 7, and wetness monitors 22 and 23 are arranged in the room and the medium 5.

【0019】一方、農業ハウス1の室外には、捕集した
エネルギー(熱及び電気)を空調、換気、散水、照明等
のために用いる太陽電池アレイ30が、真南に向けて傾
斜角60°で設置されている。この太陽電池アレイ30
の裏面側には、太陽電池30による発電システムを補佐
して安定した信頼性ある電源を構成する溶液型2次電池
としてのレドックス・フロー電池31が該太陽電池30
と一体に備えられている。この体型構造は、出願人が先
に平成7年特許願第349251号として出願してい
る。
On the other hand, outside the agricultural house 1, a solar cell array 30 that uses the collected energy (heat and electricity) for air conditioning, ventilation, water sprinkling, lighting, etc., has an inclination angle of 60 ° toward the south. It is installed in. This solar cell array 30
On the back side of the solar cell 30, there is a redox flow battery 31 as a solution type secondary battery that assists the power generation system by the solar cell 30 to form a stable and reliable power source.
It is equipped with. This body structure was previously filed by the applicant as 1995 Patent Application No. 349251.

【0020】このレドックス・フロー電池31は、互い
に対峙して配置された正負の電極板を備え、内部に取り
入れた電解液の酸化還元反応により充・放電を行うよう
にしたものであり、この電解液32が液循環ポンプ33
を介して外部電解液槽7内に導入されるように構成され
ている。
The redox flow battery 31 is provided with positive and negative electrode plates arranged to face each other, and is charged and discharged by a redox reaction of an electrolytic solution introduced inside. Liquid 32 is liquid circulation pump 33
It is configured to be introduced into the external electrolytic solution tank 7 via the.

【0021】そして、温度モニタ20,21及び湿り度
モニタ22,23からの信号に基づいて太陽電池アレイ
30及びレドックス・フロー電池31を制御する主制御
器34が備えられている。
A main controller 34 for controlling the solar cell array 30 and the redox flow battery 31 based on the signals from the temperature monitors 20 and 21 and the wetness monitors 22 and 23 is provided.

【0022】このような電源構成により、太陽電池30
が受けた熱及び発生した電力をその都度必要な空調、換
気、散水、照明等のために使用して、植物ハウス1内の
植物栽培に必要なエネルギー源の大半を太陽熱及び太陽
電池30が発電した電力で賄うことができる。なお、エ
ネルギーの余剰分はレドックス・フロー電池31の電解
液32に化学(電気的)エネルギー及び熱エネルギーの
形態で保存しておいて、受熱又は発電機能低下時(夜
間、曇天、荒天時等)への備えとしている。
With such a power source configuration, the solar cell 30
The heat received and the generated electric power are used for the necessary air conditioning, ventilation, water sprinkling, lighting, etc. each time, and the solar heat and the solar cell 30 generate most of the energy source necessary for plant cultivation in the plant house 1. It can be covered by the electricity that is consumed. The surplus energy is stored in the electrolytic solution 32 of the redox flow battery 31 in the form of chemical (electrical) energy and thermal energy, and when heat reception or power generation function declines (night, cloudy weather, stormy weather, etc.) Preparing for

【0023】化学エネルギーとして蓄えるのは、太陽電
池からの電力を、レドックス・フロー電池31本来の電
解液32の化学変化によって化学エネルギーの形で蓄え
るものである。一方、熱エネルギーとして保存するに
は、 外界の太陽熱で加熱昇温された電解液32を循環ポ
ンプ33を介して外部電解液槽7内に導入する。 太陽光発電によって発生した電力で電気抵抗発熱体
6に通電し、発熱させて電解液32を昇温させる。等が
ある。これにより、エネルギーをいずれの形態で保存す
るかは、周囲の気候条件等に基づいて最もエネルギー損
失が少なくなるように選択する。
The storage as chemical energy is to store the electric power from the solar cell in the form of chemical energy by the chemical change of the original electrolyte solution 32 of the redox flow battery 31. On the other hand, in order to store it as thermal energy, the electrolytic solution 32 heated and heated by the external solar heat is introduced into the external electrolytic solution tank 7 via the circulation pump 33. The electric resistance heating element 6 is energized with the electric power generated by the solar power generation to generate heat to raise the temperature of the electrolytic solution 32. Etc. As a result, which form of energy is to be stored is selected based on the surrounding climatic conditions so that the energy loss is minimized.

【0024】例えば、レドックス・フロー電池31に用
いられる電解液32は、高温に保持した方が蓄電装置と
しての作動効率が良いが、あまり高温に維持すると外部
へ逃げる熱量が増えて効率が低下する。例えば、外部電
解液槽7内の設定温度を常時50℃程度以上に保つよう
に制御するのが最も効率的であろう。
For example, the electrolytic solution 32 used in the redox flow battery 31 has better operating efficiency as a power storage device when kept at a high temperature, but if kept too high, the amount of heat escaping to the outside increases and the efficiency decreases. . For example, it would be most efficient to control so that the set temperature in the external electrolytic solution tank 7 is constantly maintained at about 50 ° C. or higher.

【0025】ここでは、太陽電池とレドックス・フロー
電池を構造上一体に組み合わせたタイプのものを示して
いるが、これに限ることなく、太陽電池とレドックス・
フロー電池とをそれぞれ独立のタイプとして、両者を電
気的に接続したものでも良いことは勿論である。
Here, a type in which a solar cell and a redox flow cell are integrally combined is shown, but the present invention is not limited to this, and the solar cell and the redox flow cell are not limited to this.
It goes without saying that the flow battery and the flow battery may be independent types and electrically connected to each other.

【0026】このように、太陽電池による発電装置を補
佐するために、従来の鉛蓄電池に替えてレドックス・フ
ロー電池31を採用することによって、 各セル間で性能のバラツキが非常に少ない充電シス
テムが実現できるので、高効率で経済的な充電型の形成
が可能である。 併用中の充・放電状態、深度の随時簡便モニタが可
能なので、緊急事態の回避が容易である。 電極材料の劣化が起きないので、保守費用の低減が
可能である。 電解液の更新による緊急充電が可能なので、非常時
の対応が容易である。という利点を持ったシステムを構
成することができる。
As described above, the redox flow battery 31 is used in place of the conventional lead storage battery in order to assist the power generation device using the solar cell, so that a charging system having very little variation in performance between cells can be provided. As a result, it is possible to form a highly rechargeable and economical charging type. It is possible to easily monitor the charging / discharging status and depth during combined use, so it is easy to avoid an emergency. Since the electrode material does not deteriorate, maintenance costs can be reduced. Emergency charging is possible by updating the electrolyte, so it is easy to deal with emergencies. It is possible to configure a system having the advantage of.

【0027】上記のように、植物栽培装置としての断熱
性を高め、太陽からのエネルギーを必要に応じて使用又
は貯蔵することによって、無公害エネルギーの利用効率
を極限まで高めることができ、かつ従来の系統電力や化
石燃料の大量消費を抑制することができるので、植物栽
培のための経常経費を大幅に低減することができる。
As described above, by increasing the heat insulation of the plant cultivation device and using or storing the energy from the sun as needed, the utilization efficiency of pollution-free energy can be maximized, and the conventional method can be used. Since it is possible to suppress a large amount of system power and fossil fuel consumption, ordinary costs for plant cultivation can be significantly reduced.

【0028】次に、図2を参照して、農業ハウス1内の
電気系統を説明する。同図に示すように、太陽からのエ
ネルギーのうち、太陽電池30によって電力の形で取り
出された部分は、主制御器34の制御によって、発熱体
6、空調ポンプ10、空調ユニット12、照明器具1
7、液循環ポンプ33及び散水系(ドレン水ポンプ1
3、浄化装置14及びスプリンクラ16)35に供給さ
れて、農業ハウス1内の環境維持に使われる。
Next, the electric system in the agricultural house 1 will be described with reference to FIG. As shown in the figure, of the energy from the sun, the portion taken out in the form of electric power by the solar cell 30 is controlled by the main controller 34 to generate the heating element 6, the air conditioning pump 10, the air conditioning unit 12, the lighting fixture. 1
7, liquid circulation pump 33 and sprinkler system (drain water pump 1
3, supplied to the purification device 14 and the sprinkler 16) 35, and used to maintain the environment in the agricultural house 1.

【0029】そして、余剰部分は、レドックス・フロー
電池31を充電することによって蓄電貯蔵される。ま
た、太陽エネルギーのうち、熱エネルギーは、昇温され
た電解液32を循環ポンプ33を介して外部電解液槽7
内に導入することにより保存される。太陽光発電によっ
て発生した電力にさらに余剰がある場合は、この電力で
電気抵抗発熱体6に通電し、発熱させて電解液32を昇
温させる。
Then, the surplus portion is charged and stored by charging the redox flow battery 31. Further, of the solar energy, the thermal energy is obtained by heating the temperature of the electrolytic solution 32 via the circulation pump 33 to the external electrolytic solution tank 7
It is preserved by introducing it inside. If there is a surplus in the electric power generated by the solar power generation, the electric resistance heating element 6 is energized with this electric power to generate heat and the temperature of the electrolytic solution 32 is raised.

【0030】このようにしてレドックス・フロー電池3
1に保存したエネルギーは、主制御器34により、夜間
や曇天、雨天、荒天時等、発電量不足の場合に必要量だ
け放出される。これによって、農業ハウス1では、室内
の大気及び培地5の温度、湿度、湿り状態を常時監視し
つつ、これらが適正な値の範囲に収まるように種々の装
置、機器が運転制御される。
In this way, the redox flow battery 3
The energy stored in 1 is released by the main controller 34 by the required amount when the amount of power generation is insufficient, such as at night, in cloudy weather, rainy weather, and stormy weather. As a result, in the agricultural house 1, while constantly monitoring the temperature, humidity, and wet state of the indoor air and the medium 5, various devices and equipment are operation-controlled so that these values fall within appropriate ranges.

【0031】図3は、農業ハウス1のための送風、送液
に関わる管路系統の概念図を示す。前述のように、太陽
からの熱エネルギーは、レドックス・フロー電池31の
電解液32の温度上昇及び化学変化の形で吸収しつつ、
液循環ポンプ33の駆動に伴って外部電解液槽7に保存
される。この場合、電解液32の温度が通常50℃程度
以上となるように必要な温度制御を行っている。レドッ
クス・フロー電池31の蓄電性能は、常温のときよりも
50℃以上の時の方が良くなるので、前述のように電解
液を高温に保持するのは、高効率に蓄電(充・放電を含
む)を行うためにも都合がよい。
FIG. 3 is a conceptual diagram of a pipeline system relating to air blowing and liquid feeding for the agricultural house 1. As described above, the thermal energy from the sun is absorbed in the form of temperature rise and chemical change of the electrolyte solution 32 of the redox flow battery 31,
It is stored in the external electrolyte bath 7 as the liquid circulation pump 33 is driven. In this case, necessary temperature control is performed so that the temperature of the electrolytic solution 32 is usually about 50 ° C. or higher. Since the power storage performance of the redox flow battery 31 is better at 50 ° C. or higher than at room temperature, it is highly efficient to store the electrolyte (charge / discharge) by keeping the electrolyte solution at a high temperature as described above. It is also convenient to do (including).

【0032】そこで、外部電解液槽7内に蓄えられた高
温の電解液32を熱源として、空調ポンプ33の駆動に
伴って空調ユニット12内を流れる水を高温の電解液3
2で加熱し、この加熱された水で室内に導入される空気
の温度を調節するようにしている。
Therefore, by using the high temperature electrolyte solution 32 stored in the external electrolyte solution tank 7 as a heat source, the water flowing in the air conditioning unit 12 when the air conditioning pump 33 is driven is changed into the high temperature electrolyte solution 3.
It is heated at 2, and the temperature of the air introduced into the room is adjusted by this heated water.

【0033】一方、ドレン水溜め15に溜められたドレ
ン水は、ドレン水ポンプ13の駆動に伴って浄化装置1
4で浄化された後、スプリンクラ16から噴出され、培
地5を通過した後、再びドレン水溜め15に溜められ
る。
On the other hand, the drain water collected in the drain water reservoir 15 is driven by the drain water pump 13 to purify the drain water.
After being purified in 4, it is ejected from the sprinkler 16, passes through the medium 5, and is stored again in the drain water reservoir 15.

【0034】なお、循環ポンプを使用することなく、他
の手段で電解液の撹拌、流動、揺動及び/又は循環を行
うことができるときは、これらの手段を用いても良い。
例えば、機器を適当に配置することによって、熱対流
(温度差の利用)で循環ポンプを代替できる場合には、
循環ポンプの使用を省略できる。
When the stirring, flow, swinging and / or circulation of the electrolytic solution can be performed by other means without using the circulation pump, these means may be used.
For example, if the convection can be replaced by thermal convection (utilization of temperature difference) by properly arranging the equipment,
The use of a circulation pump can be omitted.

【0035】また、これらの配管系の運転に必要なエネ
ルギーは、全て太陽光から得ている。なお、照明や散水
等のような空調(主として保温)以外に要するエネルギ
ーは、空調に要するそれに比べて1/10〜1/30以
下と小さいので、ここでは無視している。
All the energy required to operate these piping systems is obtained from sunlight. Note that energy required for other than air conditioning (mainly heat retention) such as lighting and water sprinkling is 1/10 to 1/30 or less as compared with that required for air conditioning, and is ignored here.

【0036】次に、上記実施の形態を実際の栽培に用い
たときのエネルギー収支について、例を挙げて説明す
る。この例では、農業ハウス1の床面積は454m
2 で、太陽電池30で発電した電力の一部は、そのまま
農業ハウス1内の主制御器34を通って培地5に設置し
た外部電解液槽7内のヒータ6を発熱させることに用い
られる。
Next, the energy balance when the above embodiment is used for actual cultivation will be described with reference to examples. In this example, the floor area of the agricultural house 1 is 454m
At 2 , a part of the electric power generated by the solar cell 30 is used as it is to pass through the main controller 34 in the agricultural house 1 to heat the heater 6 in the external electrolytic solution tank 7 installed in the medium 5.

【0037】これによって発生した熱は熱媒体(レドッ
クス・フロー電池の電解液32)に伝えられ、更にこれ
を農業ハウス1内の空調ポンプ10で空調ユニット12
に送って室温の保持を行っている。そして、余剰の電力
を太陽電池30と組み合わせたレドックス・フロー電池
31を充電(電解液32の化学反応)することによって
保存しておき、曇天、荒天時や夜間等の非日照時、又は
太陽電池作動不良の場合等に、必要に応じて放電するよ
うにしている。
The heat generated by this is transmitted to the heat medium (electrolyte solution 32 of the redox flow battery), which is further transferred to the air conditioning unit 12 by the air conditioning pump 10 in the agricultural house 1.
Sent to and maintained at room temperature. Then, the redox flow battery 31 in which surplus power is combined with the solar battery 30 is stored by being charged (chemical reaction of the electrolytic solution 32), and stored in a cloudy weather, stormy weather, non-sunshine such as nighttime, or the solar battery. In case of malfunction, etc., discharge is made as necessary.

【0038】また、日射によって、太陽電池アレイ30
の温度も上昇するが、これは、この太陽電池30と一体
に接触させて設けたレドックス・フロー電池31の電解
液32による冷却作用で必要な温度に保持される。逆
に、レドックス・フロー電池31の電解液温度が相当分
だけ上昇することによって、熱エネルギーの蓄積保存が
行われる。
Further, the solar cell array 30 is exposed to solar radiation.
The temperature also rises, but this is maintained at the required temperature by the cooling action of the electrolytic solution 32 of the redox flow battery 31 provided integrally in contact with the solar cell 30. On the contrary, when the temperature of the electrolyte solution of the redox flow battery 31 rises by a considerable amount, thermal energy is stored and stored.

【0039】1.野菜栽培 前述の農業ハウス1を用いて10〜2月の秋冬期に長ね
ぎとほうれん草を栽培する。太陽電池アレイ30の面積
を100m2 (セル変換効率10%とすると10kWp
に相当)とする。この場合、厳寒期で日射のない場合で
も室温を常時5℃以上に保つことができ、日中は18℃
となって、更に日射があればそれ以上となっている。ま
た、地中温度を15〜20℃以上に保持している。
1. Cultivation of vegetables Using the above-mentioned Agricultural House 1, long onions and spinach are cultivated in the autumn and winter of October to February. The area of the solar cell array 30 is 100 m 2 (10 kWp if the cell conversion efficiency is 10%).
Equivalent to). In this case, the room temperature can always be kept at 5 ° C or higher even in the severe cold season without sunlight, and at 18 ° C during the day.
And, if there is more solar radiation, it is more than that. Moreover, the underground temperature is kept at 15 to 20 ° C. or higher.

【0040】表1のように諸元をとると、1ヶ月当りの
発電量は、1kW/m2×5%×100m2×4h/day×30da
y=600kWhとなって最大必要熱量とされる518.9
kWhを充分超えている。 表1 農業ハウスの諸元(野菜用) *概算値 ───────────────── 総合エネルギ効率* 5% ───────────────── 太陽定数* 1kW/m2 ───────────────── 平均日照時間 * 4h/day ───────────────── 太陽電池発電面積 100m2 ─────────────────
Taking the specifications as shown in Table 1, the amount of power generation per month is 1 kW / m 2 × 5% × 100 m 2 × 4 h / day × 30 da.
y = 600kWh, which is the maximum required heat quantity 518.9
Well over kWh. Table 1 Specifications of agricultural houses (for vegetables) * Approximate value ───────────────── Total energy efficiency * 5% ────────────── ──── Solar constant * 1kW / m 2 ───────────────── Average sunshine hours * 4h / day ──────────────── ── Solar cell power generation area 100m 2 ─────────────────

【0041】2.果実栽培 前述の農業ハウス1を用いて12〜5月の冬〜春期にぶ
どうを栽培する。太陽電池アレイ30の面積を1500
2 (セル変換効率10%とすると150kWpに相
当)とする。この場合、厳寒期で日射のない場合でも室
温を常時10℃以上に保つことができ、日中は20℃以
上となっており、更に日射があればそれ以上となる。ま
た、地中温度を20〜25℃以上に保持している。
2. Fruit cultivation Grape is cultivated in the winter-spring period of December to May using the above-mentioned agricultural house 1. The area of the solar cell array 30 is 1500
m 2 (corresponding to 150 kWp when the cell conversion efficiency is 10%). In this case, the room temperature can be constantly maintained at 10 ° C. or higher even in the severe cold season without solar radiation, the temperature is 20 ° C. or higher during the daytime, and the temperature becomes higher if the solar radiation is present. Further, the underground temperature is maintained at 20 to 25 ° C or higher.

【0042】表2のように諸元をとると、1ヶ月当りの
発電量は、 1kW/m2×5%×1500m2×4h/day×30day=9
000kWh なので、6ヶ月では、 6×9000kWh=5万4千kWh となる。
Taking the specifications as shown in Table 2, the power generation amount per month is 1 kW / m 2 × 5% × 1500 m 2 × 4 h / day × 30 day = 9.
Since it is 000 kWh, it will be 6 × 9000 kWh = 54,000 kWh in 6 months.

【0043】 表2 農業ハウスの諸元(果実用) *概算値 ───────────────── 総合エネルギ効率* 5% ───────────────── 太陽定数* 1kW/m2 ───────────────── 平均日照時間* 4h/day ───────────────── 太陽電池発電面積 1500m2 ─────────────────Table 2 Agricultural house specifications (for fruits) * Approximate value ───────────────── Total energy efficiency * 5% ─────────── ─────── Solar constant * 1 kW / m 2 ───────────────── Average sunshine hours * 4 h / day ───────────── ───── Solar cell power generation area 1500m 2 ──────────────────

【0044】6ヶ月間で通常必要な熱量は5万kWhと
考えられ、現在は全てこれを灯油の燃焼によって賄って
いるが、本発明の栽培方式を使い、農業ハウスの床面積
の3倍程度の太陽電池を設置すれば、灯油を全く消費し
なくても必要なエネルギーを得ることができる。
It is considered that the amount of heat normally required for 6 months is 50,000 kWh, which is currently covered by burning kerosene. However, using the cultivation method of the present invention, the floor area of an agricultural house is about three times as large. If you install the solar cell, you can obtain the required energy without consuming kerosene at all.

【0045】以上述べたように、本発明のように太陽電
池とレドックス・フロー電池を組み合わせることによっ
て、化石燃料を用いなくても実用的な季節外植物栽培が
可能になる。
As described above, by combining a solar cell and a redox flow battery as in the present invention, practical out-of-season plant cultivation is possible without using fossil fuel.

【0046】[0046]

【発明の効果】以上説明したように、本発明によれば、
太陽電池により電気に変換された太陽エネルギーを、培
地に覆われて保温されている溶液型2次電池の外部電解
液槽の中に効率良く化学エネルギーとして貯蔵するの
で、電解液温度が維持されて溶液型2次電池の安定な動
作を確保し、太陽エネルギーの有効利用を図ることがで
きるとともに、必要に応じてこれを利用することで外部
電源不要の独立システムの構築が容易となり、農作物の
低コスト化に寄与する。
As described above, according to the present invention,
Since the solar energy converted into electricity by the solar cell is efficiently stored as chemical energy in the external electrolytic solution tank of the solution type secondary battery which is covered with the medium and kept warm, the electrolytic solution temperature is maintained. The stable operation of the solution type secondary battery can be ensured and the solar energy can be effectively used. By using the solar energy as needed, it becomes easy to build an independent system that does not require an external power source, and Contributes to cost reduction.

【0047】また、太陽電池と溶液型2次電池を一体に
形成することにより、太陽電池で発電された電気的エネ
ルギーの他に、溶液型2次電池の電解液に顕熱として蓄
えられた熱エネルギーをも外部電解槽に蓄えることがで
き、さらなる効率向上が期待できる。これによって、無
公害エネルギーの利用効率を最大限に高めて、従来の系
統電力や化石燃料の大量消費を抑制し、植物栽培のため
の経常経費を大幅に低減することができる。
Further, by integrally forming the solar cell and the solution type secondary battery, in addition to the electric energy generated by the solar cell, the heat stored in the electrolytic solution of the solution type secondary battery as sensible heat. Energy can also be stored in the external electrolytic cell, and further improvement in efficiency can be expected. As a result, it is possible to maximize the utilization efficiency of pollution-free energy, suppress large-scale consumption of conventional system power and fossil fuels, and significantly reduce ordinary costs for plant cultivation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1つの実施の形態を示す概要図であ
る。
FIG. 1 is a schematic diagram showing an embodiment of the present invention.

【図2】同じく、電気系統の流れ図である。FIG. 2 is likewise a flow chart of the electrical system.

【図3】同じく、管路系の概念図である。FIG. 3 is likewise a conceptual diagram of a pipeline system.

【符号の説明】[Explanation of symbols]

1 農業ハウス 5 培地 6 発熱体 7 外部電解液槽 12 空調ユニット 16 スプリンクラ 17 照明器具 30 太陽電池 31 レドックス・フロー電池(溶液型2次電池) 32 電解液 34 主制御器 1 Agricultural House 5 Medium 6 Heater 7 External Electrolyte Tank 12 Air Conditioning Unit 16 Sprinkler 17 Lighting Equipment 30 Solar Cell 31 Redox Flow Battery (Solution Type Secondary Battery) 32 Electrolyte 34 Main Controller

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 農業用ハウスと、この農業用ハウスとは
別に設置された太陽電池と、該太陽電池によって発電さ
れた電力を蓄電する溶液型2次電池とを備え、 上記溶液型2次電池の外部電解液槽を上記ハウス内の植
物栽培用の培地の内部に埋設したことを特徴とする植物
成長装置。
1. A solution type secondary battery comprising: an agricultural house, a solar cell installed separately from the agricultural house, and a solution type secondary battery for storing electric power generated by the solar cell. The plant growing apparatus, wherein the external electrolytic solution tank is embedded in the culture medium for plant cultivation in the house.
【請求項2】 上記太陽電池と溶液型2次電池が一体に
形成されていることを特徴とする請求項1に記載の植物
成長装置。
2. The plant growing apparatus according to claim 1, wherein the solar cell and the solution type secondary battery are integrally formed.
【請求項3】 前記溶液型2次電池として、レドックス
・フロー電池を用いたことを特徴とする請求項1に記載
の植物成長装置。
3. The plant growing apparatus according to claim 1, wherein a redox flow battery is used as the solution type secondary battery.
【請求項4】 上記溶液型2次電池の内部において、電
解液を熱対流によって流動させることを特徴とする請求
項1に記載の植物成長装置。
4. The plant growing apparatus according to claim 1, wherein the electrolytic solution is caused to flow by thermal convection inside the solution type secondary battery.
【請求項5】 上記外部電解液槽には、上記太陽電池及
び/又は溶液型2次電池の電力により電解液を加熱する
ヒータが設けられていることを特徴とする請求項1に記
載の植物成長装置。
5. The plant according to claim 1, wherein the external electrolytic solution tank is provided with a heater for heating the electrolytic solution by the electric power of the solar cell and / or the solution type secondary battery. Growth equipment.
【請求項6】 さらに、上記農業用ハウス内部の環境条
件を検知するセンサの検出値に基づいて該環境条件を制
御する制御装置が設けられていることを特徴とする請求
項1に記載の植物成長装置。
6. The plant according to claim 1, further comprising a control device that controls the environmental condition based on a detection value of a sensor that detects the environmental condition inside the agricultural house. Growth equipment.
【請求項7】 上記制御装置は、太陽電池で発電される
余剰の電力を熱エネルギー又は電気化学的エネルギーの
いずれの形態で蓄えるかを判断する機能を有しているこ
とを特徴とする請求項6に記載の植物成長装置。
7. The control device has a function of determining whether the surplus power generated by the solar cell is stored in the form of thermal energy or electrochemical energy. 6. The plant growth apparatus according to 6.
JP16240096A 1996-06-03 1996-06-03 Plant growth equipment Expired - Fee Related JP3652013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16240096A JP3652013B2 (en) 1996-06-03 1996-06-03 Plant growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16240096A JP3652013B2 (en) 1996-06-03 1996-06-03 Plant growth equipment

Publications (2)

Publication Number Publication Date
JPH09322661A true JPH09322661A (en) 1997-12-16
JP3652013B2 JP3652013B2 (en) 2005-05-25

Family

ID=15753891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16240096A Expired - Fee Related JP3652013B2 (en) 1996-06-03 1996-06-03 Plant growth equipment

Country Status (1)

Country Link
JP (1) JP3652013B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288209A (en) * 2005-04-05 2006-10-26 Hamamatsu Photonics Kk Device and method for carrying plant
CN102668965A (en) * 2012-06-13 2012-09-19 毕一凡 Autorotation type soilless planting greenhouse capable of acquiring natural energy in multiple directions
JP2016532202A (en) * 2013-08-16 2016-10-13 ハスクバーナ・アーベー Intelligent site management system
WO2019111324A1 (en) * 2017-12-05 2019-06-13 日立化成株式会社 Secondary battery, secondary battery system, and power generation system
JP2020516035A (en) * 2017-03-27 2020-05-28 アンゲロ ダンツィAngelo D’ANZI Embodiments of tanks for flow batteries
KR102231796B1 (en) * 2020-03-04 2021-03-25 철원군 Micro Spray Cultivation System of Wasabia Japonica Rhizome
WO2022051715A1 (en) * 2020-09-04 2022-03-10 Redford Ryan Environmentally controlled food product with integrated photovoltaic power generation system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103120103A (en) * 2013-02-05 2013-05-29 上海交通大学 Air warming type energy-saving seedbed and system thereof
CN107736170A (en) * 2017-11-22 2018-02-27 广西超星太阳能科技有限公司 A kind of agricultural greenhouse based on solar power generation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288209A (en) * 2005-04-05 2006-10-26 Hamamatsu Photonics Kk Device and method for carrying plant
CN102668965A (en) * 2012-06-13 2012-09-19 毕一凡 Autorotation type soilless planting greenhouse capable of acquiring natural energy in multiple directions
JP2016532202A (en) * 2013-08-16 2016-10-13 ハスクバーナ・アーベー Intelligent site management system
JP2018014146A (en) * 2013-08-16 2018-01-25 ハスクバーナ・アーベー Intelligent site management system
JP2020516035A (en) * 2017-03-27 2020-05-28 アンゲロ ダンツィAngelo D’ANZI Embodiments of tanks for flow batteries
WO2019111324A1 (en) * 2017-12-05 2019-06-13 日立化成株式会社 Secondary battery, secondary battery system, and power generation system
KR102231796B1 (en) * 2020-03-04 2021-03-25 철원군 Micro Spray Cultivation System of Wasabia Japonica Rhizome
WO2022051715A1 (en) * 2020-09-04 2022-03-10 Redford Ryan Environmentally controlled food product with integrated photovoltaic power generation system

Also Published As

Publication number Publication date
JP3652013B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
CN202635220U (en) Solar photovoltaic greenhouse
JP3652013B2 (en) Plant growth equipment
Al-Ibrahim et al. PV greenhouse system¿ system description, performance and lesson learned
CN106020290A (en) Greenhouse soil temperature intelligent adjustment and control device
CN207150241U (en) A kind of plant factor's electric power system
RU185808U1 (en) Greenhouse complex with combined heat supply system
CN108923725B (en) Wind turbine generator tower power supply system based on thin-film solar cell
US20220071108A1 (en) Environmentally controlled food product with integrated photovoltaic power generation system
CN218302493U (en) Zero-energy greenhouse based on PVT (photovoltaic thermal transfer)
CN211129137U (en) Hydrologic cycle control by temperature change big-arch shelter
Merin et al. Automated greenhouse vertical farming with wind and solar hybrid power system
CN210641675U (en) Solar greenhouse ceiling
CN209151776U (en) A kind of comprehensive collection thermal desorption system in greenhouse
CN210042860U (en) Intelligent photovoltaic greenhouse easy to construct
CN113089937A (en) Automatic blue-green roof system based on solar energy and microbial power generation
CN209185204U (en) A kind of pervasive agricultural system based on wind light mutual complementing
CN213427229U (en) Plateau lotus flower planting device
CN214758165U (en) Water modular active heat storage sunlight greenhouse
CN108990625A (en) A kind of novel and multifunctional graphene power generation greenhouse greenhouse
CN218483361U (en) Self-sufficient container type plant factory of electric energy
CN205431255U (en) Solar photovoltaic big -arch shelter for water planting
CN215774506U (en) Solar heating greenhouse
KR102475262B1 (en) Smart factory equipped with lighting controls that can control the amount of light required for each crop
CN103715982A (en) Greenhouse solar power supply system
CN218072692U (en) Off-grid type agricultural facility solar energy comprehensive energy system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees