JPS62165365A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62165365A
JPS62165365A JP622786A JP622786A JPS62165365A JP S62165365 A JPS62165365 A JP S62165365A JP 622786 A JP622786 A JP 622786A JP 622786 A JP622786 A JP 622786A JP S62165365 A JPS62165365 A JP S62165365A
Authority
JP
Japan
Prior art keywords
film
layer
silicon
grow
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP622786A
Other languages
Japanese (ja)
Inventor
Shuichi Oya
大屋 秀市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP622786A priority Critical patent/JPS62165365A/en
Publication of JPS62165365A publication Critical patent/JPS62165365A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent oxidation and improve electrical characteristics of a device and improve the reliability by levelling the wiring by a method wherein a layer insulating film has a triple-layer structure composed of a silicon oxide film, a silicon nitride film and an impurity doped silica glass film laminated in this order from the lower layer to the upper layer. CONSTITUTION:After a gate silicon oxide film 2 is made to grow on a P-type single crystal silicon substrate 1, a phosphorus doped polycrystalline silicon film 3 is made to grow on the film 2 and further a tungsten silicide film 4, as a high melting point metal silicide, is made to grow on the film 3. After that a gate electrode of a double-layer structure is formed by patterning. Then arsenic ions are implanted into the silicon substrate 1 as an N-type impurity to form source and drain regions 6 and 6. A silicon oxide film 7 is made to grow on the regions 6 and 6 and a silicon nitride film 8 is formed on the oxide film 7 and further a BPSG film 9 containing boron and phosphorus is formed on the film 8 to form a layer insulating film 10 of a triple-layer structure. the layer insulating film 10 is subjected to a heat treatment in a stream atmosphere and the BPSG film 9 which is the top layer is made to reflow to relieve its stepped parts.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は絶縁ゲート型電界効果トランジスタを有する半
導体装置に関し、特に層間絶縁膜を改良した半導体装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device having an insulated gate field effect transistor, and particularly to a semiconductor device having an improved interlayer insulating film.

〔従来の技術〕[Conventional technology]

一般に半導体装置では、半導体基板に形成した素子とこ
の」二に形成する上層配線との間を絶縁するために層間
絶縁膜を設けている。例えば、素子として絶縁ゲート型
電界効果トランジスタ(以下、Mis)ランジスタと称
する)を有する半導体装置では、下層となるゲート電極
やソース・ドレイン領域を覆うように層間絶縁膜を形成
し、この上に配設する」二層配線との絶縁を図っている
Generally, in a semiconductor device, an interlayer insulating film is provided to insulate between an element formed on a semiconductor substrate and an upper layer wiring formed on the second side. For example, in a semiconductor device having an insulated gate field effect transistor (hereinafter referred to as a Mis transistor) as an element, an interlayer insulating film is formed to cover the underlying gate electrode and source/drain regions, and on top of this an interlayer insulating film is formed. It is intended to be insulated from the two-layer wiring installed.

従来、この種の層間絶縁膜には、シリコン酸化膜や比較
的低温でリフロー可能なリンを含むシリカガラス(PS
G)或いはリンとポロンを含むシリカガラス(B P 
S G)が用いられており、MISトランジスタのゲー
I・電極やソース・ドレイン領域上にシリコン酸化膜を
被着した上にPSGやBPSG等の膜を被着形成してい
る。そして、この層間絶縁膜においては、膜形成後にこ
れを加熱してリフローすることにより下層のゲート電極
や下層配線によって生じた段差を緩和し、上層配線が段
差部で断線されるのを防いでいる。
Conventionally, this type of interlayer insulating film has been made of silicon oxide film or phosphorous-containing silica glass (PS), which can be reflowed at relatively low temperatures.
G) or silica glass containing phosphorus and poron (B P
SG) is used, in which a silicon oxide film is deposited on the gate I/electrode and source/drain regions of the MIS transistor, and then a film such as PSG or BPSG is deposited. In this interlayer insulating film, after the film is formed, it is heated and reflowed to alleviate the step difference caused by the lower layer gate electrode and lower layer wiring, and prevent the upper layer wiring from being disconnected at the step part. .

通常、これらPSG、BF’SGは低温でリフロー可能
であるが、窒素、アルゴン等の非酸化性雰囲気中よりも
スチーム雰囲気中の方が更に低い温度でリフロー可能で
ある。したがって近年のように素子の微細化に伴ってソ
ース・ドレイン領域の浅い接合が要求されている状態下
では、低温での処理が可能なスチーム雰囲気中でのりフ
ローを行うことが多くなっている。
Generally, these PSG and BF'SG can be reflowed at a low temperature, but they can be reflowed at a lower temperature in a steam atmosphere than in a non-oxidizing atmosphere such as nitrogen or argon. Therefore, in recent years, where shallow junctions in source and drain regions are required due to miniaturization of devices, glue flow is often performed in a steam atmosphere that allows processing at low temperatures.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体装置では、シリコン酸化膜とPS
G又はBPSGからなる層間絶縁膜をスチーム雰囲気中
でリフローしているため、耐酸化性のないこれら層間絶
縁膜の下層のゲート電極やソース・ドレイン領域が酸化
されてしまう。このため、ゲート電極やソース・ドレイ
ン領域の酸化が過度になるとゲート電極形状が変形され
、電気的な特性が劣化されることがある。特に、ゲート
長が短縮化されている微細M■Sトランジスタではゲー
ト電極の変形に伴う特性の劣化は顕著なものになる。
In the conventional semiconductor device described above, a silicon oxide film and a PS
Since the interlayer insulating film made of G or BPSG is reflowed in a steam atmosphere, the gate electrode and source/drain regions under the interlayer insulating film, which have no oxidation resistance, are oxidized. Therefore, if the gate electrode or source/drain regions are excessively oxidized, the shape of the gate electrode may be deformed and the electrical characteristics may be deteriorated. Particularly, in the case of a fine M■S transistor whose gate length is shortened, deterioration of characteristics due to deformation of the gate electrode becomes remarkable.

また、ゲート電極を高融点金属或いは高融点金属シリサ
イドを含む材料から構成している場合には、酸化によっ
て高融点金属が昇華されて形状の変形度合が著しくなり
、或いは高融点金属シリサイドの層抵抗が増大するとい
う問題もある。
In addition, if the gate electrode is made of a material containing a high-melting point metal or a high-melting point metal silicide, the high-melting point metal may be sublimated by oxidation, resulting in significant deformation of the shape, or the layer resistance of the high-melting point metal silicide may There is also the problem of an increase in

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置は、MISトランジスタのゲート電
極やソース・ドレイン領域を酸化することなく層間絶縁
膜のみをスチーム雰囲気でリフローすることを可能とし
、素子の特性劣化を防止するとともに上層配線における
断線等を有効に防止するものである。
The semiconductor device of the present invention makes it possible to reflow only the interlayer insulating film in a steam atmosphere without oxidizing the gate electrode or source/drain region of the MIS transistor, thereby preventing deterioration of the characteristics of the device and preventing disconnection in the upper layer wiring. This effectively prevents

本発明の半導体装置は、MIS)ランジスタのゲート電
極やソース・ドレイン領域上に形成する層間絶縁膜を、
下層から順にシリコン酸化膜、シリコン窒化膜及び不純
物を含むシリカガラス膜を積層した3層構造に構成して
いる。
The semiconductor device of the present invention has an interlayer insulating film formed on the gate electrode and source/drain regions of the MIS transistor.
It has a three-layer structure in which a silicon oxide film, a silicon nitride film, and a silica glass film containing impurities are laminated in order from the bottom layer.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

図は本発明の一実施例の断面図であり、ここではNチャ
ネルMIS+−ランジスタに適用した例を示している。
The figure is a sectional view of one embodiment of the present invention, and here shows an example applied to an N-channel MIS+- transistor.

即ち、P型車結晶シリコン基体1」二に熱酸化法によっ
て300人の厚さのゲートシリコン酸化膜2を成長し、
この上にリンを添加した多結晶シリ、コン膜3を200
0人の厚さに、更にこの上に高融点金属シリサイドであ
るタングステンシリサイド膜4を2000人の厚さに夫
々CVD法やスパック法によって成長させる。その後に
これらをフォトリソグラフィ技術を用いて所要形状にバ
ターニングし7、所謂ポリサイドと称される2層構造の
ゲート電極5を形成する。
That is, a gate silicon oxide film 2 with a thickness of 300 nm is grown on a P-type crystal silicon substrate 1''2 by thermal oxidation.
On top of this, phosphorus-added polycrystalline silicon film 3 is deposited at 200°C.
Further, a tungsten silicide film 4, which is a refractory metal silicide, is grown on this film to a thickness of 2,000 nm by CVD or spacing. Thereafter, these are patterned into a desired shape using photolithography technology 7 to form a gate electrode 5 having a two-layer structure called polycide.

そして、このゲート電極5を用いた自己整合法によって
N型不純物である砒素をシリコン基体1にイオンン主人
し、ソース・ドレイン領域6.6を形成する。
Then, by a self-alignment method using this gate electrode 5, arsenic, which is an N-type impurity, is ionized into the silicon substrate 1 to form a source/drain region 6.6.

この上に、通常のCVD法によりシリコン酸化膜7を1
000人の厚さに、その上にシリコン窒化膜8を500
人の厚さに夫々成長させ、更にこの上にボロンとリンを
夫々4重量パーセント含むBPSG膜9を1μmの厚さ
に成長させ、3層構造の層間絶縁膜10を形成する。そ
して、この層間絶縁膜10に対して900℃のスチーム
雰囲気で20分間熱処理を行ない、最上層のB P S
 G膜9をリフローしてその段差部を緩和させる。
On top of this, a silicon oxide film 7 is deposited by a normal CVD method.
A silicon nitride film 8 is deposited on top of the silicon nitride film to a thickness of 500 mm.
Then, a BPSG film 9 containing 4 weight percent of boron and phosphorous each is grown to a thickness of 1 μm to form an interlayer insulating film 10 having a three-layer structure. Then, heat treatment is performed on this interlayer insulating film 10 in a steam atmosphere at 900° C. for 20 minutes, and the uppermost layer B P S
The G film 9 is reflowed to soften the stepped portion.

なお、その後にコンタクト孔の開設及び」二層配線の形
成を行ってMISトランジスタを完成するが、こごでは
これらの図示は省略している。
Incidentally, after that, the MIS transistor is completed by opening contact holes and forming two-layer wiring, but these are omitted from illustration here.

この構成によれば、層間絶縁膜10のB P S GI
Ix9とシリコン酸化膜7との間に耐酸化性のシリコン
窒化膜8を介在させているため、BPSG膜9のリフロ
ーをスチーム雰囲気中で行っても、このシリコン窒化膜
8がバリヤとして機能し、下層のシリコン酸化膜7.ゲ
ート電極5及びソース・ドレイン領域6に酸化の影響を
与えることはない。
According to this configuration, the B P S GI of the interlayer insulating film 10
Since the oxidation-resistant silicon nitride film 8 is interposed between the Ix 9 and the silicon oxide film 7, even if the BPSG film 9 is reflowed in a steam atmosphere, this silicon nitride film 8 functions as a barrier. Lower layer silicon oxide film7. The gate electrode 5 and source/drain regions 6 are not affected by oxidation.

このため、ゲー ト電極5を構成するタングステンシリ
サイドlI!4の酸化を防止し、その層抵抗の増大及び
多結晶シリコン膜3からの剥がれ等の不具合を未然に防
止できる。これにより、M I S +−ランジスタの
電気的特性を向」二するとともに、層間絶縁膜の平坦化
によって上層配線の信頼性を向上できる。
For this reason, the tungsten silicide lI! that constitutes the gate electrode 5. It is possible to prevent oxidation of the polycrystalline silicon film 4, thereby preventing problems such as an increase in layer resistance and peeling off from the polycrystalline silicon film 3. This improves the electrical characteristics of the M I S +- transistor, and also improves the reliability of the upper layer wiring by flattening the interlayer insulating film.

ここで、前記実施例ではNチャネルMISトランジスタ
を例示したが、PチャネルMIS)ランジスタにも同様
に適用できる。また、層間絶縁膜は最上層にPSG膜を
用いることも可能である。
Here, in the above embodiment, an N-channel MIS transistor was illustrated, but the present invention can be similarly applied to a P-channel MIS transistor. Furthermore, it is also possible to use a PSG film as the uppermost layer of the interlayer insulating film.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ゲート電極やソース・ド
レイン領域上に形成する層間絶縁膜を、下層から順にシ
リコン酸化膜、シリコン窒化膜及び不純物を含むシリカ
ガラス膜を積層した3層構造に構成しているので、層間
絶縁膜をスチーム雰囲気中でリフロー処理を行ってもシ
リコン窒化膜の耐酸化性によってゲート電極やソース・
ドレイン領域への酸化の影響を防止でき、これらの酸化
を未然に防止して素子の電気的特性の向上及び配線の平
坦化による信頼性の向上を達成できる。また、スチーム
雰囲気中でのりフローを実現することにより、ソース・
ドレイン領域の浅い接合を可能とし、かつこれにより素
子の短チヤネル化を可能として半導体装置の高集積化を
達成することができる。
As explained above, the present invention has a three-layer structure in which the interlayer insulating film formed on the gate electrode and source/drain regions is laminated in order from the bottom: a silicon oxide film, a silicon nitride film, and a silica glass film containing impurities. Therefore, even if the interlayer insulating film is reflowed in a steam atmosphere, the oxidation resistance of the silicon nitride film will prevent the gate electrode, source and
The influence of oxidation on the drain region can be prevented, and by preventing such oxidation, it is possible to improve the electrical characteristics of the element and improve reliability by flattening the wiring. In addition, by realizing glue flow in a steam atmosphere, source
It is possible to form a shallow junction in the drain region, thereby making it possible to shorten the channel of the element and achieve high integration of the semiconductor device.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例の要部の断面図である。 1・・・ソリコン基体、2・・・ゲート酸化膜、3・・
・多結晶シリコン膜、4・・・タングステンシリサイド
膜、5・・・ゲート電極、6・・・ソース・ドレイン領
域、7・・・シリコン酸化膜、8・・・シリコン窒化膜
、9・・・BPSG膜、10・・・層間絶縁膜。
The figure is a cross-sectional view of essential parts of an embodiment of the present invention. 1... Solicon base, 2... Gate oxide film, 3...
- Polycrystalline silicon film, 4... Tungsten silicide film, 5... Gate electrode, 6... Source/drain region, 7... Silicon oxide film, 8... Silicon nitride film, 9... BPSG film, 10... interlayer insulating film.

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁ゲート型電界効果トランジスタを備える半導
体装置において、前記絶縁ゲート型電界効果トランジス
タのゲート電極、ソース・ドレイン領域上に形成する層
間絶縁膜を、下層から順にシリコン酸化膜、シリコン窒
化膜及び不純物を含むシリカガラス膜を積層した3層構
造に構成したことを特徴とする半導体装置。
(1) In a semiconductor device including an insulated gate field effect transistor, an interlayer insulating film formed on the gate electrode and source/drain regions of the insulated gate field effect transistor is sequentially formed from a silicon oxide film, a silicon nitride film, and a silicon nitride film from the bottom. A semiconductor device characterized in that it has a three-layer structure in which silica glass films containing impurities are laminated.
(2)ゲート電極を多結晶シリコン膜と高融点金属シリ
サイド膜の2層からなるポリサイド構造に構成してなる
特許請求の範囲第1項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the gate electrode has a polycide structure consisting of two layers of a polycrystalline silicon film and a high melting point metal silicide film.
JP622786A 1986-01-17 1986-01-17 Semiconductor device Pending JPS62165365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP622786A JPS62165365A (en) 1986-01-17 1986-01-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP622786A JPS62165365A (en) 1986-01-17 1986-01-17 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62165365A true JPS62165365A (en) 1987-07-21

Family

ID=11632628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP622786A Pending JPS62165365A (en) 1986-01-17 1986-01-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62165365A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434187B1 (en) * 2001-08-18 2004-06-04 삼성전자주식회사 Method of performing insulate pattern in semiconductor device
KR100452311B1 (en) * 1997-04-11 2005-01-17 삼성전자주식회사 Interlayer dielectric of semiconductor device and fabricating method thereof to stably use hto layer and bpsg layer without preventing silicide layer from being influenced by heat
JP2008112823A (en) * 2006-10-30 2008-05-15 Denso Corp Method for fabricating silicon carbide semiconductor device
KR100845718B1 (en) 2002-12-20 2008-07-10 동부일렉트로닉스 주식회사 Method for manufacturing MOS transistor
JP2015135982A (en) * 2015-03-11 2015-07-27 ルネサスエレクトロニクス株式会社 Semiconductor device manufacturing method
US10008584B2 (en) 2011-06-28 2018-06-26 Renesas Electronics Corporation Semiconductor device, method of manufacturing the semiconductor device, and electronic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452311B1 (en) * 1997-04-11 2005-01-17 삼성전자주식회사 Interlayer dielectric of semiconductor device and fabricating method thereof to stably use hto layer and bpsg layer without preventing silicide layer from being influenced by heat
KR100434187B1 (en) * 2001-08-18 2004-06-04 삼성전자주식회사 Method of performing insulate pattern in semiconductor device
KR100845718B1 (en) 2002-12-20 2008-07-10 동부일렉트로닉스 주식회사 Method for manufacturing MOS transistor
JP2008112823A (en) * 2006-10-30 2008-05-15 Denso Corp Method for fabricating silicon carbide semiconductor device
US10008584B2 (en) 2011-06-28 2018-06-26 Renesas Electronics Corporation Semiconductor device, method of manufacturing the semiconductor device, and electronic device
JP2015135982A (en) * 2015-03-11 2015-07-27 ルネサスエレクトロニクス株式会社 Semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
US4716131A (en) Method of manufacturing semiconductor device having polycrystalline silicon layer with metal silicide film
US6117792A (en) Method for manufacturing semiconductor device
US5705845A (en) Semiconductor device with particular metal silicide film
JPS62165365A (en) Semiconductor device
JPS59195870A (en) Semiconductor device
JPH0258259A (en) Manufacture of semiconductor device
JPS58215055A (en) Semiconductor integrated circuit device
JPS6340374A (en) Mos-type semiconductor device and manufacture thereof
JP3104322B2 (en) Semiconductor device
JPH0528501B2 (en)
JPH02192161A (en) Semiconductor integrated circuit device
JP3037100B2 (en) Method for manufacturing semiconductor device
JPS61150376A (en) Semiconductor device
JPS61194764A (en) Manufacture of semiconductor device
JP2623711B2 (en) Semiconductor device
JPS62224077A (en) Semiconductor integrated circuit device
JPS59161072A (en) Semiconductor device
JPH03283565A (en) Mos type semiconductor integrated circuit
JPH04103172A (en) Gate electrode structure of semiconductor device
JP2789938B2 (en) Semiconductor device
JPS6156448A (en) Manufacture of complementary semiconductor device
JPH0448657A (en) Semiconductor device and its manufacture
JPS62224075A (en) Manufacture of semiconductor integrated circuit device
JPS61182254A (en) Manufacture of semiconductor integrated circuit device
JPH0474457A (en) Semiconductor device and its manufacture