JPS62164025A - Production of electrooptic device - Google Patents

Production of electrooptic device

Info

Publication number
JPS62164025A
JPS62164025A JP61005382A JP538286A JPS62164025A JP S62164025 A JPS62164025 A JP S62164025A JP 61005382 A JP61005382 A JP 61005382A JP 538286 A JP538286 A JP 538286A JP S62164025 A JPS62164025 A JP S62164025A
Authority
JP
Japan
Prior art keywords
electrode
insulating film
mim element
mim
tapered shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61005382A
Other languages
Japanese (ja)
Inventor
Yoichi Ono
陽一 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61005382A priority Critical patent/JPS62164025A/en
Publication of JPS62164025A publication Critical patent/JPS62164025A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To form an MIM element which has a god nonlinear characteristic and has no variance without requiring fine alignment by forming the 1st electrode to a tapered shape and dry etching the insulating film on said electrode so as to have a reverse tapered shape. CONSTITUTION:The 1st electrode 2 of the MIM element is formed to the tapered shape on a substrate 1 and the thick insulating film 3 is formed thereto to the reverse tapered shape by dry etching; further the thin insulating film 4 is formed by anodic oxidation method on the wall surface of the 1st electrode 2. The 2nd electrodes 5', 5 of the MIM element are formed on the thick insulating film 3 and the thin insulating film 4 in succession thereto and transparent picture element electrodes 6', 6 are formed thereon. The 2nd electrodes 5', 5 and the transparent picture element electrodes 6', 6 are so formed that these electrodes are cut at the step parts with the thin insulating film 4 by the poor step covering as the thick insulating film 3 is formed to the reverse taper shape. The capacity component and resistance component contributing to the deterioration of the nonlinear characteristic are thereby separated and the MIM element having the excellent nonlinear characteristic is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、各画素にラテラル型MIM素子を結合した電
気光学装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing an electro-optical device in which a lateral MIM element is coupled to each pixel.

〔従来の技術〕[Conventional technology]

従来のMIM素子分結合した電気光学装置の製造方法と
して、S、MOrOzumi、etal  Japan
  Display  83.P。
As a conventional manufacturing method of an electro-optical device combining MIM elements, S. MOrOzumi, etal Japan
Display 83. P.

404−407.1983  があり、1画系の断面を
第67に示す。基板1上にMIM素子の第1の電極2及
び絶縁体3を形成し所定の形状に加工する。次に透明画
素電極6を形成し所定の形状に加工した後、第1電極の
サイドに陽極酸化法により絶縁体4を形成する。続いて
MIM素子の第2の電極5が透明画素電極6と電気的に
コンタクトがとれ、しかもMIM素子の非線形特性を上
げるためMIM素子の第1の電極2との重なり部15を
、できるだけ小さくする様に形成IJn工されていた。
404-407.1983, and the 1-stroke cross section is shown in No. 67. A first electrode 2 and an insulator 3 of an MIM element are formed on a substrate 1 and processed into a predetermined shape. Next, after forming a transparent pixel electrode 6 and processing it into a predetermined shape, an insulator 4 is formed on the side of the first electrode by an anodic oxidation method. Next, in order to make electrical contact between the second electrode 5 of the MIM element and the transparent pixel electrode 6, and to improve the nonlinear characteristics of the MIM element, the overlapping portion 15 with the first electrode 2 of the MIM element is made as small as possible. It was formed in a similar manner.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら従来の製造方法では、電気光学装置の表示
品質を低下させない様なM工1’J子の非線形特性な出
すためには、MIM素子の第2の電極5を形成する際フ
ァインフォトリソ技術、特にファインアライメントを必
要としなければならず非線形特性のバラツキを発生させ
たり、また歩留を低下させるため表示品質の低下及びコ
ストの上昇化という問題点を有していた。
However, in the conventional manufacturing method, in order to obtain nonlinear characteristics of the M process 1'J element without deteriorating the display quality of the electro-optical device, fine photolithography technology is used especially when forming the second electrode 5 of the MIM element. This requires fine alignment, which causes variations in nonlinear characteristics, and lowers yield, resulting in lower display quality and higher costs.

そこで本発明はこのような問題点を解決するもので、そ
の目的は非線形特性が良好でバラツキのないMIM素子
を7アインアライメントを必要とせずに形成し、表示品
質の高い電気光学装置の製造方法を提供することにある
The present invention is intended to solve these problems, and its purpose is to provide a method for manufacturing an electro-optical device with high display quality by forming an MIM element with good nonlinear characteristics and no variation without requiring 7-line alignment. Our goal is to provide the following.

〔問題点な解決するための手段〕[Means for solving problems]

本発明の電気光学装置の製造方法は、MIM素子を構成
する第1の′電極をテーパ形状にし、第1の電極上に形
成した絶縁膜を逆テーパ形状になるようにドライエツチ
ングすることを特徴とする。
The method for manufacturing an electro-optical device according to the present invention is characterized in that the first electrode constituting the MIM element is made into a tapered shape, and the insulating film formed on the first electrode is dry etched so as to have an inverted tapered shape. shall be.

さらにMIM素子を形成後、素子面上へ紫外光を照射す
ること?特徴とする。
Furthermore, after forming the MIM element, is it possible to irradiate the element surface with ultraviolet light? Features.

〔作用〕[Effect]

本発明によるMIM素子の概略図2第1図に示す。第1
図−(α)は断面図、第1図−(b)は平面図2示す。
A schematic diagram 2 of an MIM device according to the invention is shown in FIG. 1st
1-(a) is a sectional view, and FIG. 1-(b) is a plan view 2.

基板1上にMIM素子の第1の電極2がテーパ形状に、
厚い絶縁膜3が逆テーバ形状に形成され、さらに第1の
電極2の壁面に陽極酸化法により薄い絶縁膜4が形成さ
れている。続いて、厚い絶縁膜3と薄い絶縁膜4上にM
mM素子の第2の電極5’、5.その上に透明画素電極
6′ 、6が形成されている。ここで前記第2の電極5
′ 、5及び透明画素電極6′ 、6は、厚い絶縁膜3
が逆テーバ形状になりているためステップ力バレイジの
悪さから、薄い絶縁膜4との段差の部分で切断されて形
成される。
The first electrode 2 of the MIM element is tapered on the substrate 1,
A thick insulating film 3 is formed in an inverted tapered shape, and a thin insulating film 4 is further formed on the wall surface of the first electrode 2 by anodic oxidation. Next, M is deposited on the thick insulating film 3 and the thin insulating film 4.
second electrode 5' of the mm element; 5. Transparent pixel electrodes 6', 6 are formed thereon. Here, the second electrode 5
', 5 and transparent pixel electrodes 6', 6 are formed by thick insulating film 3.
Since it has an inverted tapered shape, the step force balayage is poor, so it is cut at the step between it and the thin insulating film 4.

この上うなMIM素子の動作を第2図を用いて説明する
。第2図は本発明のMIM素子を結合した電気光学装置
の一画素の等価回路(実線)を従来の等価回路(実線部
と破点線を合わせたもの)との比較で示したものである
。7は絶縁体3の静電容量であり、8は絶縁体5の抵抗
分である。9はMIM素子の静電容量であり、10はM
IM累子の非線型抵抗である。又11は、液晶層の静電
容量であり、12は液晶層の抵抗である。MUM累子に
より液晶層を駆動する際、MIM累子の非線型抵抗10
の非線型性が良好な特性であること、又液晶層の静電容
ff111に比べMIM累子の静電容量9が十分に小さ
いことが必要である。ところが従来のMIM索子はMI
M索子の静電容量9と並列に絶縁体3の静電容量7が接
続されている。すなわちMIM累子の等価容址が大きく
なり、液晶層の静電容量9に比べ十分に小さくすること
ができずに電気光学装置の表示品質を低下させてしまう
。又MIM素子の非線型抵抗10と並列に絶縁体3の抵
抗8が並列に接続されている。MIM系子の非線型抵抗
10は低電圧を印加したとき高抵抗となり、高′4圧を
印加したとき低抵抗となる特徴がある。このため絶縁体
3の抵抗8が並列に接続されると、低電圧ご印加したと
きのMIM素子の抵抗値が小さくなり電気光学装置の表
示品質を低下させてしまう。ところが本発明によればM
IM素子に並列に接続される静電容量が存在していない
。従って液晶層の静電容量11に直列に接続される静電
容量は、MIM素子の静電容fjkgだけであり液晶層
の静電容量11に比べ、MIM素子の静電容量9を十分
に小さくすることが可能となり、電気光学装置の表示品
質な向上させることができる。又MIM素子に並列に接
続される抵抗は存在しない。このためMIM素子の非線
型抵抗10に低電圧を印加したとき高抵抗となり、高電
圧を印加したとき低抵抗となる特徴が十分に利用できる
。又、MIM素子の第2の電極5および透明電極6は、
表面にMIM素子の絶縁体4を形成したMIM素子の第
1の電極2の側面しか存在しないため、積着7オトリソ
技術が不要でしかも非線形特性の優れたMIM素子が得
られる。
The operation of the above MIM element will be explained using FIG. FIG. 2 shows an equivalent circuit (solid line) of one pixel of an electro-optical device combined with the MIM element of the present invention in comparison with a conventional equivalent circuit (solid line and broken line combined). 7 is the capacitance of the insulator 3, and 8 is the resistance of the insulator 5. 9 is the capacitance of the MIM element, and 10 is M
This is the nonlinear resistance of the IM resistor. Further, 11 is the capacitance of the liquid crystal layer, and 12 is the resistance of the liquid crystal layer. When driving the liquid crystal layer with the MUM resistor, the nonlinear resistance of the MIM resistor is 10
It is necessary that the non-linearity of the liquid crystal layer is good, and that the capacitance 9 of the MIM resistor is sufficiently small compared to the capacitance ff111 of the liquid crystal layer. However, the conventional MIM
The capacitance 7 of the insulator 3 is connected in parallel with the capacitance 9 of the M-string. In other words, the equivalent capacity of the MIM capacitance becomes large, and cannot be made sufficiently smaller than the capacitance 9 of the liquid crystal layer, thereby deteriorating the display quality of the electro-optical device. Further, a resistor 8 of an insulator 3 is connected in parallel with the nonlinear resistor 10 of the MIM element. The nonlinear resistor 10 of the MIM system has a characteristic that it has a high resistance when a low voltage is applied, and a low resistance when a high voltage is applied. For this reason, when the resistors 8 of the insulator 3 are connected in parallel, the resistance value of the MIM element becomes small when a low voltage is applied, which deteriorates the display quality of the electro-optical device. However, according to the present invention, M
There is no capacitance connected in parallel to the IM element. Therefore, the capacitance connected in series with the capacitance 11 of the liquid crystal layer is only the capacitance fjkg of the MIM element, which makes the capacitance 9 of the MIM element sufficiently smaller than the capacitance 11 of the liquid crystal layer. This makes it possible to improve the display quality of the electro-optical device. Also, there is no resistor connected in parallel to the MIM element. Therefore, the feature that the nonlinear resistor 10 of the MIM element exhibits high resistance when a low voltage is applied and low resistance when a high voltage is applied can be fully utilized. Moreover, the second electrode 5 and transparent electrode 6 of the MIM element are
Since there is only the side surface of the first electrode 2 of the MIM element on which the insulator 4 of the MIM element is formed, there is no need for stacking and otolithography techniques, and an MIM element with excellent nonlinear characteristics can be obtained.

しかしこのようにして形成したMIM素子でも、箒1の
電極2と絶縁膜4及び絶縁膜4と第2のilE極5の界
面状態にバラツキがあると、MIM2子の非線形特性に
バラツキを生じてしまう。このことを第4図を用いて説
明する。第4図はMIM素子の第1の電極にTa、絶縁
膜に陽極酸化のTa、05  、第2の電極にOrを用
いた場合の電圧−電流特性をTa側に正極性、Cr側に
負極性の電界を印加した時のプールフレンケルプロット
したものである。上記のように界面状態にバラツキがあ
ると第4図−(α)に示す通り、MIM索子Ae B*
 cの電圧−電流特性にバラツキが生じてしまう。これ
は界面状態により伝導に寄与する電子の状態が変化する
ためと思われる。上記バラツキを抑えるためには界面状
態のバラツキをなくせばよいわけであるが、現状では、
界面状、頷のコントロールは非常に難しいため、MIM
素子形成後に矯正することが考えられる。一般的には特
定の雰囲気中で窩温(200℃〜500°C)アニール
する方法が取られるが、効果が小さいのとアニールな行
ない過ぎると全体的に特性が大きくシフトしてしまう欠
点があった。そこで本発明者は鋭意研究した結果、MI
M素子形成後に紫外光を照射するとバラツキを改善でき
ることがわかった。
However, even in the MIM element formed in this way, if there are variations in the interface state between the electrode 2 and the insulating film 4 of the broom 1 and between the insulating film 4 and the second ILE electrode 5, variations will occur in the nonlinear characteristics of the MIM 2 elements. Put it away. This will be explained using FIG. 4. Figure 4 shows the voltage-current characteristics when using Ta for the first electrode, anodized Ta, 05 for the insulating film, and Or for the second electrode, with positive polarity on the Ta side and negative polarity on the Cr side. This is a Poole-Frenkel plot when a positive electric field is applied. As shown in Figure 4-(α), if there are variations in the interface state as described above, the MIM chord Ae B*
Variations occur in the voltage-current characteristics of c. This is thought to be because the state of electrons contributing to conduction changes depending on the interface state. In order to suppress the above-mentioned variations, it is sufficient to eliminate the variations in the interface state, but at present,
Since it is very difficult to control the interface shape and nodding, MIM
It is conceivable to correct it after forming the element. Generally, a method of annealing at a cavity temperature (200°C to 500°C) in a specific atmosphere is used, but this method has the disadvantage that the effect is small and that the overall characteristics will shift significantly if annealing is performed too much. Ta. Therefore, as a result of intensive research, the present inventor found that MI
It was found that the variation could be improved by irradiating ultraviolet light after forming the M element.

第4図−(lは第4図−(α)のMIM素子に紫外光を
照射した後の′戒圧−電流特性である。図で明らかなよ
うにバラツキがほとんどなくなっている。さらに紫外光
の場合、部分的なバラツキから全体に渡るバラツキまで
対応でき、また強度を一定にしておけば照射時間には影
響されないので作業性にも優れている。
Figure 4-(l) is the pressure-current characteristic after irradiating the MIM element in Figure 4-(α) with ultraviolet light.As is clear from the figure, there is almost no variation. In this case, it is possible to deal with variations ranging from local variations to overall variations, and it is also excellent in workability because it is not affected by the irradiation time as long as the intensity is kept constant.

上記に説明した2つの発明?併用することにより、非線
形特性の優れたMIM素子をバラツキなく安定して得る
ことができる。
The two inventions described above? By using them together, MIM elements with excellent nonlinear characteristics can be stably obtained without variation.

〔実施例〕〔Example〕

第3図に本発明に基づくプロセスの実施例を示す。先ず
基板1上にMIM素子の第1の電極2(Ta)を形成、
シ、続いて陽極酸化により厚い絶縁膜3(Ta、O,)
  を形成する。次Gニアオドリソ法によりフォトレジ
スト14を所定のパターンに加工する(α)0次にドラ
イエツチング装置(徳用製作所製0DE)を用い、エッ
チャントとしてOF、 と0□の混合ガスを用いること
により、MIM素子の第1の電極2(Ta)をテーバ形
状にし、その上の絶縁膜3(Ta、O,)を逆テーパ形
状にエツチングする(b)。エッチャントの組成を変え
ることにより、テーバ形状をコントフールすることがで
き、0□が多いと第1の電極2(Ta)、絶縁膜3(T
a20.)両方が順テーパになり、0.が少ないと両方
とも逆テーパになる傾向がある。このため本発明の形状
にするためには、0□の流量を最適化し精密にコントロ
ールする必要がある。次に7オトレジスト14の剥離後
、MIM素子の第1の電極2(Ta)の壁面に再び陽極
酸化により絶縁膜4を形成する(c)。
FIG. 3 shows an embodiment of the process according to the invention. First, the first electrode 2 (Ta) of the MIM element is formed on the substrate 1,
Then, a thick insulating film 3 (Ta, O,) is formed by anodic oxidation.
form. Next, the photoresist 14 is processed into a predetermined pattern by the G-near oxidation method (α). By using a zero-order dry etching device (0DE manufactured by Tokuyo Seisakusho) and using a mixed gas of OF and 0□ as an etchant, the MIM element is The first electrode 2 (Ta) is made into a tapered shape, and the insulating film 3 (Ta, O,) thereon is etched into a reverse tapered shape (b). By changing the composition of the etchant, the Taber shape can be controlled.
a20. ) both become forward taper and 0. If there is little, both tend to become reverse taper. Therefore, in order to obtain the shape of the present invention, it is necessary to optimize and precisely control the flow rate of 0□. Next, after peeling off the photoresist 14, the insulating film 4 is again formed on the wall surface of the first electrode 2 (Ta) of the MIM element by anodic oxidation (c).

次にMIM素子の第2の電極5(C!r)及び透明画X
E極6(工TO)3真空蒸着あるいはスパッタリングに
より基板全面に形成し、再び7オトリソ法によりフォト
レジスト14を所定のパターンに加工する(d)。この
時厚い絶縁膜3の形状によりステップ力バレイジが悪く
なり、上記電極は厚い絶縁膜3と博い絶縁膜4との段差
のところで切断されて形成される。
Next, the second electrode 5 (C!r) of the MIM element and the transparent image
The E electrode 6 (TO) 3 is formed on the entire surface of the substrate by vacuum evaporation or sputtering, and the photoresist 14 is processed into a predetermined pattern again by the 7-otolithography method (d). At this time, the shape of the thick insulating film 3 deteriorates step force coverage, and the electrode is formed by being cut at the step between the thick insulating film 3 and the wide insulating film 4.

次にMIM素子の第2の電極5(Or)及び透明画素電
極6(工To>を所定のパターンにエツチングし、フォ
トレジスト14を剥離する。最後にMIM素子のバラツ
キをなくすため紫外光15を照射する(i。
Next, the second electrode 5 (Or) and transparent pixel electrode 6 (To) of the MIM element are etched into a predetermined pattern, and the photoresist 14 is peeled off.Finally, ultraviolet light 15 is applied to eliminate variations in the MIM element. irradiate (i.

本発明によるMIM素子を用いて作製したTNタイプの
反射液晶表示装置の断面3第5図に示す。従来のMIM
素子を用いた液晶表示装置に比べ格段と表示品質が向上
した。
A cross section 3 of a TN type reflective liquid crystal display device manufactured using the MIM element according to the present invention is shown in FIG. Traditional MIM
The display quality has been significantly improved compared to liquid crystal display devices using elements.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明ではMIM素子を構成する第1の
電極をテーバ形状にし、第1の電極上に形成した絶縁膜
を逆テーバにすることにより、非線形特性を低下させる
容量分と抵抗外を分離できるため非線形特性の優れたM
IM素子が得られる。さらにMIM素子形成後、紫外光
を照射することにより非線形特性のバラツキをなくすこ
とができる。これによりMIM素子を結合した電気光学
装置の表示品質を著しく向上できる。
As described above, in the present invention, the first electrode constituting the MIM element is made into a tapered shape, and the insulating film formed on the first electrode is made into an inverted tapered shape. M with excellent nonlinear characteristics because it can separate
An IM element is obtained. Further, after forming the MIM element, by irradiating it with ultraviolet light, variations in nonlinear characteristics can be eliminated. Thereby, the display quality of the electro-optical device combined with the MIM element can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図−(α)*Cb)は本発明に基づく電気光学装置
の1画素の断面図と平面図を示す。第2装置のプロセス
を示す。第4 mWまMIM素子の電圧−電流特性のプ
ール7レンケルプロツトヲ示す。第5図は本発明による
MIM素子を用いた液晶表示装置の1画素分の断面図を
示す。第6図は従来の′JL気光学装置の1画素の断面
図を示す。 1.1′・・・・・・基 板 2・・・・・・MIM累子の第1の電極3・・・・・・
絶縁体 4・・・・・・MIMfi子の絶縁体 5.5′・・・・・・MIM素子の第2の電極6.6′
・・・・・・透明電極 7・・・・・・絶縁体3の静電容量 8・・・・・・絶縁体3の抵抗 9・・・・・・MIM素子の静電容量 10・・・MIM素子の非線形抵抗 11・・・・・・液晶層の静電容量 12・・・・・・液晶層の抵抗 13・・・・・・MIM累子の第1の電極2及び第2の
電極5の重なり部 14・・・・・・ビジタイプフォトレジスト15・・・
・・・紫外線 17・・・・・・MIM素子の長さ 18・・・・・・MIM素子部 19・・・・・・液 晶 20・・・・・・偏光板 21・・・・・・反射板 以  上 出願人 セイコーエプソン株式会社 2、 MIX膏シーv4リ− 3、絶縁体 (G) (b) 第1囚 第2図 r       π (Il)               とり第4図 2、シ田−峯与めメ11電オ−
FIG. 1-(α)*Cb) shows a cross-sectional view and a plan view of one pixel of an electro-optical device according to the present invention. 3 shows the process of the second device. A pool 7 Lenkel plot of the voltage-current characteristics of a 4 mW MIM device is shown. FIG. 5 shows a cross-sectional view of one pixel of a liquid crystal display device using an MIM element according to the present invention. FIG. 6 shows a sectional view of one pixel of a conventional 'JL optical device. 1.1'...Substrate 2...First electrode 3 of MIM resistor...
Insulator 4...Insulator 5.5' of MIM element...Second electrode 6.6' of MIM element
...Transparent electrode 7...Capacitance of insulator 38...Resistance of insulator 39...Capacitance of MIM element 10...・Nonlinear resistance 11 of the MIM element...Capacitance 12 of the liquid crystal layer...Resistance 13 of the liquid crystal layer...The first electrode 2 and the second electrode of the MIM element Overlapping portion 14 of electrode 5...visitype photoresist 15...
...Ultraviolet light 17...MIM element length 18...MIM element section 19...Liquid crystal 20...Polarizing plate 21...・Reflector or above Applicant Seiko Epson Co., Ltd. 2, MIX plaster V4 Lee 3, insulator (G) (b) 1st prisoner 2nd figure r π (Il) Tori 4th figure 2, Shida-Mine Give Me 11 Den O-

Claims (2)

【特許請求の範囲】[Claims] (1)液晶を介して対向する一方の基板に行電極、他方
の基板に列電極を形成し、前記電極の少なくとも一方の
電極の各画素にMIM(Metal−Insulato
r−Metal)素子を結合させてなる電気光学装置に
於いて、前記MIM素子を構成する第1の電極をテーパ
形状にし、第1の電極上に形成した絶縁膜を逆テーパ形
状にすることを特徴とする電気光学装置の製造方法。
(1) Row electrodes are formed on one substrate and column electrodes are formed on the other substrate, which face each other with a liquid crystal interposed therebetween.
In an electro-optical device formed by combining R-Metal) elements, a first electrode constituting the MIM element is formed into a tapered shape, and an insulating film formed on the first electrode is formed into an inverted tapered shape. A method for manufacturing a featured electro-optical device.
(2)前記MIM素子を形成後、素子面上へ紫外光を照
射することを特徴とする特許請求の範囲第1項記載の電
気光学装置の製造方法。
(2) The method for manufacturing an electro-optical device according to claim 1, characterized in that after forming the MIM element, ultraviolet light is irradiated onto the element surface.
JP61005382A 1986-01-14 1986-01-14 Production of electrooptic device Pending JPS62164025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61005382A JPS62164025A (en) 1986-01-14 1986-01-14 Production of electrooptic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61005382A JPS62164025A (en) 1986-01-14 1986-01-14 Production of electrooptic device

Publications (1)

Publication Number Publication Date
JPS62164025A true JPS62164025A (en) 1987-07-20

Family

ID=11609614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61005382A Pending JPS62164025A (en) 1986-01-14 1986-01-14 Production of electrooptic device

Country Status (1)

Country Link
JP (1) JPS62164025A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105913A (en) * 1987-10-19 1989-04-24 Toshiba Corp Production of matrix array substrate
KR100971955B1 (en) * 2002-11-11 2010-07-23 엘지디스플레이 주식회사 method for fabricating of an array substrate for a liquid crystal display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105913A (en) * 1987-10-19 1989-04-24 Toshiba Corp Production of matrix array substrate
KR100971955B1 (en) * 2002-11-11 2010-07-23 엘지디스플레이 주식회사 method for fabricating of an array substrate for a liquid crystal display device

Similar Documents

Publication Publication Date Title
KR940008248B1 (en) Liquid crystal display device
GB2306747A (en) Liquid crystal display and method of manufacturing the same
JPS62164025A (en) Production of electrooptic device
JPS6269238A (en) Liquid crystal display device
JPH07114043A (en) Liquid crystal display device and its production
JPS61186929A (en) Liquid crystal display device
JPH01281435A (en) Liquid crystal display device
JP3306986B2 (en) Liquid crystal device manufacturing method
JPH07168208A (en) Active matrix system liquid crystal display
JPH0345930A (en) Two-terminal type nonlinear element
JPH01271728A (en) Liquid crystal display device
JPH01281437A (en) Liquid crystal display device
JPH0720492A (en) Liquid crystal display device and its production
JPH06308538A (en) Production of liquid crystal display device
JPH02168236A (en) Manufacture of active matrix substrate
JP3341346B2 (en) Manufacturing method of nonlinear element
JPH0720499A (en) Nonlinear element and its production and element substrate for electro-optical device having the nonlinear element as well as electro-optical device
JPH0346632A (en) Production of reflection type mim active matrix substrate
JPH0346633A (en) Production of nonlinear element
JPH01283524A (en) Liquid crystal display device
JPH0342631A (en) Production of mim type nonlinear switching element
JPH0367409A (en) Semiconductor device
JPS61212828A (en) Liquid crystal cell and its production
JPH0349274A (en) Two-terminal type non-linear element
JPH029325B2 (en)