JPH0367409A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0367409A
JPH0367409A JP2157050A JP15705090A JPH0367409A JP H0367409 A JPH0367409 A JP H0367409A JP 2157050 A JP2157050 A JP 2157050A JP 15705090 A JP15705090 A JP 15705090A JP H0367409 A JPH0367409 A JP H0367409A
Authority
JP
Japan
Prior art keywords
thin film
liquid crystal
aluminum
electrode
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2157050A
Other languages
Japanese (ja)
Other versions
JPH0542832B2 (en
Inventor
Toshimoto Kodaira
小平 寿源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2157050A priority Critical patent/JPH0367409A/en
Publication of JPH0367409A publication Critical patent/JPH0367409A/en
Publication of JPH0542832B2 publication Critical patent/JPH0542832B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain complete ohmic contact between a multi-crystal silicon thin film and a conducting transparent electrode and reduce the cost of an active matrix type liquid crystal panel by sandwiching a metal such as aluminum between them. CONSTITUTION:A multi-crystal silicon thin film 13 is formed on a glass plate 12, portions other then the drain, channel and source regions of T.F.T. are removed by etching, and high-concentration impurities are diffused in the drain section and the source section. A silicone oxide film 14 is formed on the surface of the thin film 13, and a contact hole is bored. An aluminum thin film 15 is formed on the whole area, then the portions except the desired regions are removed by etching, and a liquid crystal driving electrode 16 with the desired pattern is formed on it with a conducting transparent material such as tin oxide by photolithography. By heating at 300-400 deg.C, a complete ohmic conduction state with low resistance is obtained between the thin film 13 and the electrode 16 via aluminum 15.

Description

【発明の詳細な説明】 本発明は、多結晶シリコン又はアモルファスシリコン及
び導電性透明電極を構成部材とする半導体装置に関し、
詳しくは上記両部材間のオーミックコンタクトを取る方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device comprising polycrystalline silicon or amorphous silicon and a conductive transparent electrode as constituent members.
More specifically, the present invention relates to a method for establishing ohmic contact between the two members.

液晶を用いた大容量表示装置としては各画素のスイッチ
ングデバイスとしてトランジスターを用いたアクティブ
マトリッス方式が理想的であり理論的に表示容量は無限
である。この方式は従来シリコン基板あるいはSO3基
板にトランジスターアレイ−を構成し、この基板とガラ
ス板との間に液晶を封入して液晶パネルを構成した。し
かし、シリコン基板あるいはSO3基板にトランジスタ
ーアレイを構成する方式は、従来の半導体製造技術によ
り容易に製造可能であるが、シリコンウェハーあるいは
SO3基板の価格が高くさらに半導体製造コストが高い
ために、アクティブマトリックス方式の液晶パネルは非
常に高価となってしまうという欠点を有する。アクティ
ブマトリックス方式による液晶パネルを、より低価格で
製造する方法として、ガラス板の上に多結晶シリコン又
はアモルファスシリコン等により薄膜トランジスター(
T、F、T、)のアレイ−を構威し、アクティブマトリ
ックスとする方法が提案されている。従来のアクティブ
マトリックス方式による液晶表示装置に用い6れる画素
の構成を第1図に一例として示す。
As a large-capacity display device using liquid crystal, an active matrix system using a transistor as a switching device for each pixel is ideal, and the display capacity is theoretically infinite. In this method, a transistor array was conventionally constructed on a silicon substrate or an SO3 substrate, and a liquid crystal was sealed between this substrate and a glass plate to construct a liquid crystal panel. However, although the method of configuring a transistor array on a silicon substrate or SO3 substrate can be easily manufactured using conventional semiconductor manufacturing technology, the high price of silicon wafers or SO3 substrates and the high semiconductor manufacturing cost make active matrix The disadvantage of this type of liquid crystal panel is that it is very expensive. As a method of manufacturing active matrix liquid crystal panels at a lower cost, thin film transistors (thin film transistors) made of polycrystalline silicon or amorphous silicon are placed on a glass plate.
A method has been proposed in which an array of T, F, T,) is constructed as an active matrix. FIG. 1 shows an example of the configuration of six pixels used in a conventional active matrix liquid crystal display device.

第1図において、スイッチングトランジスターlのゲー
ト電極はゲートライン7に、ソース電極はソースライン
8にそれぞれ接続され、ドレイン電極は液晶3の駆動電
極及び、コンデンサー2の一方の電極に接続されている
In FIG. 1, the gate electrode of the switching transistor 1 is connected to the gate line 7, the source electrode to the source line 8, and the drain electrode to the drive electrode of the liquid crystal 3 and one electrode of the capacitor 2.

第2図はT、F、T、を用いたガラス板上にアクティブ
マトリックスを構成した場合の一画素の構成の平面図の
一例を示したものである。6はT、F、T、のドレイン
、チャンネル、ソースを形成する多結晶シリコンであり
、ゲート電極はゲートライン4に接続され、又ソース電
極はソースライン5に接続されている。一方、液晶駆動
電極11は図かられかるようにT、F、T、のドレイン
を構成する多結晶シリコンを延在して設ければ、液晶駆
動電極11を製造工程をそのために設ける必要がなくな
る。しかるに光透過型の液晶表示装置の場合、液晶表示
電極11は、導電性を有する透明電極でなければならな
い。T、F、7.6の材料として用いられる多結晶シリ
コンは、その厚みを1000オングストローム程度に薄
くしても光を余り通さず、さらに又、干渉色による着色
が発生し駆動電極として用いると液晶表示体の表示品質
は著しく低下する。
FIG. 2 shows an example of a plan view of the structure of one pixel when an active matrix is formed on a glass plate using T, F, T. 6 is polycrystalline silicon forming the drain, channel, and source of T, F, and T, the gate electrode is connected to the gate line 4, and the source electrode is connected to the source line 5. On the other hand, if the liquid crystal drive electrode 11 is provided by extending the polycrystalline silicon constituting the drains of T, F, and T as shown in the figure, there is no need to provide the liquid crystal drive electrode 11 in the manufacturing process for this purpose. . However, in the case of a light transmission type liquid crystal display device, the liquid crystal display electrode 11 must be a transparent electrode with conductivity. Polycrystalline silicon, which is used as a material for T, F, and 7.6, does not transmit much light even if its thickness is reduced to about 1000 angstroms, and furthermore, coloring due to interference color occurs, and when used as a drive electrode, the liquid crystal The display quality of the display body is significantly degraded.

このようなことから、液晶駆動電極として導電性透明物
質を用いなければならない。導電性の透明物質としては
酸化スズ又は酸化インジウムを用いるのが液晶を用いた
表示装置の一般的な方法であって、安定性、導電性、光
の透過性が非常に良く、透明電極として理想的である。
For this reason, a conductive transparent material must be used as the liquid crystal driving electrode. The common method for display devices using liquid crystals is to use tin oxide or indium oxide as the conductive transparent material, and it has excellent stability, conductivity, and light transmission, making it ideal as a transparent electrode. It is true.

ところが、第2図に示される様に透明電極11と多結晶
シリコン6とは電気的コンタクトを取らなければならな
いが、ドレイン電極上の絶縁層にコンタクトホール9を
開孔し多結晶シリコン6と透明電極11を直接接続させ
ても電気的接触が全くとれないか又は、接触があっても
、完全にオーミックとはならない。
However, as shown in FIG. 2, although it is necessary to make electrical contact between the transparent electrode 11 and the polycrystalline silicon 6, a contact hole 9 is opened in the insulating layer on the drain electrode to connect the polycrystalline silicon 6 and the transparent electrode. Even if the electrodes 11 are connected directly, either no electrical contact can be made, or even if there is contact, it is not completely ohmic.

本発明は以上の点に鑑みてなされたものであって、多結
晶シリコンと、導電性透明電極との間にアルミニュウム
等の金属を挟む事により両者の間に完全なオー果ツクコ
ンタクトを可能とするものである。
The present invention has been made in view of the above points, and by sandwiching a metal such as aluminum between polycrystalline silicon and a conductive transparent electrode, complete oak contact can be made between the two. It is something to do.

以下本発明を図面によって詳細に説明する。The present invention will be explained in detail below with reference to the drawings.

第3図はT、F、?、を用いたアクティブマトリックス
液晶表示装置の本発明による製造工程を説明するもので
あって、特にT、F、T、のドレインと、液晶駆動用透
明電極とのコンタクHM域について、その製造工程の一
例をその工程順に示した断面図である。第3図(a)で
はガラス板12の表面上に多結晶シリコン薄膜13を形
成し、T、F、T、のドレイン、チャンネル、ソース領
域とすべき部分以外をエツチング除去した時の断面を示
したものである。T。
Figure 3 shows T, F, ? This is to explain the manufacturing process of an active matrix liquid crystal display device according to the present invention using FIG. 3 is a cross-sectional view showing an example in the order of steps. FIG. 3(a) shows a cross section when a polycrystalline silicon thin film 13 is formed on the surface of a glass plate 12 and the portions other than the drain, channel, and source regions of T, F, and T are removed by etching. It is something that T.

F、T、のドレイン及びソース領域には高濃度の不純物
が拡散される。
Highly concentrated impurities are diffused into the drain and source regions of F and T.

次に第3図(ハ)に示される様に多結晶シリコン薄膜1
3の表面に延在してシリコン酸化膜14を形成する。こ
のシリコン酸化膜は多結晶シリコン13の表面を熱酸化
して得たものでも、又気相反応成長法によって得たもの
でも良い。さらにはシリコン酸化膜でなく他の絶縁膜、
例えばシリコン窒化膜、アルξす膜等でも良い。次にド
レイン領域上のシリコン酸化膜14にコンタクトホール
を開孔し、ドレイン電極取り出し窓を作る。次に第3図
(C)における様に少なくとも第3図(b)で開孔した
コンタクトホール部全部に延在させてアルミニュウム薄
膜15を形成する。このためには、ガラス板表面全部に
アルミニュウム薄膜を形成した後、フォトリソグラフィ
ー技術を用い所望の領域にアルミニュウムを残し、他は
エツチング除去することにより第3図(C)の構成が可
能となる。
Next, as shown in FIG. 3(c), the polycrystalline silicon thin film 1
A silicon oxide film 14 is formed extending over the surface of 3. This silicon oxide film may be obtained by thermally oxidizing the surface of polycrystalline silicon 13, or may be obtained by a vapor phase reaction growth method. Furthermore, other insulating films rather than silicon oxide films,
For example, a silicon nitride film, an aluminum film, etc. may be used. Next, a contact hole is opened in the silicon oxide film 14 above the drain region to form a drain electrode extraction window. Next, as shown in FIG. 3(C), an aluminum thin film 15 is formed extending over at least the entire contact hole portion opened in FIG. 3(b). To achieve this, after forming an aluminum thin film on the entire surface of the glass plate, the structure shown in FIG. 3(C) can be achieved by leaving aluminum in desired areas using photolithography and etching away the remaining areas.

次に液晶駆動用電極として酸化スズ、酸化インジウム等
の導電性透明材料を全面に形成し、フォトリソグラフィ
ー技術により所望のパターンの液晶駆動用電極を得る。
Next, a conductive transparent material such as tin oxide or indium oxide is formed on the entire surface as a liquid crystal driving electrode, and a liquid crystal driving electrode with a desired pattern is obtained by photolithography.

この時の基板の断面構造は第5図(d)に示される様で
あって、ドレイン領域の多結晶シリコン13は、アルミ
ニュウム15を介して透明電極16と接触している。こ
の様な構成により、これを300〜400℃に加熱する
事によって多結晶シリコン13と透明電極16とはアル
ミニュウムを介して低い接触抵抗で且つ完全なオーミッ
ク導通状態となる。アルミニュウム薄膜は1000オン
グストロ一ム程度に薄<シても不透明であるが、本発明
で用いるアルミニュウムは多結晶シリコンの上部のみに
形成するので、アルミニュウムが不透明であることの欠
点は全く生じない。
The cross-sectional structure of the substrate at this time is as shown in FIG. 5(d), and the polycrystalline silicon 13 in the drain region is in contact with the transparent electrode 16 via the aluminum 15. With such a configuration, by heating the polycrystalline silicon 13 to 300 to 400 DEG C., the polycrystalline silicon 13 and the transparent electrode 16 are brought into complete ohmic conduction with low contact resistance through the aluminum. Although an aluminum thin film is opaque even if it is as thin as about 1000 angstroms, since the aluminum used in the present invention is formed only on the top of polycrystalline silicon, there is no drawback that aluminum is opaque.

最後にガラス板表面全体に液晶の配向処理を行って、液
晶表示装置の一方のパネル板が完成する。
Finally, the entire surface of the glass plate is subjected to alignment treatment for liquid crystal to complete one panel plate of the liquid crystal display device.

この様に本発明によれば、多結晶シリコンと酸化スズ、
酸化インジウムとうの透明電極とを接続するコンタクト
ホールのみに実質的にアルミニュウムを延在させること
により簡単に両者のオーミックコンタクトを低抵抗で可
能とするものであって、しかもアルミニュウムの介在に
よる表示装置の特性への影響は全く無い。
As described above, according to the present invention, polycrystalline silicon and tin oxide,
By substantially extending aluminum only in the contact hole connecting the transparent electrode of indium oxide, it is possible to easily establish ohmic contact between the two with low resistance. There is no effect on the characteristics at all.

尚、本発明でのT、F、T、の材料としては多結晶シリ
コンのみでなく、アモルファスシリコン、セレン化カド
ξウムであっても良く、ドレインと透明電極との間にか
いする金属はアルミニュウムに限る事はなく他の金属で
も本発明の効果は変わらない。
Note that the materials for T, F, and T in the present invention are not limited to polycrystalline silicon, but may also be amorphous silicon or cadmium selenide, and the metal interposed between the drain and the transparent electrode may be aluminum. The present invention is not limited to , and the effects of the present invention are the same even with other metals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアクティブマトリックス液晶表示装置の1つの
画素の構成例を示した図である。 第2図は従来におけ
るT、F、T、を用いたアクティブマトリックス液晶表
示装置の1つの画素のパネル上での構成の一例を示した
平面図である。第3図(a)〜(d)は本発明によりア
クティブマトリックスを製造する方法の一例を工程順に
示した断面図である。 1.6・・・・・・T、F、T。 2  ・・・・・・コンデンサー 3  ・・・・・・液晶 4.7・・・・・・ゲートライン 5.8・・・・・・ソースライン 9.10・・・・・・コンタクトホール11   ・・
・・・・液晶駆動用透明電極12   ・・・・・・ガ
ラス板 13   ・・・・・・多結晶シリコン14   ・・
・・・・酸化シリコン 15   ・・・・・・アルミニュウム16   ・・
・・・・導電性透明電極第1図 第2図
FIG. 1 is a diagram showing an example of the configuration of one pixel of an active matrix liquid crystal display device. FIG. 2 is a plan view showing an example of the configuration of one pixel on a panel of a conventional active matrix liquid crystal display device using T, F, T. FIGS. 3(a) to 3(d) are cross-sectional views showing an example of a method for manufacturing an active matrix according to the present invention in the order of steps. 1.6...T, F, T. 2...Capacitor 3...Liquid crystal 4.7...Gate line 5.8...Source line 9.10...Contact hole 11・・・
...Transparent electrode for driving liquid crystal 12 ...Glass plate 13 ...Polycrystalline silicon 14 ...
...Silicon oxide 15 ...Aluminum 16 ...
...Conductive transparent electrode Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 少なくとも多結晶シリコン又はアモルファスシリコン及
び導電性透明電極を構成部材とする半導体装置において
、該多結晶シリコン又はアモルファスシリコンと該導電
性透明電極とをオーミックコンタクトを取る位置の該多
結晶シリコン又はアモルファスシリコンと該導電性透明
電極の間にアルミニユウムを挟んでなす事を特徴とする
半導体装置。
In a semiconductor device comprising at least polycrystalline silicon or amorphous silicon and a conductive transparent electrode, the polycrystalline silicon or amorphous silicon at a position where the polycrystalline silicon or amorphous silicon and the conductive transparent electrode are in ohmic contact with each other. A semiconductor device characterized in that aluminum is sandwiched between the conductive transparent electrodes.
JP2157050A 1990-06-15 1990-06-15 Semiconductor device Granted JPH0367409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2157050A JPH0367409A (en) 1990-06-15 1990-06-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2157050A JPH0367409A (en) 1990-06-15 1990-06-15 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10429381A Division JPS585905A (en) 1981-07-02 1981-07-02 Semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6723094A Division JP2514166B2 (en) 1994-04-05 1994-04-05 Method for manufacturing active matrix liquid crystal display device

Publications (2)

Publication Number Publication Date
JPH0367409A true JPH0367409A (en) 1991-03-22
JPH0542832B2 JPH0542832B2 (en) 1993-06-29

Family

ID=15641102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2157050A Granted JPH0367409A (en) 1990-06-15 1990-06-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0367409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7286870B2 (en) 1994-10-06 2007-10-23 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437697A (en) * 1977-08-30 1979-03-20 Sharp Corp Liquid crystal display unit of matrix type

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437697A (en) * 1977-08-30 1979-03-20 Sharp Corp Liquid crystal display unit of matrix type

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7286870B2 (en) 1994-10-06 2007-10-23 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method
US7440794B2 (en) 1994-10-06 2008-10-21 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method
US7715904B2 (en) 1994-10-06 2010-05-11 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method
US8050744B2 (en) 1994-10-06 2011-11-01 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method

Also Published As

Publication number Publication date
JPH0542832B2 (en) 1993-06-29

Similar Documents

Publication Publication Date Title
JP2776083B2 (en) Liquid crystal display device and manufacturing method thereof
US5349453A (en) Liquid crystal display device with microlenses on same plane as switching elements
JPH061314B2 (en) Thin film transistor array
JP2682997B2 (en) Liquid crystal display device with auxiliary capacitance and method of manufacturing liquid crystal display device with auxiliary capacitance
JPH10153793A (en) Liquid crystal display device
JPH0282571A (en) Active matrix substrate and its manufacture
JP3708150B2 (en) Thin film transistor substrate
JP3062698B2 (en) Single crystal thin film semiconductor device for light valve substrate
JPH08213626A (en) Thin film semiconductor device and its manufacture
JPH0543095B2 (en)
JPH0792491A (en) Thin-film transistor substrate for active matrix display device
JPH0425700B2 (en)
JPH0367409A (en) Semiconductor device
JP2514166B2 (en) Method for manufacturing active matrix liquid crystal display device
JPH11265000A (en) Liquid crystal display device and its manufacture
JPS6269238A (en) Liquid crystal display device
JPH05232506A (en) Liquid crystal display device
KR100267995B1 (en) Lcd and its fabrication method
JP3263894B2 (en) Active matrix display device and method of manufacturing the same
JPS585905A (en) Semiconductor device
KR100267980B1 (en) liquid crystal display and method for fabricating the same
JPH0736059A (en) Liquid crystal display device
KR100683142B1 (en) Method for fabricating tft lcd
KR100328848B1 (en) Manufacturing Method of Thin Film Transistor
JPH04133034A (en) Single crystal thin film semiconductor device for optical valve substrate