JPS62163705A - Hollow yarn membrane made of ethylene-vinyl alcohol copolymer - Google Patents

Hollow yarn membrane made of ethylene-vinyl alcohol copolymer

Info

Publication number
JPS62163705A
JPS62163705A JP20429486A JP20429486A JPS62163705A JP S62163705 A JPS62163705 A JP S62163705A JP 20429486 A JP20429486 A JP 20429486A JP 20429486 A JP20429486 A JP 20429486A JP S62163705 A JPS62163705 A JP S62163705A
Authority
JP
Japan
Prior art keywords
membrane
layer
eva
ethylene
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20429486A
Other languages
Japanese (ja)
Inventor
Shuzo Yamashita
修蔵 山下
Taku Tanaka
卓 田中
Hirokuni Tanii
宏邦 谷井
Akira Kubotsu
窪津 彰
Shuji Kawai
川井 収治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP20429486A priority Critical patent/JPS62163705A/en
Publication of JPS62163705A publication Critical patent/JPS62163705A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the diameter, to increase the amt. of water to be permeated, to permeate low molecular substances, and to exclude high molecular substances by forming a particle binding layer having 0.01-2mum thickness at the next to the surface of an EVA copolymer hollow yarn membrane with a dense active layer on the surface. CONSTITUTION:An ethylene-vinyl alcohol copolymer is dissolved in a polar org. solvent to obtain a spinning soln. The soln. is spinned while introducing a coagulable liq. into the hollow part, and coagulated in a gaseous atmosphere under 3-30 times draft. When the coagulation temp. at this time is expressed as T and the polymer concn. as C, the relational expression, -15<=T<=(C/4)+10, must be satisfied at 15<=C<=40. Consequently, a three-layered EVA hollow yarn membrane consisting of a dense active layer 1 on at least one of the membrane surfaces, an internal binding layer 3 of particles 2 having 0.01-2mum particle diameter at the next to both surfaces, and further an internal homogeneous layer 4 wherein a particulate structure is not substantially recognized can be obtained.

Description

【発明の詳細な説明】 本発明ハエチレンービニルアルコール(EVAJ系コポ
リマーよりなる中空糸膜に関し、ざらに詳しくは2つの
粒子結合層とそれらの間に存する均質層との3層構造を
有する新規なEVA系中空糸膜に関する。
Detailed Description of the Invention The present invention relates to a hollow fiber membrane made of ethylene-vinyl alcohol (EVAJ-based copolymer). The present invention relates to an EVA-based hollow fiber membrane.

血液透析等の医療分野及び各種溶液の限外濾過等の工業
分野において1選択透過性膜特に中空糸膜が広く使用さ
れつつある。本発明者らが開発しているEVA系コポリ
マー膜は、生体親和性に優れ、透水性、中分子量物質の
透過性等の膜性能もすぐ几るため、各分野での有用性が
認められている。
Single-selective permeability membranes, especially hollow fiber membranes, are becoming widely used in the medical field such as hemodialysis and the industrial field such as ultrafiltration of various solutions. The EVA-based copolymer membrane developed by the present inventors has excellent biocompatibility, and membrane performance such as water permeability and permeability to medium-molecular weight substances quickly decreases, so it has been recognized for its usefulness in various fields. There is.

本発明者らは、すでにEVA系コポリマー膜として数種
のものを提供している。特開昭52−152877号で
は膜全体が100〜10.0 (10″Aの粒径の粒子
が相互に結合した構造からなるEVA系ポリマー膜を開
示しており、線膜は、血液透析用の透析膜としてすぐ几
でいる。また特願昭52−108251号では、エチレ
ン含量の異なるBVAコポリマー組成物からなり円筒状
の連続空隙とミクロン単位のはy球状の空隙からなるハ
方性膜を開示し、線膜も透析膜としてすぐれている。ざ
らに特願昭53−110259号では、膜厚に対し20
〜99%の長軸長ざをもつ空胞をもつ多孔質支持層を有
し線膜は60〜90%の空隙率をもつ異方性膜を開示し
、線膜は限外濾過用途等の濾過膜としてすぐれている。
The present inventors have already provided several types of EVA-based copolymer membranes. JP-A No. 52-152877 discloses an EVA-based polymer membrane in which the entire membrane has a structure in which particles with a particle size of 100 to 10.0 (10"A) are bonded to each other, and the linear membrane is used for hemodialysis. In addition, in Japanese Patent Application No. 108251/1987, a hatropic membrane made of BVA copolymer compositions with different ethylene contents and consisting of continuous cylindrical voids and spherical voids in micron units was developed. The wire membrane is also excellent as a dialysis membrane.
The wire membrane discloses an anisotropic membrane having a porous support layer with vacuoles having a long axis length of ~99% and a porosity of 60 to 90%, and the wire membrane is suitable for ultrafiltration applications, etc. Excellent as a filtration membrane.

上述したようにEVA系コポリマーは製造条件を変更す
ることにより各種構造の膜を得ることが可能であり、膜
の素材として特別にすぐれたものであることを認めてい
る。
As mentioned above, it is possible to obtain membranes with various structures by changing the manufacturing conditions of EVA copolymers, and it is recognized that they are particularly excellent as membrane materials.

本発明者らはざらに研究を進めた結果、上述の構造とは
異なったEVA系中空糸膜を製造することに成功し本発
明を完成した。
As a result of extensive research, the present inventors succeeded in producing an EVA-based hollow fiber membrane having a structure different from that described above, and completed the present invention.

すなわち本発明は、EVA系コポリマーからなる中空糸
膜であって4乾燥膜の電顕観察において中空糸膜の内表
面及び外表面の少くとも1表面に緻密な活性層を有し、
かつ両表面に接して帆01〜2μの粒径をもつ粒子が結
合してなる粒子結合層とざらにその内側部に存する実質
的に粒子構造の認められない均質層の3m構造を有する
EVA系中空糸膜である。
That is, the present invention provides a hollow fiber membrane made of an EVA-based copolymer, which has a dense active layer on at least one of the inner and outer surfaces of the hollow fiber membrane in electron microscopic observation of a dried membrane.
and an EVA system having a 3m structure consisting of a particle bonding layer formed by bonding particles with a particle diameter of 01 to 2μ in contact with both surfaces, and a homogeneous layer with virtually no particle structure existing roughly inside the layer. It is a hollow fiber membrane.

本発明による膜は、膜表面の少くとも1表面に活性層を
有し、かつ内部に粒子結合層と均質層からの3層構造を
もつ所に特徴を有する。従来公知のEVA系コポリマー
膜は、膜全体にわたり実質的に均質な構造をもつか、又
は活性層とその下の多孔性支持層からなる異方性の構造
をもつものに大別される。こ几に対し本発明の膜は活性
層を有するにも拘らず、その下には公知のような多孔性
支持層はなく、従来の均質膜の構造とみなされる粒子結
合層及び均質層が積層した3m構造を有している。後述
するように本発明の中空糸膜は透水臆、尿素等の低分子
重物質の透過性、 VB、2等の中分子鉱物質の透過性
のいずれもが従来のEVA透析膜より大であり、しかも
蛋白、デキストラン等の高分子麓物質のりジエクション
は高い、すなわち分画性がシャープであるとの極めてす
ぐれた性能を有(7ている。か〜る性能と膜構造との関
連については、いまだ本発明者らにおいても解明されて
いないが前述した従来のEVA均質膜とは明らかに異な
る構造がすぐれた膜性能の原因となっていることは確か
である。本発明に示したEVA系コポリマー膜の構造は
EVA系膜に限らず、他のいかなる素材の膜においても
従来発表されていない新規なものである。
The membrane according to the present invention is characterized in that it has an active layer on at least one surface of the membrane, and has a three-layer structure consisting of a particle binding layer and a homogeneous layer inside. Conventionally known EVA-based copolymer membranes are broadly classified into those having a substantially homogeneous structure throughout the membrane, and those having an anisotropic structure consisting of an active layer and a porous support layer therebelow. In contrast, although the membrane of the present invention has an active layer, there is no known porous support layer underneath it, but a particle binding layer and a homogeneous layer, which are considered to have the structure of a conventional homogeneous membrane, are laminated. It has a 3m structure. As will be described later, the hollow fiber membrane of the present invention has higher water permeability, permeability to low-molecular heavy substances such as urea, and permeability to medium-molecular mineral substances such as VB and 2 than conventional EVA dialysis membranes. Furthermore, it has extremely excellent performance with high extraction of polymeric substances such as proteins and dextran, that is, sharp fractionation (7). Regarding the relationship between such performance and membrane structure, Although it has not yet been elucidated by the present inventors, it is certain that the structure clearly different from the conventional EVA homogeneous membrane mentioned above is the cause of the excellent membrane performance.The EVA-based copolymer shown in the present invention The structure of the membrane is new and has not been previously announced not only for EVA-based membranes but also for membranes made of any other material.

本発明に用いるEVA系コポリマーはエチレン含量が1
0〜90モル%、より好ましくは10〜60モル%であ
り、濃度3重点%のジメチルスルホキシド(DM80)
溶液で30℃において1.0〜50センチボイズの粘度
をイ、つものが用いられる。
The EVA copolymer used in the present invention has an ethylene content of 1
Dimethyl sulfoxide (DM80) with a concentration of 0 to 90 mol%, more preferably 10 to 60 mol%, and a concentration of triple point %
A solution having a viscosity of 1.0 to 50 centiboise at 30°C is used.

ざらに後に詳述するように、他の共重合可能なモノマー
とのコポリマー及び成膜後−価又は多価アルデヒドやジ
イソシアナート等の架橋剤で架橋処理されたものも含む
As will be described in more detail later, it also includes copolymers with other copolymerizable monomers and those that are crosslinked with a crosslinking agent such as a polyvalent or polyvalent aldehyde or diisocyanate after film formation.

41図は本発明によるEVA系コポリマー膜の1例を示
す電顕写真(3,600倍)である。第2図はその模式
図である。第2図に示す膜は一外表面に活性層1を有し
、該活性層1−に接して多数の粒子2が結合してなる粒
子結合層3を有する。ざらに内表面5は活性層又は微細
孔をもつ層のいずれでもよく、該内表面に接して多数の
粒子2′が結合してなる粒子結合層3′を有し、粒子結
合層3.3′の間に12,000倍の電顕写真において
も実ヌ的に粒子構造のみられない均質層4が存する。こ
の均質h”!J 4が活性層と同様なgii密構造であ
るならば、ntI述した高い透水波や溶質透過性は示し
えないのであり、何らかの異なった構造と考えられるが
、現時点ではその解明に成功していない。多数の粒子は
その粒径が0.01〜2μの範囲一より好ましくは0.
05〜1μの範囲にあり、膜表面に近い部分の粒径がよ
り大きく、内部に向うにつれてその粒径は小さくなるよ
うに構成されている。粒径がこれより小ざい構造は透水
性、溶質透過性等が小ざくなりすぎて、膜として好まし
くない。また1粒径が2μ以上の構造は1本発明の方法
で製造することはできない。粒子結合層と均質層の厚さ
4よ必要に応じて変えることが可能であり、外表面に接
する粒子結合層の厚さを1とする時、均質層は1〜15
.より好ましくは2〜8−内表面に接する粒子結合層(
よ0.2〜3.より好ま[〜くは0.2〜2である。膜
表面の活性層は極めて薄い層であり。
Figure 41 is an electron micrograph (3,600x magnification) showing an example of an EVA-based copolymer film according to the present invention. FIG. 2 is a schematic diagram thereof. The membrane shown in FIG. 2 has an active layer 1 on one outer surface, and a particle bonding layer 3 in which a large number of particles 2 are bonded in contact with the active layer 1-. Roughly speaking, the inner surface 5 may be either an active layer or a layer with micropores, and has a particle bonding layer 3' in which a large number of particles 2' are bonded in contact with the inner surface, and the particle bonding layer 3.3 There exists a homogeneous layer 4 in which no grain structure is actually seen even in an electron micrograph of 12,000 times magnification. If this homogeneous h''!J4 has a gii dense structure similar to the active layer, it cannot exhibit the high water permeability waves and solute permeability mentioned above, and it is thought that it has some kind of different structure, but at present it is The majority of the particles have a particle size in the range of 0.01 to 2μ, preferably 0.01μ to 2μ.
The particle size is in the range of 0.05 to 1 μm, and the particle size is larger near the membrane surface and becomes smaller toward the inside. If the particle size is smaller than this, the water permeability, solute permeability, etc. will be too small, making it undesirable as a membrane. Further, a structure in which each grain size is 2 μ or more cannot be manufactured by the method of the present invention. The thickness of the particle bonding layer and the homogeneous layer can be changed as necessary from 4 to 4. When the thickness of the particle bonding layer in contact with the outer surface is 1, the thickness of the homogeneous layer is 1 to 15.
.. More preferably 2 to 8 - a particle binding layer in contact with the inner surface (
Yo0.2~3. More preferably 0.2-2. The active layer on the membrane surface is an extremely thin layer.

その表面を電顕(+2.oo□倍)で観察して何らの微
細孔や間隙の認められないイ、ので仇る。が(る活性層
は外表面及び内表面の少くとも1表面に存しており、活
性層のt「いものは膜性能が大さく低下する。
The surface was observed under an electron microscope (+2.00□ magnification) and no fine pores or gaps were observed. The active layer exists on at least one of the outer and inner surfaces, and if the active layer is too thin, the membrane performance will be greatly reduced.

得られる中空糸膜は外径50〜3000μ程度、膜厚は
5〜500μ程度であり、必要に応じて任意のものにす
ることができる。
The obtained hollow fiber membrane has an outer diameter of about 50 to 3000 μm and a membrane thickness of about 5 to 500 μm, and can be made into any thickness as required.

第3図は特開昭52−152877号で開示される均質
構造の中空糸膜を示す電顕写真(2,400倍)であり
、従来のkVA均質膜の構造は。明らかに本発明の膜と
は異なっている。
FIG. 3 is an electron micrograph (2,400 times) showing a hollow fiber membrane with a homogeneous structure disclosed in JP-A-52-152877, and the structure of a conventional kVA homogeneous membrane. This is clearly different from the membrane of the present invention.

なお、本発明での膜構造は1次の方法により観察するも
のである。後述する製法により得られた乾燥膜を液体窒
素中で凍結し、破断して破断面を作る。
Note that the film structure in the present invention is observed by a first-order method. A dried film obtained by the manufacturing method described below is frozen in liquid nitrogen and broken to create a fractured surface.

次いで破断面に金を厚さ約10OAに蒸着し、これを日
立製作所fs電子顕微鏡11 F S −2型で観察す
る。
Next, gold was deposited on the fractured surface to a thickness of about 10 OA, and this was observed using a Hitachi FS electron microscope model 11 FS-2.

本Q明の中空系膜は、エチレン−ビニルアルコール系共
重合体をジメチルスルホキシド、ジメチルアセトアミド
、ピロリドン、N−メチルピロリドン又はこれらの混合
物を主成分とする溶媒に溶解した紡糸原液を中空糸紡糸
口金の中部劣り凝固性液体を導入しつつ紡出し4気体雰
囲気中で3〜30倍のドラフトを受けるように紡出糸を
通過させ1次いで下記の温度範囲の凝固浴で凝固させる
ことにより製造することができる。
The hollow membrane of this Q-Mei is manufactured by using a hollow fiber spinneret with a spinning stock solution in which an ethylene-vinyl alcohol copolymer is dissolved in a solvent containing dimethyl sulfoxide, dimethylacetamide, pyrrolidone, N-methylpyrrolidone, or a mixture thereof as a main component. It is produced by spinning the yarn while introducing a coagulable liquid into the middle part of the yarn, passing the spun yarn in a gas atmosphere so as to receive a draft of 3 to 30 times, and then coagulating it in a coagulation bath in the temperature range shown below. I can do it.

X5=C≦40のとき一15≦T≦−〇+I 0ただし
Cはポリマー濃度(vrt、%)、Tは凝固温度(℃)
本発明で用いるEVA系コポリマーは、前述したものの
外、他の共重合可能な七ツマ−を15モル%以下の範囲
で共重合1−たイ、のでもよい。共重合可能な七ツマ−
としては、メタクリル酸、ビニルクロライド、メチルメ
タクリレート、アクリロニトリル、ビニルピロリドン等
が含まれる。また紡糸前もしくは紡糸後においてEVA
系共重合体をホウ素化合物等の無機架橋剤、あるいはジ
イソシアナート、ジアルデヒドなどの有機架橋剤などに
より処理することにより架橋が導入されたもの。
When X5=C≦40-15≦T≦−〇+I 0 where C is the polymer concentration (vrt, %) and T is the coagulation temperature (°C)
In addition to those mentioned above, the EVA copolymer used in the present invention may be one in which other copolymerizable heptamers are copolymerized in an amount of 15 mol % or less. Seven polymers that can be copolymerized
Examples include methacrylic acid, vinyl chloride, methyl methacrylate, acrylonitrile, vinylpyrrolidone, and the like. In addition, EVA is used before or after spinning.
Crosslinking is introduced by treating a copolymer with an inorganic crosslinking agent such as a boron compound, or an organic crosslinking agent such as diisocyanate or dialdehyde.

あるいはビニルアルコール単位の官能性水酸基が30モ
ル%以内においてホルムアルデヒド、アセトアルデヒド
、ブチルアルデヒド、ベンズアルデヒド等のアルデヒド
でアセタール化されているものでもよい。
Alternatively, up to 30 mol% of the functional hydroxyl groups of the vinyl alcohol unit may be acetalized with an aldehyde such as formaldehyde, acetaldehyde, butyraldehyde, or benzaldehyde.

EVA系コポリマーを溶解する溶媒として(f、メタノ
ール、エタノール、エチレングリコール、プロピレング
リコール等の一価及び多価アルコール−フェノール、メ
タクレゾール、メチルピロリドン、ギ酸及びこれらの含
水物などが知られているが1本発明の目的とする膜を製
造するためには。
Monohydric and polyhydric alcohols such as methanol, ethanol, ethylene glycol, and propylene glycol - phenol, metacresol, methylpyrrolidone, formic acid, and hydrated products thereof are known as solvents for dissolving EVA copolymers. 1. In order to manufacture the membrane targeted by the present invention.

ジメチルスルホキシド、ジメチルアセトアミド。Dimethyl sulfoxide, dimethyl acetamide.

ピロリドン、N−メチルピロリドン又はこれらの混合物
を用いるのが望ましい。特にEVA系コボU7−に対し
高い溶解性を示すジメチルスルホキシドが好ましい。E
Vp、系コポリマーをこtLらの溶媒に溶解するにあた
り、その濃度は15〜40重道%、より好ましくは18
〜30重緻%の範囲が望ましい。またポリマー溶液の温
度は0〜1200C1好ま[2くは20〜80℃がよい
。これより高湿で(まポリマーが変質するおそれがあり
、またこ几より低温では溶液粘度が高くなりすぎるかポ
リマーのゲル化が起こり紡糸が難しくなるので望ましく
ない。
Preferably, pyrrolidone, N-methylpyrrolidone or mixtures thereof are used. Particularly preferred is dimethyl sulfoxide, which exhibits high solubility in EVA-based Kobo U7-. E
When dissolving the Vp and copolymers in these solvents, the concentration is 15 to 40%, more preferably 18%.
A range of 30% to 30% solidity is desirable. The temperature of the polymer solution is preferably 0 to 1200C, preferably 20 to 80C. Humidities higher than this are not desirable because the polymer may deteriorate in quality, and temperatures lower than this are undesirable because the solution viscosity becomes too high or the polymer gels, making spinning difficult.

上述のようにして調製された紡糸原液は円環杖ノズル等
の中空糸紡糸口金を用いて中空糸状に紡糸される。本発
明においては、該紡糸口金の中部より、ポリマー溶液に
対して凝固性液体を導入しつつ紡糸することが必要であ
る。該凝固性液体により中空糸膜の内表面側で凝固が生
じ、内表面に接した粒子結合層が形成される。またその
凝固の条件や程度により内表面に活性層を形成させるこ
とができる。
The spinning stock solution prepared as described above is spun into a hollow fiber using a hollow fiber spinneret such as a circular cane nozzle. In the present invention, it is necessary to perform spinning while introducing a coagulating liquid into the polymer solution from the middle of the spinneret. The coagulable liquid causes coagulation on the inner surface side of the hollow fiber membrane, forming a particle binding layer in contact with the inner surface. Further, an active layer can be formed on the inner surface depending on the conditions and degree of coagulation.

凝固性液体としては水単独、又は水と水混和性有機溶媒
との溶液、水と芒硝等の塩との溶液があるが、本発明に
おいては、紡糸原液に用いた溶媒と水40〜70重愈%
を含む溶液が特に好ましい。
The coagulable liquid includes water alone, a solution of water and a water-miscible organic solvent, and a solution of water and a salt such as glauber's salt. Yu%
Particularly preferred are solutions containing.

該溶液のもつ凝固能が膜構造の形成に特に適している。The coagulating ability of this solution makes it particularly suitable for forming membrane structures.

紡糸口金より紡出された紡糸原糸は−まず気体雰囲気中
を通過する。紡糸原液は気体雰囲気中では流動性を保持
しているので、紡糸原糸は引ざのばされ真円性及び均一
11ざの膜壁が形成ざnる。
The yarn spun from the spinneret first passes through a gas atmosphere. Since the spinning dope retains its fluidity in a gas atmosphere, the spinning yarn is stretched out to form a round and uniform membrane wall.

また紡糸原糸は気体雰囲気中でドラフトを受けるが2該
ドラフト条件も本発明における重要な因子である。即ち
真円性及び均一膜厚、特に膜の薄層化をはかるためには
ドラフト比は大きい方が望マしい。しかしながらドラフ
トがあまりに大きいと全体の膜厚が薄くなり、ピンホー
ル状の膜の破壊が生じ易くなる傾向にある。
Furthermore, the spun yarn is subjected to drafting in a gas atmosphere, and the drafting conditions are also an important factor in the present invention. That is, in order to achieve roundness and uniform film thickness, especially thinning of the film, it is desirable that the draft ratio be large. However, if the draft is too large, the overall film thickness becomes thinner, and pinhole-like film destruction tends to occur more easily.

一万、ドラフト比が小さすぎると、得られる膜の分画性
やフラックス等の透過性能が十分でなくなる上に、強度
や寸法安定性等の実用上必要な機械的性能も悪化する。
On the other hand, if the draft ratio is too small, the resulting membrane will not have sufficient fractionation properties or permeation performance for fluxes, etc., and will also deteriorate practically necessary mechanical properties such as strength and dimensional stability.

ざらに本発明の膜にみられる3層構造は、気体雰囲気中
でのドラフトと凝固浴での凝固との相互作用により形成
されると考えられるが、中空糸膜の製法においてか振る
現象がみられるのは本発明者らも全く予期できぬことで
あった。本発明において紡糸原糸は3〜30倍、より好
ましくは5〜20倍のドラフトを受けるのが望ましい。
Generally speaking, the three-layer structure seen in the membrane of the present invention is thought to be formed by the interaction between the draft in the gas atmosphere and the coagulation in the coagulation bath, but the phenomenon of shaking has been observed in the hollow fiber membrane manufacturing method. This was something that the inventors could not have predicted at all. In the present invention, it is desirable that the spinning yarn is subjected to a draft of 3 to 30 times, more preferably 5 to 20 times.

ノズルと凝固浴面との間隔は3〜50調程度が好ましい
The distance between the nozzle and the surface of the coagulation bath is preferably about 3 to 50 mm.

気体雰囲気は、普通開放空間であるが、溶媒の蒸発をコ
ントロールする場合は、円筒吠等任意の形状の遮蔽体を
設け、凝固浴からのベーパー又は別途供給されるベーパ
ーで充満させた雰囲気とするか、又はコントロールされ
た気流を流通させる雰囲気とすることができる。
The gas atmosphere is normally an open space, but if the evaporation of the solvent is to be controlled, a shield of any shape such as a cylindrical tube is provided, and the atmosphere is filled with vapor from the coagulation bath or vapor supplied separately. Alternatively, the atmosphere may have a controlled air flow.

紡糸原糸は、次いで凝固浴中に導びかれ凝固を受ける。The spun yarn is then introduced into a coagulation bath and undergoes coagulation.

凝固浴の組成及び温度は広い範囲のものが考えられるが
1本発明膏らの検討の結果2組成については上述した中
部に導入する凝固性液体と同組成のものが望ましいこと
を認めた。即ち紡糸原液に用いた溶媒の水性溶液が好ま
しく−特にジメチルスルホキシド−水溶液が好ましい。
Although a wide range of compositions and temperatures can be considered for the coagulation bath, as a result of studies conducted by the inventors of the present invention, they have found that it is desirable to have the same composition as the coagulating liquid introduced into the middle part. That is, an aqueous solution of the solvent used in the spinning dope is preferable, and an aqueous solution of dimethyl sulfoxide is particularly preferable.

各成分の富は、中部に導入する凝固性液体、凝固温度等
の条件により選択すべきであり1通常含水率20〜80
重麓%の範囲から実験により決定される。
The richness of each component should be selected depending on the conditions such as the coagulable liquid introduced into the middle part and the coagulation temperature.
Determined experimentally from the range of % weight.

また凝固温度は1本発明の膜構造を形成する重15≦C
≦40のとぎ一15≦T≦−C+10ここでCはフリマ
ー濃度(wt、%)、Tは凝固温度C℃)凝固浴を経た
中空系は、ざらに必要に応じてローラー延伸、湿熱処理
、湿熱延伸等を行ない、膜性能2機械的性能を調整する
ことができる。またホルムアルデヒド、アセトアルデヒ
ド、クロルアセトアルデヒド、ベンズアルデヒドなどの
モノアルデヒド、グルタルアルデヒド、グリオキザール
Furthermore, the solidification temperature is 15≦C, which forms the membrane structure of the present invention.
≦40, 15≦T≦-C+10, where C is the frimer concentration (wt, %), and T is the coagulation temperature (C°C). Membrane performance 2 (mechanical performance) can be adjusted by performing moist heat stretching or the like. Also monoaldehydes such as formaldehyde, acetaldehyde, chloroacetaldehyde, and benzaldehyde, glutaraldehyde, and glyoxal.

PVAジアルデヒドなどのジアルデヒドでビニルアルコ
ール部分をアセタール化しタリ、フェニレンジイソシア
ネート、トリレンジイソシアネートなどのジイソシアネ
ートによるエステル架橋や、エピクロルヒドリンによる
エーテル架橋などを導入することもできる。特にグルタ
ルアルデヒドなどのジアルデヒドによる架橋は、耐熱性
、耐薬品性、強度、寸法安定性等を大ぎく改善でざるの
で。
It is also possible to acetalize the vinyl alcohol moiety with a dialdehyde such as PVA dialdehyde, and to introduce ester crosslinking with a diisocyanate such as phenylene diisocyanate or tolylene diisocyanate, or ether crosslinking with epichlorohydrin. In particular, crosslinking with dialdehydes such as glutaraldehyde greatly improves heat resistance, chemical resistance, strength, dimensional stability, etc.

好ましい。preferable.

本発明による中空系膜は湿潤又は乾燥膜として使用でさ
る。屹燥法としては、中空系に含まtしる水分を水混和
性でかつポリマーを溶解しない有機(8媒(例え(ス、
アセトン2メタノール−テトラヒドロフラン等)で置換
し次いで有機溶媒を加熱等1こより除去する方法、又は
製膜中あるいは製膜後に多価脂肪族アルコール(例えは
エチレンダリコール、ジエチレングリコール、グリセリ
ン)で処理し、しかる後、比較的低温度で加熱乾燥する
方法、ざらには、水分を含んだ湿肋膜を液体窒素等で凍
結し1次いで減圧下において水を昇華現象を利用して除
去する凍結乾燥方法等をとることができる。
The hollow-based membrane according to the invention can be used as a wet or dry membrane. In the drying method, water contained in the hollow system is removed using an organic solvent (e.g.
acetone, methanol, tetrahydrofuran, etc.) and then removing the organic solvent by heating or the like, or treatment with a polyhydric aliphatic alcohol (e.g., ethylene dalicol, diethylene glycol, glycerin) during or after film formation, After that, a method of heating and drying at a relatively low temperature, or a freeze-drying method of freezing the moist pleura containing water with liquid nitrogen, etc., and then removing the water under reduced pressure using a sublimation phenomenon, etc. You can take it.

本発明による中空糸膜は、径を小ざくしやすく。The diameter of the hollow fiber membrane according to the present invention can be easily reduced.

人工腎a等に用いる場合、プライミングボリュームを小
さくできるので有利である。また透水量が大きい上に従
来の均質EVA膜に比し特に尿素等の低分子鍬物質の透
過性が大ぎく蛋白等の高分子量物質の排除率が高いので
血液透析用や体液0縮用の膜として有用である。
When used in an artificial kidney a or the like, it is advantageous because the priming volume can be made small. In addition, it has a large amount of water permeability, and compared to conventional homogeneous EVA membranes, it is particularly permeable to low-molecular weight substances such as urea, and has a high rejection rate of high-molecular weight substances such as proteins, making it suitable for hemodialysis and body fluid reduction. Useful as a membrane.

以下、実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1〜6および比較例1 エチレン含有ht 33モル%のエチレン−ビニル7 
/l/ コール共重合体をジメチルスルホキシドに加熱
溶解し、濃度22i盪%の溶液を得た。これを70℃で
1晩放置して脱泡した。ノズル孔径が1.5朋ニードル
外径が1.13mmニードル内径が0.87mmの円環
ノズルを凝固液面上20団に設置しく実施例2〜6は0
.96 / 0.610.311rr!nのノズル〕、
その内側部よりジメチルスルホキシドと水(45/s 
s wt/vt )の混合溶媒を1 、3 cc/rn
i nで注入しながら、その外側部よりと記脱泡後原液
を1 、1 cc/minの割合で押し出しジメチルス
ルホキシド−水混合溶液の凝固浴中に垂直下方に紡出し
、紡糸速度を30 m/m1nとした。得られた湿潤中
空繊維は外径が250μ、膜厚が25μであり、はぼ完
全な真円の断面形状を示[7、錨維長1kmにわたって
径。
Examples 1 to 6 and Comparative Example 1 Ethylene-containing ht 33 mol% ethylene-vinyl 7
/l/ Cole copolymer was heated and dissolved in dimethyl sulfoxide to obtain a solution having a concentration of 22%. This was left at 70°C overnight to defoam. An annular nozzle with a nozzle hole diameter of 1.5 mm, a needle outer diameter of 1.13 mm, and a needle inner diameter of 0.87 mm was installed in 20 groups above the coagulating liquid surface.
.. 96/0.610.311rr! n nozzle],
Dimethyl sulfoxide and water (45/s
s wt/vt) mixed solvent at 1,3 cc/rn
While injecting the mixture with water, the degassed stock solution was extruded from the outside at a rate of 1.1 cc/min and spun vertically downward into a coagulation bath of a dimethyl sulfoxide-water mixed solution, and the spinning speed was set at 30 m. /m1n. The obtained wet hollow fibers had an outer diameter of 250 μm, a film thickness of 25 μm, and a nearly perfect circular cross-sectional shape [7, diameter over 1 km of anchor fiber length.

膜厚の斑は殆ど認められず均一性に優れた繊維であった
。比較例1は空気中を通らず凝固浴に直接紡糸する方法
である。
The fibers had excellent uniformity with almost no unevenness in film thickness. Comparative Example 1 is a method of spinning directly into a coagulation bath without passing through the air.

第1表に詳細を示す。Details are shown in Table 1.

以下余白 実施例7および比較例2.3 実施例6により得られたホローファイバーを膜面積が1
.0イになるようにモジュール化し、血液側の流欺が1
0077Le、圧力1001MIRQ、透析液側流kk
Oにして1分子鼠1万のデキストランの沖串間と透水性
を測定した。溶液はデキストラン濃度が0.1重置%に
調製して測定した。ここで言う沖串間は下式より算出し
た。
The following margins are Example 7 and Comparative Example 2.3 The hollow fiber obtained in Example 6 has a membrane area of 1
.. It is modularized so that it becomes 0, and the flow rate on the blood side is 1.
0077Le, pressure 1001MIRQ, dialysate side flow kk
The water permeability of 1 molecule of dextran was measured using Okikushima and Okikushima. The solution was prepared to have a dextran concentration of 0.1% and measured. The Okikushi distance referred to here was calculated using the formula below.

比較例2は比較例1で得ら几た中空糸及び比較例3は再
生セルロース系中空糸膜(エンカ社製キュプロファン、
湿潤時膜厚30〜35μ)ヲ用イて同様の実験を行なっ
た。
Comparative Example 2 is a hollow fiber obtained in Comparative Example 1, and Comparative Example 3 is a regenerated cellulose-based hollow fiber membrane (Cuprophan manufactured by Enka Co., Ltd.,
A similar experiment was conducted using a film having a wet film thickness of 30 to 35 μm.

結果を表2に示す。The results are shown in Table 2.

表  2 ’OF R(Tnl!Ar−ranHg ) デキスト
ラン(M、W、 1万)F5過串間実施例7     
6.7           55比較例2     
4.3           49tt3 2.9  
 75
Table 2 'OF R (Tnl!Ar-ranHg) Dextran (M, W, 10,000) F5 Kushima Example 7
6.7 55 Comparative Example 2
4.3 49tt3 2.9
75

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるEVA系中空糸膜の1例の断面構
造を示す電顕写真であり、第2図はその模式図。第3図
は従来のEVA系中空糸膜の断面構造を示す電顕写真で
ある。
FIG. 1 is an electron micrograph showing the cross-sectional structure of an example of an EVA-based hollow fiber membrane according to the present invention, and FIG. 2 is a schematic diagram thereof. FIG. 3 is an electron micrograph showing the cross-sectional structure of a conventional EVA-based hollow fiber membrane.

Claims (1)

【特許請求の範囲】[Claims] エチレン−ビニルアルコール系コポリマーからなる中空
糸膜であって、乾燥膜の電顕観察において中空糸膜の内
表面及び外表面の少くとも1表面に緻密な活性層を有し
、かつ両表面に接して0.01〜2μの粒径をもつ粒子
が結合してなる粒子結合層とさらにその内側部に存する
実質的に粒子構造の認められない均質層の3層構造を有
することを特徴とするエチレン−ビニルアルコール系中
空糸膜。
A hollow fiber membrane made of an ethylene-vinyl alcohol copolymer, which has a dense active layer on at least one of the inner and outer surfaces of the hollow fiber membrane when observed by electron microscopy of a dry membrane, and is in contact with both surfaces. Ethylene having a three-layer structure including a particle bonding layer formed by bonding particles having a particle size of 0.01 to 2μ, and a homogeneous layer with substantially no particle structure existing inside the particle bonding layer. - Vinyl alcohol hollow fiber membrane.
JP20429486A 1986-08-29 1986-08-29 Hollow yarn membrane made of ethylene-vinyl alcohol copolymer Pending JPS62163705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20429486A JPS62163705A (en) 1986-08-29 1986-08-29 Hollow yarn membrane made of ethylene-vinyl alcohol copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20429486A JPS62163705A (en) 1986-08-29 1986-08-29 Hollow yarn membrane made of ethylene-vinyl alcohol copolymer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5303179A Division JPS55148209A (en) 1979-04-27 1979-04-27 Hollow ethylene-vinyl alcohol membrane and its production

Publications (1)

Publication Number Publication Date
JPS62163705A true JPS62163705A (en) 1987-07-20

Family

ID=16488096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20429486A Pending JPS62163705A (en) 1986-08-29 1986-08-29 Hollow yarn membrane made of ethylene-vinyl alcohol copolymer

Country Status (1)

Country Link
JP (1) JPS62163705A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128793A (en) * 2014-01-30 2014-07-10 Toyobo Co Ltd Hollow fiber membrane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53126319A (en) * 1977-04-06 1978-11-04 Kuraray Co Ltd Production of dried hollow fiber with selective permeability
JPS5535969A (en) * 1978-09-07 1980-03-13 Kuraray Co Ltd Ethylene-vinyl alcohol copolymer membrane and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53126319A (en) * 1977-04-06 1978-11-04 Kuraray Co Ltd Production of dried hollow fiber with selective permeability
JPS5535969A (en) * 1978-09-07 1980-03-13 Kuraray Co Ltd Ethylene-vinyl alcohol copolymer membrane and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128793A (en) * 2014-01-30 2014-07-10 Toyobo Co Ltd Hollow fiber membrane

Similar Documents

Publication Publication Date Title
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
US4385094A (en) Ethylene-vinyl alcohol hollow fiber membrane and method for the production thereof
JPS6214642B2 (en)
US6074718A (en) Self supporting hollow fiber membrane and method of construction
US4220543A (en) Ethylene-vinyl alcohol membranes having improved properties and a method of producing the same
KR100557264B1 (en) Hollow fiber membrane and process for producing the same
JPS6333871B2 (en)
JPH0427891B2 (en)
JPS6397202A (en) Polyether sulfone resin semipermeable membrane and its production
JPS62163705A (en) Hollow yarn membrane made of ethylene-vinyl alcohol copolymer
JPS5836602B2 (en) Ethylene-vinyl alcohol copolymer membrane and its manufacturing method
JPH053335B2 (en)
JPS61268302A (en) Aromatic polysulfone composite semipermeable membrane and preparation thereof
JPS62102801A (en) Selective permeable hollow composite fiber
JPS59166208A (en) Manufacture of gas separating membrane
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
JPS60209205A (en) Preparation of hollow yarn porous membrane comprising polyvinylidene fluoride
JPS6227163B2 (en)
JPS6229524B2 (en)
JPH07185278A (en) Production of separation membrane
JP2818352B2 (en) Manufacturing method of hollow fiber membrane
JP3032618B2 (en) Hollow fiber membrane for hemodialysis and method for producing the same
JPH03174233A (en) Production of aromatic polysulfone hollow-fiber membrane
JPS6311909B2 (en)
JPS5848201B2 (en) porous hollow fiber membrane