JP3032618B2 - Hollow fiber membrane for hemodialysis and method for producing the same - Google Patents

Hollow fiber membrane for hemodialysis and method for producing the same

Info

Publication number
JP3032618B2
JP3032618B2 JP3224976A JP22497691A JP3032618B2 JP 3032618 B2 JP3032618 B2 JP 3032618B2 JP 3224976 A JP3224976 A JP 3224976A JP 22497691 A JP22497691 A JP 22497691A JP 3032618 B2 JP3032618 B2 JP 3032618B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
hemodialysis
mol
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3224976A
Other languages
Japanese (ja)
Other versions
JPH0542208A (en
Inventor
隆秀 重久
弘幸 赤須
道弘 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP3224976A priority Critical patent/JP3032618B2/en
Publication of JPH0542208A publication Critical patent/JPH0542208A/en
Application granted granted Critical
Publication of JP3032618B2 publication Critical patent/JP3032618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はエチレンービニルアルコ
ール系共重合体からなる血液透析用中空糸膜およびその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hollow fiber membrane for hemodialysis comprising an ethylene-vinyl alcohol copolymer and a method for producing the same.

【0002】[0002]

【従来の技術】従来よりエチレンービニルアルコール
(以下EVAと略称する)系共重合体からなる中空糸膜
は、抗溶血性や抗血栓性が良好であり、しかも耐久性や
化学的安定性にも優れていることから人工腎臓用の透析
膜として広く使用されている。かかる血液透析用中空糸
膜として、例えば特公昭58−36602号および同6
3−11909号には中空糸膜の外表面に薄い緻密層お
よび中空糸膜の内表面に多孔質層を有する異方性構造の
中空糸膜が提案されている。上記異方性構造の中空糸膜
はポリマー濃度と凝固浴温度を厳密に規定した条件下で
製造することができる。
2. Description of the Related Art Conventionally, a hollow fiber membrane made of an ethylene-vinyl alcohol (hereinafter abbreviated as EVA) copolymer has a good anti-hemolytic property and anti-thrombotic property, and has a high durability and a high chemical stability. Is widely used as a dialysis membrane for artificial kidneys. As such a hollow fiber membrane for hemodialysis, for example, JP-B-58-36602 and JP-B-58-36602.
No. 3-11909 proposes an anisotropic hollow fiber membrane having a thin dense layer on the outer surface of the hollow fiber membrane and a porous layer on the inner surface of the hollow fiber membrane. The hollow fiber membrane having the anisotropic structure can be produced under the conditions in which the polymer concentration and the coagulation bath temperature are strictly specified.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、近年透
析医療の高度化にともない膜に対する要求性能も高くな
ってきており、とりわけ透析現場における省力化、透析
時間の短縮化等が求められている。そして血液透析膜に
対しては透水性および低分子物質の拡散透過性が高いこ
とはいうまでもなく、更にアルブミン領域における高い
阻止率をも有する血液透析膜が要望されている。しかし
従来のEVA系重合体からなる異方性構造の血液透析用
中空糸膜は、透水性および低分子物質の拡散透過性が優
れているもののアルブミン領域における阻止率が低いと
いう問題があった。したがって本発明の目的は、透水性
と低分子物質の拡散透過性に優れ、さらにアルブミン領
域における高い阻止率を有するEVA系共重合体からな
る血液透析用中空糸膜を提供することにある。本発明の
他の目的は、上記EVA系共重合体からなる血液透析用
中空糸膜の製造方法を提供することにある。
However, in recent years, with the advancement of dialysis medical treatment, the required performance of membranes has been increased, and in particular, labor saving at dialysis sites, reduction of dialysis time, and the like are required. Needless to say, a hemodialysis membrane having high water permeability and high diffusion permeability of a low molecular weight substance, and further having a high rejection in the albumin region is desired. However, conventional hollow fiber membranes for hemodialysis having an anisotropic structure made of an EVA-based polymer have a problem that the rejection in the albumin region is low although the water permeability and the diffusion permeability of low-molecular substances are excellent. Therefore, an object of the present invention is to provide a hollow fiber membrane for hemodialysis comprising an EVA-based copolymer having excellent water permeability and diffusion permeability of a low molecular weight substance and having a high rejection in an albumin region. Another object of the present invention is to provide a method for producing a hollow fiber membrane for hemodialysis comprising the above EVA-based copolymer.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく従来のEVA系共重合体からなる血液透析
用中空糸膜の構造について詳細に検討した結果、異方性
構造の血液透析用中空糸膜の緻密層の細孔厳密に制御
することによりアルブミン領域における高い阻止率を有
する血液透析膜が提供できることを見出し、更に検討し
た結果本発明に到達したものである。すなわち本発明の
請求項1記載の発明は、エチレン−ビニルアルコール系
共重合体から構成される中空糸膜の内表面に30Å以下
の微細孔を持つ薄い緻密層、該中空糸膜の内部および外
表面に0.01μ以下の細孔の占める体積が10%以
下、空孔率が40%以上である微細多孔層を有し、かつ
牛血系における透水率が15ml/mmHg/Hr/m
2以上、尿素の総括物質移動係数が0.03cm/mi
n以上、アルブミンの阻止率が95%以上である血液透
析用中空糸膜である。
Means for Solving the Problems The present inventors have studied in detail the structure of a conventional hollow fiber membrane for hemodialysis comprising an EVA-based copolymer in order to achieve the above object, and as a result, have found that an anisotropic structure has been obtained. The present inventors have found that a hemodialysis membrane having a high rejection rate in the albumin region can be provided by strictly controlling the pores of the dense layer of the hollow fiber membrane for hemodialysis, and as a result of further studies, the present invention has been achieved. That is, the invention according to claim 1 of the present invention provides a method in which the inner surface of a hollow fiber membrane composed of an ethylene-vinyl alcohol-based copolymer is 30 ° or less.
A thin dense layer having fine pores, a microporous layer having a volume occupied by pores of 0.01 μ or less of 10% or less and a porosity of 40% or more on the inner and outer surfaces of the hollow fiber membrane, And the water permeability in the bovine blood system is 15 ml / mmHg / Hr / m
2 or more, the overall mass transfer coefficient of urea is 0.03 cm / mi
n is a hollow fiber membrane for hemodialysis, wherein the albumin rejection is 95% or more.

【0005】本発明の請求項2記載の発明は、重合度8
00以上、ケン化度95モル%以上、エチレン含量10
〜60モル%のエチレン−ビニルアルコール系共重合体
を溶媒に溶解し、円環状ノズルの内部からハロゲン化塩
化合物を5重量%以上含有する水溶液を注入しつつ、水
を一成分とする凝固液中で凝固させることを特徴とする
血液透析用中空糸膜の製造方法である。
[0005] The invention according to claim 2 of the present invention has a polymerization degree of 8
00 or more, saponification degree 95 mol% or more, ethylene content 10
~ 60 mol% of an ethylene-vinyl alcohol copolymer is dissolved in a solvent, and a halogenated salt is introduced from the inside of the annular nozzle.
A method for producing a hollow fiber membrane for hemodialysis, comprising coagulating in a coagulating solution containing water as a component while injecting an aqueous solution containing 5% by weight or more of a compound .

【0006】本発明のEVA系共重合体からなる血液透
析用中空糸膜は、内表面に薄い緻密層を有する異方性構
造である。かかる緻密層は尿素、無機物などの低分子物
質などの溶質の通過と、アルブミン領域の物質の通過の
阻止に多大の影響を与えるものである。その表面は電子
顕微鏡(10000倍)で観察しても細孔が明確に確認
できないが、アルブミン領域の物質の通過を阻止するた
めに30A以下の厳密に制御された微細孔を設ける必要
がある。緻密層の厚さは30〜100A程度である。
The hollow fiber membrane for hemodialysis comprising the EVA copolymer of the present invention has an anisotropic structure having a thin dense layer on the inner surface. Such a dense layer greatly affects the passage of solutes such as low molecular substances such as urea and inorganic substances and the prevention of passage of substances in the albumin region. Although pores cannot be clearly confirmed on the surface by observation with an electron microscope (× 10000), it is necessary to provide strictly controlled micropores of 30 A or less in order to prevent the passage of substances in the albumin region. The thickness of the dense layer is about 30 to 100A.

【0007】中空糸膜の内部および外表面の微細多孔層
は比較的大きな空胞を有しており、空孔率が40%以
上、0.01ミクロン以下の細孔の占める体積が10%
以下である。通常空孔率は50%以上、0.01ミクロ
ン以下の細孔の占める体積は5%以下が適当である。ま
た微細多孔層中の孔形状は網目構造、微細多隙構造、ハ
ニカム構造、粒子構造などである。この中空糸膜の内部
および外表面ともに微細多孔構造となっていることが透
水性に多大の影響を与えるものである。なお、本発明で
いう空孔率(P)は下記式より求めた値である。 P=(1ーρa/ρb)×100 ただし、ρa;中空糸膜を構成するEVA系共重合体の
比重、 ρb;中空糸膜の見かけの比重、 細孔分布は水銀ポロシメーターによって測定された値よ
り求めた。本発明のEVA系共重合体からなる血液透析
用中空糸膜は通常外径が100〜1000μ、膜厚が5
〜100μのものが好適に使用される。
[0007] The microporous layers on the inner and outer surfaces of the hollow fiber membrane have relatively large vacuoles, and the porosity is 40% or more and the volume occupied by pores of 0.01 µm or less is 10%.
It is as follows. Usually, it is appropriate that the porosity is 50% or more and the volume occupied by pores of 0.01 micron or less is 5% or less. The pore shape in the microporous layer has a network structure, a microporous structure, a honeycomb structure, a particle structure and the like. The fact that the inside and outside surfaces of this hollow fiber membrane have a microporous structure greatly affects water permeability. The porosity (P) in the present invention is a value obtained from the following equation. P = (1−ρa / ρb) × 100 where, ρa: specific gravity of the EVA copolymer constituting the hollow fiber membrane, ρb: apparent specific gravity of the hollow fiber membrane, pore distribution is a value measured by a mercury porosimeter. I asked more. The hollow fiber membrane for hemodialysis comprising the EVA copolymer of the present invention usually has an outer diameter of 100 to 1000 μm and a thickness of 5 to 5 μm.
100100 μm is preferably used.

【0008】本発明の血液透析用中空糸膜は水系の透水
性が30〜200ml/mmHg/Hr/m2でも牛血系の透水性は
15〜30ml/mmHg/Hr/m2へ変化し、アルブミン阻止率
も水系では60〜90%であるものが牛血系では95%
以上と高くなる。しかし低分子物質である尿素の総括物
質移動係数は牛血系に変わっても変化は小さく0.03
cm/min以上を保持している。かかる血液透析用中
空糸膜は人工腎臓用の透析膜としての用途のみでなく、
例えば濾過型人工腎臓用の濾過膜、腹水の濾過膜または
濃縮膜、血漿分画膜などに使用することができる。
[0008] The hollow fiber membrane for hemodialysis according to the present invention is permeability of bovine blood system permeability of water even 30~200ml / mmHg / Hr / m 2 varies to 15~30ml / mmHg / Hr / m 2 , The albumin inhibition rate is 60-90% in the water system, but 95% in the bovine blood system.
It becomes higher with above. However, the overall mass transfer coefficient of urea, which is a low molecular weight substance, is small even when it is changed to bovine blood system.
cm / min or more is maintained. Such a hollow fiber membrane for hemodialysis is not only used as a dialysis membrane for an artificial kidney,
For example, it can be used as a filtration membrane for a filtration type artificial kidney, a filtration membrane or a concentration membrane for ascites fluid, a plasma fractionation membrane, and the like.

【0009】次に本発明の血液透析用中空糸膜の製造方
法について説明する。本発明において用いられるEVA
系共重合体はランダム、ブロック、グラフトいずれの共
重合体でもよいが、重合度800未満のものは製膜時の
機械的強度が十分でないため重合度800以上のものを
使用することが好ましい。通常重合度1000以上のも
のが用いられる。。エチレン含有量としては10モル%
以下のものでは湿潤時の機械的性質が不十分で、溶出物
も多いという問題がある。また60モル%以上では溶質
の拡散透過性が低下する。したがってエチレン含有量が
10〜60モル%、通常20〜45モル%のものが好ま
しく用いられる。EVA系共重合体のケン化度としては
湿潤時の機械的強度の点から95モル%以上が必要であ
り、通常ケン化度99モル%以上の実質的に完全ケン化
のものが用いられる。
Next, a method for producing the hollow fiber membrane for hemodialysis according to the present invention will be described. EVA used in the present invention
The system copolymer may be any of random, block and graft copolymers, but those having a degree of polymerization of less than 800 preferably have a degree of polymerization of 800 or more because the mechanical strength during film formation is not sufficient. Usually, those having a polymerization degree of 1000 or more are used. . 10 mol% as ethylene content
In the following, there is a problem that the mechanical properties when wet are insufficient and there are many eluted substances. On the other hand, if it is 60 mol% or more, the diffusion permeability of the solute is reduced. Therefore, those having an ethylene content of 10 to 60 mol%, usually 20 to 45 mol%, are preferably used. The saponification degree of the EVA copolymer is required to be 95 mol% or more from the viewpoint of mechanical strength when wet, and a substantially completely saponified one having a saponification degree of 99 mol% or more is usually used.

【0010】本発明に使用されるEVA系共重合体には
例えば、メタクリル酸、ビニルクロライド、メチルメタ
クリレート、アクリロニトリル、ビニルピロリドンなど
の共重合可能な重合性単量体が15モル%以下の範囲で
共重合されていても良く、また紡糸前もしくは紡糸後に
おいてEVA系共重合体をほう素等の無機架橋剤、ある
いはジイソシアナート、ジアルデヒドなどの有機架橋剤
などにより処理することにより架橋が導入されたもの、
あるいはビニルアルコール単位の官能性水酸基が30モ
ル%以内の範囲でホルムアルデヒド、アセトアルデヒ
ド、ブチルアルデヒド、ベンズアルデヒド等のアルデヒ
ドでアセタール化されているものも含まれる。多価アル
デヒド化合物により架橋処理を行うと膜の耐熱性と強度
が大きく改善されるので好ましい。
The EVA copolymer used in the present invention contains, for example, a copolymerizable polymerizable monomer such as methacrylic acid, vinyl chloride, methyl methacrylate, acrylonitrile and vinyl pyrrolidone in an amount of 15 mol% or less. It may be copolymerized, and crosslinking is introduced by treating the EVA-based copolymer with an inorganic crosslinking agent such as boron or an organic crosslinking agent such as diisocyanate or dialdehyde before or after spinning. What was done,
Alternatively, those in which a functional hydroxyl group of a vinyl alcohol unit is acetalized with an aldehyde such as formaldehyde, acetaldehyde, butyraldehyde, and benzaldehyde in a range of 30 mol% or less are also included. Crosslinking with a polyhydric aldehyde compound is preferred because the heat resistance and strength of the film are greatly improved.

【0011】EVA系共重合体を溶解する溶媒として
は、メタノール、エタノールなどの1価アルコール、エ
チレングリコール、プロピレングリコール、グリセリン
などの多価アルコール、フェノール、メタクレゾール、
Nーメチルピロリドン、ぎ酸およびこれらの含水物など
が知られているが、本発明の目的とする透水性と低分子
物質の拡散透過性が高く、かつアルブミン領域における
高い阻止率を備えた血液透析用中空糸膜を得るためには
ジメチルスルホキシド、ジメチルアセトアミド、ピロリ
ドン、Nーメチルピロリドンまたはこれらの混合物を溶
媒として用いるのが好ましい。EVA系共重合体を前述
の溶媒、特にジメチルスルホキシドに溶解する際に水ま
たはメタノール、イソプロピルアルコールまたはジメチ
ルホルムアミド等の他の溶媒または溶媒と混合性の良い
他の液体及び無機塩を含んでいても良い。
Solvents for dissolving the EVA copolymer include monohydric alcohols such as methanol and ethanol, polyhydric alcohols such as ethylene glycol, propylene glycol and glycerin, phenol, meta-cresol and the like.
N-methylpyrrolidone, formic acid, and hydrates thereof are known, but blood having high water permeability and high diffusion permeability of low molecular weight substances, which are the object of the present invention, and having high rejection in the albumin region In order to obtain a hollow fiber membrane for dialysis, it is preferable to use dimethylsulfoxide, dimethylacetamide, pyrrolidone, N-methylpyrrolidone or a mixture thereof as a solvent. When the EVA-based copolymer is dissolved in the above-mentioned solvent, particularly dimethyl sulfoxide, it may contain water or another solvent such as methanol, isopropyl alcohol or dimethylformamide, or may contain other liquids and inorganic salts having good miscibility with the solvent. good.

【0012】EVA系共重合体を前述の溶媒に溶解する
に当り、その濃度は任意に選択できるが、通常3〜30
重量%、好ましくは5〜20重量%の範囲で実施され
る。またポリマー溶液の温度は通常0〜120℃、好ま
しくは5〜80℃が良い。120℃を越えると重合体が
変質する恐れがあり、また0℃以下では原液粘度が高く
なりすぎ、紡糸が難しくなる傾向にある。
In dissolving the EVA-based copolymer in the above-mentioned solvent, the concentration thereof can be arbitrarily selected.
%, Preferably in the range of 5 to 20% by weight. The temperature of the polymer solution is usually from 0 to 120C, preferably from 5 to 80C. If the temperature exceeds 120 ° C., the polymer may be deteriorated. If the temperature is lower than 0 ° C., the viscosity of the stock solution tends to be too high, and spinning tends to be difficult.

【0013】本発明の血液透析用中空糸膜を製造するた
めには、二重円環ノズルを用いて、該ノズルの中心部に
酸、塩基およびそれらの塩化合物の少なくとも一種類を
5重量%以上、通常10重量%以上含有する水溶液を注
入しつつ、ポリマー溶液を水を一成分とする凝固液中に
押しだし凝固させる。ここで用いられる酸、塩基、及び
それらの塩化合物の種類としては任意に選択することが
できる。
In order to produce the hollow fiber membrane for hemodialysis of the present invention, a double annular nozzle is used, and at least one of an acid, a base and a salt thereof is added at 5% by weight to the center of the nozzle. As described above, the polymer solution is extruded into a coagulation liquid containing water as a component and solidified while pouring an aqueous solution usually containing 10% by weight or more. The kind of the acid, base, and salt compound used here can be arbitrarily selected.

【0014】酸、塩基、及びそれらの塩化合物として
は、例えばHCl、HBr、NaOH、LiOH等の
酸、塩基、LiCl、NaCl、NaBr、NaI、N
Hl、KBr、MgCl2 、CaCl2 、MgBr2
AlCl3 、ZnCl2 、CuCl2 等の1価、2価、
3価のハロゲン化塩化合物、HNO3 、NaNO3 、C
a(NO32 、LiClO3 、KClO3 、Mg(C
lO32 、Na2 SO4、H2 SO4 、(NH42
SO4 、H3 PO4 、KAl(SO42 、Na3PO4
等の硝酸、塩素酸、硫酸、燐酸、及びその塩化合物、
NaCH3 COO、Ca(CH3 COO)2 等の酢酸塩
化合物等をあげることができる。中でもCaCl2 、M
gCl2 、CaBr2 、MgBr2 、ZnCl2 、Cu
Cl2 等の2価のハロゲン化塩化合物が好ましく用いら
れる。さらに安全性、経済性の点でCaCl2 が好まし
い。またこれらの塩の濃度としては5重量%以上、通常
10重量%以上が好ましい。5重量%未満であると塩の
効果が十分発揮されず、アルブミン阻止率が悪くなる。
また、注入液の温度としては10〜50℃が適当であ
る。通常20〜40℃が好ましい。上記温度範囲を外れ
ると低分子物質の拡散透過性が低下してしまうので好ま
しくない。
Acids, bases and their salt compounds include, for example, acids, bases, such as HCl, HBr, NaOH and LiOH, LiCl, NaCl, NaBr, NaI, N
Hl, KBr, MgCl 2 , CaCl 2 , MgBr 2 ,
Monovalent, divalent, such as AlCl 3 , ZnCl 2 , CuCl 2 ,
Trivalent halide compound, HNO 3 , NaNO 3 , C
a (NO 3 ) 2 , LiClO 3 , KClO 3 , Mg (C
10 3 ) 2 , Na 2 SO 4 , H 2 SO 4 , (NH 4 ) 2
SO 4 , H 3 PO 4 , KAl (SO 4 ) 2 , Na 3 PO 4
Such as nitric acid, chloric acid, sulfuric acid, phosphoric acid, and salt compounds thereof,
Acetate compounds such as NaCH 3 COO and Ca (CH 3 COO) 2 can be mentioned. Among them, CaCl 2 , M
gCl 2, CaBr 2, MgBr 2 , ZnCl 2, Cu
A divalent halide salt compound such as Cl 2 is preferably used. Further, CaCl 2 is preferable in terms of safety and economy. The concentration of these salts is preferably at least 5% by weight, usually at least 10% by weight. If the amount is less than 5% by weight, the effect of the salt will not be sufficiently exerted, and the albumin rejection will be poor.
Further, the temperature of the injection solution is suitably from 10 to 50 ° C. Usually, 20 to 40 ° C is preferable. If the temperature is out of the above-mentioned temperature range, the diffusion permeability of the low-molecular substance is undesirably reduced.

【0015】凝固液に用いる凝固剤としては水性媒体が
用いられる。通常水とジメチルスルホキシド、ジメチル
アセトアミド、ピロリドン、N−メチルピロリドン、ア
ルコール等の水に可溶性の有機溶剤との混合溶媒、さら
には注入液に用いた酸、塩基、及びそれらの塩等を含有
する水等が用いられる。なかでもジメチルスルホキシド
と水の混合溶媒を凝固剤に用いるのが好ましい。
An aqueous medium is used as a coagulant used for the coagulation liquid. Normally, a mixed solvent of water and an organic solvent soluble in water such as dimethylsulfoxide, dimethylacetamide, pyrrolidone, N-methylpyrrolidone, alcohol, and the like, and water containing an acid, a base, and a salt thereof used in an injection solution. Are used. Among them, a mixed solvent of dimethyl sulfoxide and water is preferably used as a coagulant.

【0016】本発明の血液透析用中空糸膜を製造する方
法としては、溶媒に溶解したEVA系共重合体の溶液を
円環状ノズルより直接凝固液中に押しだし凝固させる湿
式法、EVA系共重合体の溶液を円環状ノズルから押し
だし、気体雰囲気中を通過させて凝固液中で凝固させる
乾湿式法のいずれの方法を用いてもよい。
The method for producing the hollow fiber membrane for hemodialysis of the present invention includes a wet method in which a solution of an EVA-based copolymer dissolved in a solvent is directly extruded from an annular nozzle into a coagulation solution, and coagulation is performed. Any method of a dry-wet method in which the combined solution is extruded from the annular nozzle and allowed to pass through a gas atmosphere and solidify in a coagulating liquid may be used.

【0017】凝固液の温度は通常0〜50℃、好ましく
は5〜30℃である。これより低いと膜構造全体が緻密
化してしまい、透水性と低分子物質の拡散透過性が低下
する恐れがある。一方これより高いとアルブミン阻止率
が低下したり、紡糸が不安定になったりするので好まし
くない。また凝固液として水と上記有機溶媒を混合して
使う場合、前記条件に加えて、有機溶媒の濃度が10重
量%を越える場合は、特に有機溶媒の濃度(C)重量%
と混合溶媒の温度(T)℃との間にC<Tの関係が成り
立つような条件で紡糸を行うのが好ましい。これより濃
度が高くなると溶質の拡散透過性が悪くなる。また有機
混合溶媒の濃度が40重量%を越えるとC<Tの条件を
満たさなくても溶質の拡散透過性は良好であるが、膜強
度が弱くなる傾向にある。
The temperature of the coagulating liquid is usually 0 to 50 ° C., preferably 5 to 30 ° C. If it is lower than this, the entire membrane structure may be densified, and the water permeability and the diffusion permeability of the low-molecular substance may be reduced. On the other hand, if it is higher than this, the albumin rejection rate decreases and spinning becomes unstable, which is not preferable. When water and the above-mentioned organic solvent are mixed and used as the coagulating liquid, in addition to the above-mentioned conditions, when the concentration of the organic solvent exceeds 10% by weight, particularly, the concentration of the organic solvent (C)% by weight
It is preferable to carry out spinning under such a condition that a relationship of C <T is satisfied between the temperature and the temperature (T) ° C. of the mixed solvent. If the concentration is higher than this, the diffusion permeability of the solute deteriorates. When the concentration of the organic mixed solvent exceeds 40% by weight, the diffusion permeability of the solute is good even if the condition of C <T is not satisfied, but the film strength tends to be weak.

【0018】紡糸を行う時のノズルドラフト(ノズル口
よりの原液吐出の線速度と凝固浴よりの捲き取り速度の
比)は通常1.0〜5.0である。好ましくは2.0〜
3.5である。この範囲より低くても高くても低分子物
質の拡散透過性が低下するので好ましくない。またこの
時得られる乾燥中空糸膜の膜厚は30〜60ミクロンの
範囲が良い。これより厚いと低分子物質の拡散透過性が
徐々に悪くなる傾向にある。これより薄いと膜強度が弱
くなる。好ましくは35〜50ミクロンである。
The nozzle draft (the ratio between the linear speed of discharging the undiluted solution from the nozzle orifice and the winding speed from the coagulation bath) during spinning is usually 1.0 to 5.0. Preferably 2.0-
3.5. If it is lower or higher than this range, the diffusion permeability of the low-molecular substance is undesirably reduced. The thickness of the dried hollow fiber membrane obtained at this time is preferably in the range of 30 to 60 microns. If it is thicker than this, the diffusion permeability of the low-molecular substance tends to gradually deteriorate. If the thickness is smaller than this, the film strength becomes weak. Preferably it is 35 to 50 microns.

【0019】凝固完了後、延伸、湿熱処理を行うが、該
湿熱処理温度は、40〜80℃、好ましくは55〜70
℃である。湿熱処理が不十分な場合、後工程における工
程通過性が損なわれ、乾燥後の寸法及び性能の保存安定
性が低下する。また湿熱処理が過剰であった場合、膜構
造に変化が生じ本発明の目的とする十分な性能が得られ
ない。湿熱処理は、通常、水洗を兼ねて水中に中空糸を
通過させるという方法により行われるが湿熱処理と水洗
は必ずしも同時に行われる必要はなく、湿熱処理下の飽
和水蒸気雰囲気中に中空糸を通過させ、湿熱処理を行っ
た後、必要な水洗を行うこともできる。また逆に水洗後
湿熱処理を行ってもよい。しかしながら、連続工程にお
いては工程簡略化という点から、湿熱処理と水洗は同時
に行うのが好ましい。
After completion of the solidification, stretching and wet heat treatment are carried out at a temperature of 40 to 80 ° C., preferably 55 to 70 ° C.
° C. If the wet heat treatment is insufficient, the processability in the subsequent process is impaired, and the storage stability of dimensions and performance after drying is reduced. If the wet heat treatment is excessive, the film structure changes, and the desired performance of the present invention cannot be obtained. The wet heat treatment is usually performed by passing the hollow fiber through water while also washing with water.However, the wet heat treatment and the water washing need not always be performed at the same time, and the hollow fiber is passed through a saturated steam atmosphere under the wet heat treatment. After performing the wet heat treatment, necessary water washing can be performed. Conversely, wet heat treatment may be performed after water washing. However, in the continuous process, it is preferable to perform the wet heat treatment and the water washing at the same time in terms of simplification of the process.

【0020】湿潤状態の膜は水混和揮発性有機溶媒に浸
漬し、膜の表面あるいは内部に存在する水を置換後、常
圧ないし減圧にて乾燥させる。この場合の有機溶媒とし
ては炭素数1〜5の低級脂肪族アルコールまたはケトン
が好ましく、例えばメタノール、エタノール、アミルア
ルコール、アセトン、メチルエチルケトン、ジエチルケ
トン等が用いられる。なかでもアセトンが特に好まし
い。乾燥は、常圧ないし減圧下で行われるが、その温
度、及び水蒸気圧は、55℃以下、好ましくは50℃以
下で、水蒸気圧は20mmHg以下、好ましくは10mmHg以
下である。このような条件下で溶媒置換及び乾燥を行う
ことにより、湿潤時の性能を維持したまま乾燥を行うこ
とが出来る。
The film in a wet state is immersed in a water-miscible volatile organic solvent to replace water present on the surface or inside of the film, and then dried at normal pressure or reduced pressure. As the organic solvent in this case, a lower aliphatic alcohol or ketone having 1 to 5 carbon atoms is preferable, and for example, methanol, ethanol, amyl alcohol, acetone, methyl ethyl ketone, diethyl ketone and the like are used. Of these, acetone is particularly preferred. The drying is performed under normal pressure or reduced pressure, and the temperature and the steam pressure are 55 ° C. or less, preferably 50 ° C. or less, and the steam pressure is 20 mmHg or less, preferably 10 mmHg or less. By performing solvent replacement and drying under such conditions, drying can be performed while maintaining wet performance.

【0021】乾燥された中空糸膜は、主に寸法及び性能
の保存安定性の向上を目的として、乾熱処理を行う。乾
熱処理温度は、40〜70℃、好ましくは55〜65℃
である。これ以上では定長熱処理時において中空糸膜が
偏平化する恐れがある。また、膜構造にも変化が生じ性
能が低下する。これ以下では充分な熱固定が出来ず、経
時的に収縮が進行し、膜の性能に変化をきたす。乾熱処
理雰囲気下の水蒸気圧は60mmHg以下である必要があ
り、これ以上ではEVA系共重合体への水分子の吸着が
起こり、乾熱処理後室温雰囲気下へ放出した際に、この
水分子の脱離にともなって膜構造に変化が生じ性能が低
下する。乾熱処理後、EVA系共重合体中空糸膜は一定
長に切断後一定本数を束ねて中空糸束に成形される。
The dried hollow fiber membrane is subjected to dry heat treatment mainly for the purpose of improving the storage stability of dimensions and performance. Dry heat treatment temperature is 40-70 ° C, preferably 55-65 ° C
It is. Above this, the hollow fiber membrane may be flattened during the constant-length heat treatment. Further, a change occurs in the film structure, and the performance is reduced. Below this, sufficient heat fixation is not possible, and shrinkage proceeds with time, resulting in a change in the performance of the film. The water vapor pressure in the dry heat treatment atmosphere must be 60 mmHg or less. Above this, water molecules are adsorbed on the EVA copolymer, and when released into a room temperature atmosphere after the dry heat treatment, the water molecules are desorbed. The film structure changes with the separation, and the performance is reduced. After the dry heat treatment, the EVA copolymer hollow fiber membrane is cut into a certain length, and then bundled into a certain number to form a hollow fiber bundle.

【0022】かくして得られた中空糸膜は乾燥状態にお
ける寸法安定性に優れ、中空糸束の状態においても経時
変化が起こらないため保存に有利である。また、乾燥さ
せているため輸送等にも便利である。乾燥中空糸膜は使
用前に水または生理食塩水で再湿潤させることにより乾
燥前の性能を再現することができる。
The hollow fiber membrane thus obtained has excellent dimensional stability in a dry state, and does not change with time even in the state of a hollow fiber bundle, which is advantageous for storage. Moreover, since it is dried, it is convenient for transportation and the like. The performance before drying can be reproduced by re-wetting the dried hollow fiber membrane with water or saline before use.

【0023】[0023]

【作用】本発明の血液透析用中空糸膜が透水性と低分子
物質の拡散透過性に優れ、さらにアルブミン領域におけ
る高い阻止率を有する理由は明かでないが、円環状ノズ
ルの内部から酸、塩基およびそれらの塩化合物の水溶液
を注入すると、塩析効果によりEVA系共重合体が速く
凝固するため、中空糸膜の内面にしっかりとした緻密層
が形成され、また2価の陽イオンではEVA系共重合体
の水酸基へのキレート効果によっても凝固が促進され
て、さらに強固な緻密層が形成されるものと推測され
る。
It is not clear why the hollow fiber membrane for hemodialysis of the present invention has excellent water permeability and diffusion permeability of low molecular weight substances, and also has a high rejection in the albumin region. When an aqueous solution of such a salt compound is injected, the EVA-based copolymer solidifies quickly due to a salting-out effect, so that a firm and dense layer is formed on the inner surface of the hollow fiber membrane. It is presumed that coagulation is promoted by the chelating effect of the copolymer on the hydroxyl groups, and that a stronger dense layer is formed.

【0024】[0024]

【実施例】【Example】

実施例1 エチレン含量33モル%、重合度1300、ケン化度9
9.9モル%のEVA系共重合体をDMSOに17重量
%に溶解し、紡糸原液とした。二重環ノズルを用い、内
部注入液としてCaCl2 、20重量%水溶液を20℃
で注入しつつ、ノズルドラフト2.5で、20℃、10
重量%のDMSOを含む水中へ原液を押しだし、凝固さ
せ、湿熱延伸、乾燥、乾熱処理を行い、乾燥中空糸膜を
得た。図1にこの膜の断面構造を示す電子顕微鏡写真
(2000倍)を示す。この膜は緻密層の厚さ0.3
μ、空孔率62%、0.01μ以下の細孔の占める体積
の比率5%および膜厚45μであった。またこの中空糸
を中空糸束として有効面積1m2のモジュールに組み立
て、ダイアライザー性能評価基準に従い水系の透水性、
尿素クリアランス、及びアルブミン阻止率、ならびにヘ
マトクリット値30%、総プロテイン6g/dlの牛血液を
用い、水系の操作手順に準じて透水性、尿素クリアラン
スおよびアルブミン阻止率を測定した。また尿素の総括
物質移動係数(K)は尿素クリアランスのデータを基に
下記式より求めた。その結果を表1に示す。
Example 1 Ethylene content 33 mol%, degree of polymerization 1300, degree of saponification 9
9.9 mol% of the EVA copolymer was dissolved in DMSO at 17% by weight to prepare a spinning dope. Using a double ring nozzle, a 20% by weight aqueous solution of CaCl 2 as an internal injection solution at 20 ° C.
At 20 ° C., 10 with nozzle draft 2.5
The undiluted solution was extruded into water containing DMSO by weight, solidified, subjected to wet heat stretching, drying and dry heat treatment to obtain a dry hollow fiber membrane. FIG. 1 shows an electron micrograph (2000 times) showing the cross-sectional structure of this film. This film has a dense layer thickness of 0.3
μ, the porosity was 62%, the ratio of the volume occupied by pores of 0.01 μ or less was 5%, and the film thickness was 45 μ. In addition, this hollow fiber is assembled as a hollow fiber bundle into a module with an effective area of 1 m 2 , and water-based water permeability according to the dialyzer performance evaluation standard.
Urea clearance, albumin rejection, and water permeability, urea clearance and albumin rejection were measured using bovine blood with a hematocrit value of 30% and total protein of 6 g / dl in accordance with the operation procedure of an aqueous system. The overall mass transfer coefficient (K) of urea was determined from the following formula based on the urea clearance data. Table 1 shows the results.

【0025】 K=〔QB /A×(1ーZ)〕×LN(1ーEZ)/(1ーE) E=CL /QB Z=QB /QDB :血液側入口の流量 (ml/min) QD :透析液側入口の流量 (ml/min) A :膜面積(cm2 ) CL:尿素クリアランス(ml/min)K = [Q B / A × (1−Z)] × LN (1−EZ) / (1−E) E = C L / Q B Z = Q B / Q D Q B : blood side inlet Flow rate (ml / min) Q D : flow rate at the dialysate side inlet (ml / min) A: membrane area (cm 2 ) CL: urea clearance (ml / min)

【0026】実施例2 エチレン含量33モル%、重合度1300、ケン化度9
9.9モル%のEVA系共重合体をDMSOに17重量
%に溶解し、紡糸原液とした。二重環ノズルを用い、内
部注入液としてNaCl、20重量%水溶液を20℃で
注入しつつ、ノズルドラフト2.5で、20℃、10重
量%のDMSOを含む水中へ原液を押しだし、凝固さ
せ、以下実施例1と同様な処理を行って乾燥中空糸膜を
得た。膜は緻密層の厚さ0.2μ、空孔率60%、0.
01ミクロン以下の細孔の占める体積の比率7%および
膜厚46μであった。この中空糸膜の性能を表1に示
す。
Example 2 Ethylene content 33 mol%, degree of polymerization 1300, degree of saponification 9
9.9 mol% of the EVA copolymer was dissolved in DMSO at 17% by weight to prepare a spinning dope. Using a double ring nozzle, while injecting a 20 wt% aqueous solution of NaCl as an internal injecting solution at 20 ° C, the stock solution was extruded into water containing 20 wt% and 10 wt% DMSO by nozzle draft 2.5 to coagulate. Thereafter, the same treatment as in Example 1 was performed to obtain a dry hollow fiber membrane. The film had a dense layer thickness of 0.2 μm, a porosity of 60%,
The ratio of the volume occupied by pores of 01 μm or less was 7%, and the film thickness was 46 μm. Table 1 shows the performance of the hollow fiber membrane.

【0027】実施例3 エチレン含量25モル%、重合度1400、ケン化度9
9.9モル%のEVA系共重合体をDMSOに15重量
%に溶解し、紡糸原液とした。二重環ノズルを用い、内
部注入液としてCaCl2 10重量%水溶液を30℃で
注入しつつ、ノズルドラフト3.2で、15℃、7重量
%DMSOを含む水中へ原液を押しだし、凝固させ、以
下実施例1と同様な処理を行って乾燥中空糸膜を得た。
膜は緻密層の厚さ0.05μ、空孔率68%、0.01
ミクロン以下の細孔の占める体積の比率3%および膜厚
42μであった。この中空糸膜の性能を表1に示す。
Example 3 Ethylene content 25 mol%, degree of polymerization 1400, degree of saponification 9
9.9 mol% of the EVA copolymer was dissolved in DMSO at 15% by weight to prepare a spinning dope. Using a double ring nozzle, while injecting a 10% by weight aqueous solution of CaCl 2 as an internal injection solution at 30 ° C., the stock solution was extruded into water containing 7% by weight of DMSO at 15 ° C. with a nozzle draft 3.2 to coagulate. Thereafter, the same treatment as in Example 1 was performed to obtain a dry hollow fiber membrane.
The film has a dense layer thickness of 0.05μ, porosity of 68%, 0.01
The ratio of the volume occupied by the submicron pores was 3%, and the film thickness was 42 μm. Table 1 shows the performance of the hollow fiber membrane.

【0028】実施例4 エチレン含量33モル%、重合度1300、ケン化度9
9.9モル%のEVA系共重合体をDMSOに17重量
%に溶解し、紡糸原液とした。二重環ノズルを用い、内
部注入液としてH2 SO4 、20重量%水溶液を20℃
で注入しつつ、ノズルドラフト2.5で、20℃、10
量%のDMSOを含む水中へ原液を押しだし、凝固さ
せ、以下実施例1と同様な処理を行って乾燥中空糸膜を
得た。膜は緻密層の厚さ0.1μ、空孔率63%、0.
01ミクロン以下の細孔の占める体積の比率4%および
膜厚44μであった。この中空糸膜の性能を表1に示
す。
Example 4 Ethylene content 33 mol%, degree of polymerization 1300, degree of saponification 9
9.9 mol% of the EVA copolymer was dissolved in DMSO at 17% by weight to prepare a spinning dope. Using a double-ring nozzle, H 2 SO 4 , 20% by weight aqueous solution was used as an internal injection solution at 20 ° C.
At 20 ° C., 10 with nozzle draft 2.5
The undiluted solution was extruded into water containing DMSO in an amount of 100% to coagulate, and the same treatment as in Example 1 was performed to obtain a dry hollow fiber membrane. The film has a dense layer thickness of 0.1 μm, a porosity of 63%, and a thickness of 0.1 μm.
The ratio of the volume occupied by pores of 01 μm or less was 4%, and the film thickness was 44 μm. Table 1 shows the performance of the hollow fiber membrane.

【0029】実施例5 エチレン含量33モル%、重合度1300、ケン化度9
9.9モル%のEVA系共重合体をDMSOに17重量
%に溶解し、紡糸原液とした。二重環ノズルを用い、内
部注入液としてNaOH、20重量%水溶液を20℃で
注入しつつ、ノズルドラフト2.5で、20℃、10量
%のDMSOを含む水中へ原液を押しだし、凝固させ、
以下実施例1と同様な処理を行って乾燥中空糸膜を得
た。膜は緻密層の厚さ0.2μ、空孔率60%、0.0
1ミクロン以下の細孔の占める体積の比率5%および膜
厚40μであった。この中空糸膜の性能を表1に示す。
Example 5 Ethylene content 33 mol%, polymerization degree 1300, saponification degree 9
9.9 mol% of the EVA copolymer was dissolved in DMSO at 17% by weight to prepare a spinning dope. Using a double-ring nozzle, an undiluted solution was extruded into water containing 20% by weight and 10% by weight DMSO by a nozzle draft 2.5 while injecting a 20% by weight aqueous solution of NaOH as an internal injection solution at 20 ° C., and solidified. ,
Thereafter, the same treatment as in Example 1 was performed to obtain a dry hollow fiber membrane. The film has a dense layer thickness of 0.2μ, porosity of 60%, 0.0
The ratio of the volume occupied by pores of 1 micron or less was 5% and the film thickness was 40 μm. Table 1 shows the performance of the hollow fiber membrane.

【0030】実施例6 エチレン含量33モル%、重合度1300、ケン化度9
9.9モル%のEVA系共重合体をDMSOに17重量
%に溶解し、紡糸原液とした。二重環ノズルを用い、内
部注入液としてCaCl2 、7重量%水溶液を20℃で
注入しつつ、ノズルドラフト2.5で、20℃、10量
%のDMSOを含む水中へ原液を押しだし、凝固させ、
以下実施例1と同様な処理を行って乾燥中空糸膜を得
た。膜は緻密層の厚さ0.04μ、空孔率64%、0.
01ミクロン以下の細孔の占める体積の比率6%および
膜厚42μであった。この中空糸膜の性能を表1に示
す。
Example 6 Ethylene content 33 mol%, degree of polymerization 1300, degree of saponification 9
9.9 mol% of the EVA copolymer was dissolved in DMSO at 17% by weight to prepare a spinning dope. Using a double ring nozzle, while injecting CaCl 2 , 7% by weight aqueous solution as an internal injection solution at 20 ° C., the stock solution was pushed out into water containing 20% at 10% DMSO by nozzle draft 2.5, and solidified. Let
Thereafter, the same treatment as in Example 1 was performed to obtain a dry hollow fiber membrane. The film had a dense layer thickness of 0.04 μm, a porosity of 64%,
The ratio of the volume occupied by the pores of 01 μm or less was 6%, and the film thickness was 42 μm. Table 1 shows the performance of the hollow fiber membrane.

【0031】実施例7 エチレン含量33モル%、重合度1300、ケン化度9
9.9モル%のEVA系共重合体をDMSOに17重量
%に溶解し、紡糸原液とした。二重環ノズルを用い、内
部注入液としてCaCl2 、10重量%、NaNO3
10重量%の混合水溶液を20℃で注入しつつ、ノズル
ドラフト2.5で、20℃、10量%のDMSOを含む
水中へ原液を押しだし、凝固させ、以下実施例1と同様
な処理を行って乾燥中空糸膜を得た。膜は緻密層の厚さ
0.2μ、空孔率61%、0.01ミクロン以下の細孔
の占める体積の比率5%および膜厚42μであった。こ
の中空糸膜の性能を表1に示す。
Example 7 Ethylene content 33 mol%, degree of polymerization 1300, degree of saponification 9
9.9 mol% of the EVA copolymer was dissolved in DMSO at 17% by weight to prepare a spinning dope. Using a double ring nozzle, CaCl 2 , 10% by weight, NaNO 3 ,
While injecting a 10% by weight mixed aqueous solution at 20 ° C., the undiluted solution is extruded into water containing 10% by weight DMSO at 20 ° C. with a nozzle draft 2.5 to coagulate, and the same treatment as in Example 1 is performed. Thus, a dried hollow fiber membrane was obtained. The film had a dense layer thickness of 0.2 μm, a porosity of 61%, a volume ratio of pores of 0.01 μm or less of 5%, and a film thickness of 42 μm. Table 1 shows the performance of the hollow fiber membrane.

【0032】比較例1 エチレン含量33モル%、重合度1300、ケン化度9
9.9モル%のEVA系共重合体をDMSOに17重量
%に溶解し、紡糸原液とした。二重環ノズルを用い、内
部注入液として水を20℃で注入しつつ、ノズルドラフ
ト2.5で、20℃、10重量%のDMSOを含む水中
へ原液を押しだし、凝固させ、以下実施例1と同様な処
理を行って乾燥中空糸膜を得た。膜は緻密層の厚さ0.
01μ、空孔率68%、0.01ミクロン以下の細孔の
占める体積の比率4%および膜厚43μであった。この
中空糸膜の性能を表1に示す。
Comparative Example 1 Ethylene content 33 mol%, degree of polymerization 1300, degree of saponification 9
9.9 mol% of the EVA copolymer was dissolved in DMSO at 17% by weight to prepare a spinning dope. Using a double ring nozzle, while injecting water as an internal injection liquid at 20 ° C., the undiluted solution was extruded into water containing 10% by weight of DMSO at 20 ° C. with a nozzle draft 2.5 to coagulate. A dry hollow fiber membrane was obtained by performing the same treatment as described above. The film has a dense layer thickness of 0.
The porosity was 68 μm, the volume ratio occupied by pores of 0.01 μm or less was 4%, and the film thickness was 43 μm. Table 1 shows the performance of the hollow fiber membrane.

【0033】比較例2 エチレン含量33モル%、重合度1300、ケン化度9
9.9モル%のEVA系共重合体をDMSOに17重量
%に溶解し、紡糸原液とした。二重環ノズルを用い、内
部注入液としてCaCl2 、3重量%水溶液を20℃で
注入しつつ、ノズルドラフト2.5で、20℃、10重
量%のDMSOを含む水中へ原液を押しだし、凝固さ
せ、以下実施例1と同様な処理を行って乾燥中空糸膜を
得た。膜は緻密層の厚さ0.02μ、空孔率67%、
0.01ミクロン以下の細孔の占める体積の比率4%お
よび膜厚42μであった。この中空糸膜の性能を表1に
示す。
Comparative Example 2 Ethylene content 33 mol%, degree of polymerization 1300, degree of saponification 9
9.9 mol% of the EVA copolymer was dissolved in DMSO at 17% by weight to prepare a spinning dope. Using a double-ring nozzle, while injecting CaCl 2 and a 3% by weight aqueous solution as an internal injection solution at 20 ° C., the stock solution was extruded into water containing 20% by weight and 10% by weight DMSO with a nozzle draft 2.5, and solidified. Then, the same treatment as in Example 1 was performed to obtain a dried hollow fiber membrane. The film has a dense layer thickness of 0.02μ, porosity of 67%,
The ratio of the volume occupied by pores of 0.01 μm or less was 4%, and the film thickness was 42 μm. Table 1 shows the performance of the hollow fiber membrane.

【0034】比較例3 エチレン含量33モル%、重合度1300、ケン化度9
9.9モル%のEVA系共重合体をDMSOに17重量
%に溶解し、紡糸原液とした。二重環ノズルを用い、窒
素ガスを20℃で注入しつつ、ノズルドラフト2.0
で、10℃、6重量%のDMSOを含む水中へ原液を押
しだし、凝固させ、以下実施例1と同様な処理を行って
乾燥中空糸膜を得た。膜は緻密層の厚さ0μ、空孔率4
3%、0.01ミクロン以下の細孔の占める体積の比率
5%および膜厚34μであった。この中空糸膜の性能を
表1に示す。
Comparative Example 3 Ethylene content 33 mol%, degree of polymerization 1300, degree of saponification 9
9.9 mol% of the EVA copolymer was dissolved in DMSO at 17% by weight to prepare a spinning dope. Using a double ring nozzle, while injecting nitrogen gas at 20 ° C., the nozzle draft 2.0
The undiluted solution was extruded into water containing 6% by weight of DMSO at 10 ° C. and coagulated, and the same treatment as in Example 1 was performed to obtain a dry hollow fiber membrane. The film has a dense layer thickness of 0μ and a porosity of 4
3%, 5% of the volume occupied by pores of 0.01 μm or less, and 34 μm in film thickness. Table 1 shows the performance of the hollow fiber membrane.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【発明の効果】本発明の人工腎臓用血液透析膜は二重環
ノズルの内部に注入する溶液に酸、塩基およびそれらの
塩化合物の水溶液を使用することにより強固な緻密層が
形成されて、透水性と低分子物質の拡散透過性も高く、
しかもアルブミン領域における高い阻止率を有するため
高性能の人工腎臓用血液透析膜が提供できる。
According to the hemodialysis membrane for artificial kidney of the present invention, a strong dense layer is formed by using an aqueous solution of an acid, a base and a salt compound thereof in a solution to be injected into a double-ring nozzle. High water permeability and diffusion permeability of low molecular substances,
In addition, since it has a high rejection rate in the albumin region, a high-performance hemodialysis membrane for artificial kidney can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の人工腎臓用血液透析膜の断面構造を示
す2000倍の電子顕微鏡写真である。
FIG. 1 is an electron micrograph (× 2000) showing a cross-sectional structure of a hemodialysis membrane for an artificial kidney of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−164428(JP,A) 特開 昭62−163705(JP,A) 特開 昭63−17686(JP,A) (58)調査した分野(Int.Cl.7,DB名) A61M 1/18 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-164428 (JP, A) JP-A-62-163705 (JP, A) JP-A-63-17686 (JP, A) (58) Field (Int.Cl. 7 , DB name) A61M 1/18

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 エチレン−ビニルアルコール系共重合体
から構成される中空糸膜の内表面に30Å以下の微細孔
を持つ薄い緻密層、該中空糸膜の内部および外表面に
0.01μ以下の細孔の占める体積が10%以下、空孔
率が40%以上である微細多孔層を有し、かつ牛血系に
おける透水率が15ml/mmHg/Hr/m2以上、
尿素の総括物質移動係数が0.03cm/min以上、
アルブミンの阻止率が95%以上である血液透析用中空
糸膜。
1. An inner surface of a hollow fiber membrane composed of an ethylene-vinyl alcohol-based copolymer having a fine pore of 30 ° or less.
A thin dense layer having a microporous layer having a volume occupied by pores of 0.01 μ or less of 10% or less and a porosity of 40% or more on the inner and outer surfaces of the hollow fiber membrane; Water permeability in the system is not less than 15 ml / mmHg / Hr / m 2 ,
The overall mass transfer coefficient of urea is 0.03 cm / min or more,
A hollow fiber membrane for hemodialysis having an albumin rejection of 95% or more.
【請求項2】 重合度800以上、ケン化度95モル%
以上、エチレン含量10〜60モル%のエチレン−ビニ
ルアルコール系共重合体を溶媒に溶解し、円環状ノズル
の内部からハロゲン化塩化合物を5重量%以上含有する
水溶液を注入しつつ、水を一成分とする凝固液中で凝固
させることを特徴とする血液透析用中空糸膜の製造方
法。
2. A polymerization degree of 800 or more and a saponification degree of 95 mol%.
As described above, an ethylene-vinyl alcohol copolymer having an ethylene content of 10 to 60 mol% is dissolved in a solvent, and while an aqueous solution containing 5% by weight or more of a halide salt compound is injected from the inside of the annular nozzle, water is removed. A method for producing a hollow fiber membrane for hemodialysis, comprising coagulating in a coagulating solution as a component.
JP3224976A 1991-08-09 1991-08-09 Hollow fiber membrane for hemodialysis and method for producing the same Expired - Fee Related JP3032618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3224976A JP3032618B2 (en) 1991-08-09 1991-08-09 Hollow fiber membrane for hemodialysis and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3224976A JP3032618B2 (en) 1991-08-09 1991-08-09 Hollow fiber membrane for hemodialysis and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0542208A JPH0542208A (en) 1993-02-23
JP3032618B2 true JP3032618B2 (en) 2000-04-17

Family

ID=16822156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3224976A Expired - Fee Related JP3032618B2 (en) 1991-08-09 1991-08-09 Hollow fiber membrane for hemodialysis and method for producing the same

Country Status (1)

Country Link
JP (1) JP3032618B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514409B2 (en) 2000-02-04 2003-02-04 Kuraray Co., Ltd. Hollow fiber membrane made of an ethylene-vinyl alcohol polymer

Also Published As

Publication number Publication date
JPH0542208A (en) 1993-02-23

Similar Documents

Publication Publication Date Title
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
US4220543A (en) Ethylene-vinyl alcohol membranes having improved properties and a method of producing the same
JPH06165926A (en) Polysulfone hollow fabric membrane and production therefor
US4385094A (en) Ethylene-vinyl alcohol hollow fiber membrane and method for the production thereof
US4362677A (en) Method of producing ethylene-vinyl alcohol copolymer hollow fiber membranes
JPH0451209B2 (en)
KR100557264B1 (en) Hollow fiber membrane and process for producing the same
US4957942A (en) Semipermeable membrane and process for preparing same
JP3032618B2 (en) Hollow fiber membrane for hemodialysis and method for producing the same
JP2003010654A (en) Method for producing hollow yarn membrane
JPS5836602B2 (en) Ethylene-vinyl alcohol copolymer membrane and its manufacturing method
JPH0929078A (en) Production of hollow yarn membrane
JPS62102801A (en) Selective permeable hollow composite fiber
JP2688564B2 (en) Cellulose acetate hollow fiber separation membrane
JPH0364176B2 (en)
JP2882658B2 (en) Method for producing polysulfone-based semipermeable membrane
JP4672128B2 (en) Hollow fiber membrane and method for producing the same
JP4722297B2 (en) Ethylene-vinyl alcohol polymer hollow fiber membrane
JP3203047B2 (en) Method for producing ethylene vinyl alcohol copolymer hollow fiber membrane
JP2926082B2 (en) Hydrophilic membrane
JP4794716B2 (en) Hollow fiber membrane and method for producing the same
JP4659166B2 (en) Film-forming stock solution and method for producing ethylene-vinyl alcohol polymer film
JP2001259387A (en) Hollow fiber membrane manufacturing method
JP2001038169A (en) Blood plasma component separation membrane
JPS6325806B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees