JPS6215751B2 - - Google Patents

Info

Publication number
JPS6215751B2
JPS6215751B2 JP59096690A JP9669084A JPS6215751B2 JP S6215751 B2 JPS6215751 B2 JP S6215751B2 JP 59096690 A JP59096690 A JP 59096690A JP 9669084 A JP9669084 A JP 9669084A JP S6215751 B2 JPS6215751 B2 JP S6215751B2
Authority
JP
Japan
Prior art keywords
combustion engine
internal combustion
ion current
fuel
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59096690A
Other languages
Japanese (ja)
Other versions
JPS6040751A (en
Inventor
Bianki Uarerio
Burukeru Raineru
Guretsukureru Otsutoo
Ratsuchu Rainharuto
Rinderu Erunsuto
Marutein Myureru Hansu
Tsuetsuhinaru Marutein
Remupuke Manfureeto
Tsuereru Hansu
Uaaru Yoozefu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JPS6040751A publication Critical patent/JPS6040751A/en
Publication of JPS6215751B2 publication Critical patent/JPS6215751B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/021Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using an ionic current sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Testing Of Engines (AREA)

Description

【発明の詳細な説明】 本発明は、内燃機関の動作パラメータの変化に
依存して変化する内燃機関の燃料−空気−混合比
または排気ガス帰還率を制御する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the fuel-air mixture ratio or the exhaust gas feedback rate of an internal combustion engine, which varies depending on changes in the operating parameters of the internal combustion engine.

厳しい排気ガスの規制および一般的な燃料不足
のため内燃機関を、その排気ガスの有害成分を最
小にしおよび/または燃料消費が最小となる動作
範囲で、動作させる方法が探求されている。
Due to stringent exhaust gas regulations and general fuel shortages, methods are being sought to operate an internal combustion engine in an operating range that minimizes harmful components of its exhaust gases and/or minimizes fuel consumption.

この種の要求を満たすため先ず第1に、内燃機
関を出来るだけ希薄な燃料−空気混合比で動作さ
せる方法即ち所謂内燃機関の希薄走行限界で動作
させることが提案されている。この動作領域にお
いては、排気ガスの有害成分はかなり減少し燃料
消費の低減も期待できる。この場合希薄走行限界
を識別する値としては、先ず内燃機関のシリンダ
内部の圧力の変動分を用いる。
In order to meet this type of requirement, it has first been proposed to operate the internal combustion engine with a fuel-air mixture ratio as lean as possible, that is to say to operate the internal combustion engine at the so-called lean running limit. In this operating range, the harmful components of the exhaust gas are considerably reduced, and a reduction in fuel consumption can also be expected. In this case, first, the variation in pressure inside the cylinder of the internal combustion engine is used as the value for identifying the lean running limit.

しかし上述の問題をさらに詳しく考察すると、
圧力特性は、内燃機関の制御できない動作パラメ
ータ例えば空気過剰率、充填量、乱流、の変化に
より決定されることが明らかとなつている。燃焼
室の圧力をクランク軸における角速度の瞬時値を
介して測定すると、上記以外の変動分例えばクラ
ンク機構の振動物体、自動車の走行路の凹凸、内
燃機関本体へ加わる何らかの力、による妨害要素
が発生している。内燃機関のシリンダ内の通常の
圧力特性に重畳されてクランク軸の角速度の変動
として表われる上述の変動は、低域濾波器により
回避することができる。しかしこの種の濾波器の
使用は大いに問題がある。何故ならば内燃機関は
広い回転数範囲にわたつて駆動させなければなら
ないからである。それ故、回転数(周波数)の小
さな場合と大きい場合とに適する濾波器を製作す
ることは困難である。
However, if we consider the above issues in more detail,
It has become clear that the pressure characteristics are determined by changes in the uncontrollable operating parameters of the internal combustion engine, such as air excess, charge, turbulence, etc. When the pressure in the combustion chamber is measured via the instantaneous value of the angular velocity at the crankshaft, interference factors occur due to fluctuations other than those mentioned above, such as vibrating objects in the crank mechanism, irregularities in the road of the car, or some force applied to the internal combustion engine itself. are doing. The above-mentioned fluctuations, which are superimposed on the normal pressure characteristics in the cylinders of the internal combustion engine and manifest themselves as fluctuations in the angular velocity of the crankshaft, can be avoided by means of a low-pass filter. However, the use of this type of filter is highly problematic. This is because the internal combustion engine must be operated over a wide rotational speed range. Therefore, it is difficult to manufacture a filter suitable for both small and large rotational speeds (frequencies).

上述の問題点から出発して本発明の目的は、前
述の欠点を有する内燃機関のシリンダ内部の圧力
の変動分を利用する方法を回避した、別種の新規
な制御法を提案することである。
Starting from the above-mentioned problems, the object of the present invention is to propose a new control method of a different kind, which avoids the method of exploiting pressure fluctuations inside the cylinders of an internal combustion engine, which has the above-mentioned disadvantages.

本発明においては前記制御のため内燃機関の燃
焼室における、イオン電流から求めた炎前面の走
行時間の変化すなわち走行時間値の差を利用す
る。この変化が燃料−空気−混合比に依存するこ
とは知られている。
In the present invention, for the control, a change in the travel time of the flame front determined from the ion current in the combustion chamber of the internal combustion engine, that is, a difference in travel time values is utilized. It is known that this variation depends on the fuel-air mixture ratio.

本発明の課題は前記の依存性を利用して、内燃
機関の燃料−空気−混合比を希薄走行限界の値
へ、即ち希薄ではあるがまだ点火可能な混合比が
形成されるように制御することである。これによ
り前述の燃焼室の圧力を利用する方法の欠点が回
避される。この課題は本発明により次のようにし
て解決されている、即ち内燃機関の燃焼室におけ
るそれぞれ前後する2つの炎前面の走行時間値の
間の変化を内燃機関の動作の実際値として用いる
ようにし、この実際値を所定値と比較して制御す
べき偏差を求め、この制御偏差に依存して内燃機
関の燃料−空気−混合比または排気ガス帰還率を
所望のように制御するのである。
The object of the invention is to take advantage of the above-mentioned dependencies and to control the fuel-air mixture ratio of the internal combustion engine to the value of the lean running limit, i.e. in such a way that a lean but still ignitable mixture ratio is created. That's true. This avoids the drawbacks of the method using the combustion chamber pressure described above. This problem is solved according to the invention in the following way: the change between the travel time values of two successive flame fronts in the combustion chamber of the internal combustion engine is used as the actual value of the operation of the internal combustion engine. , this actual value is compared with a predetermined value to determine a deviation to be controlled, and depending on this control deviation, the fuel-air mixture ratio or the exhaust gas feedback ratio of the internal combustion engine is controlled in the desired manner.

本発明の実施例において、前述の制御を簡単に
確実に行なえる、上述の方法を実施する装置が示
されている。この場合の第1の目的は、この制御
装置が自動車の乱暴な運転の場合でも確実に動作
すること、および必要とあれあば自動車に既に取
付けられている測定値発信器と共働できるように
構成することである。さらにこの装置は、低廉な
コストで製造できるものでなければならない。
In an embodiment of the invention, a device is shown for implementing the method described above, which allows the aforementioned control to be carried out simply and reliably. The first objective in this case is to ensure that this control device operates reliably even in the case of rough driving of the vehicle and, if necessary, to be able to cooperate with the measured value transmitter already installed in the vehicle. It is to compose. Furthermore, the device must be inexpensive to manufacture.

次に本発明による方法を図面を用いて詳述す
る。この方法により、内燃機関が少くとも一部
は、希薄走行限界の動作範囲で運転されるべきも
のである。この場合所謂希薄走行限界とは、最初
に燃焼の遅れの現われる動作範囲のことである。
燃焼の遅れは、空気過剰率がλ=1よりも5〜10
%多くなると即ち明らかに希薄混合気とした場合
に始めて現われる。このような所定の走行限界領
域においてはその燃料消費量は、一般に、化学量
論的理論混合比を有する燃料−空気混合気(空気
過剰率λ=1)の供給された内燃機関の動作領域
における燃料消費量よりも、明らかに少なくな
る。
Next, the method according to the present invention will be explained in detail using the drawings. With this method, the internal combustion engine is to be operated at least partially in the operating range of the lean running limit. In this case, the so-called lean running limit is the operating range in which the combustion delay first appears.
The combustion delay is 5 to 10 times higher than when the excess air ratio is λ=1.
%, that is, when the mixture is clearly lean. In such a given driving limit range, the fuel consumption is generally equal to that in the operating range of the internal combustion engine supplied with a fuel-air mixture having a stoichiometric stoichiometric ratio (air excess ratio λ=1). It is clearly less than the fuel consumption.

内燃機関の燃焼室に2つの電極を取付けた場
合、炎が両電極に到達している燃焼過程の間は、
この両電極間にイオン電流が流れる。このイオン
電流が内燃機関の動作している動作領域を識別す
るために用いられる。この場合イオン電流は、内
燃機関に供給される燃料−空気混合気の空気過剰
率λに依存している。第1図のグラフには時間t
に対するイオン電流の経過が示されている。この
図において、第1曲線は第1シリンダに、第2曲
線は第2シリンダに、第3曲線は第3シリンダ
に、第4曲線は第4シリンダに所属するものであ
る。これたのイオン電流をその都度所定時間領域
で積分すれば、あるいは一層目的に適するように
は内燃機関のピストンの1サイクルでその都度積
分すれば、空気過剰率λと共に変化する電気信号
を発生することができる。
When two electrodes are installed in the combustion chamber of an internal combustion engine, during the combustion process when the flame reaches both electrodes,
An ionic current flows between these two electrodes. This ion current is used to identify the operating region in which the internal combustion engine is operating. In this case, the ion current is dependent on the excess air ratio λ of the fuel-air mixture supplied to the internal combustion engine. The graph in Figure 1 shows the time t
The course of the ionic current for In this figure, the first curve belongs to the first cylinder, the second curve belongs to the second cylinder, the third curve belongs to the third cylinder, and the fourth curve belongs to the fourth cylinder. If these ionic currents are integrated in each case over a given time range, or, more suitable for the purpose, over one cycle of the piston of an internal combustion engine, an electrical signal is generated which varies with the excess air ratio λ. be able to.

イオン電流は例えば、第2図に示すイオン電流
ゾンデ10により検出することができる。この場
合イオン電流ゾンデは内燃機関のシリンダヘツド
11の内部に配置される。ここには点火プラグ1
2も取付けられている。この場合イオン電流ゾン
デ10は、両電極間を燃焼過程の間流れるイオン
電流を検出する時は、特別の構成素子とする必要
はなく、例えば点火プラグ12そのものもイオン
電流ゾンデとして用いることができる。
The ion current can be detected by, for example, an ion current probe 10 shown in FIG. In this case, the ion current sensor is arranged inside the cylinder head 11 of the internal combustion engine. Here is spark plug 1
2 is also installed. In this case, the ion current probe 10 does not need to be a special component when detecting the ion current flowing between the two electrodes during the combustion process; for example, the spark plug 12 itself can also be used as an ion current probe.

第2図に示されている、内燃機関のシリンダヘ
ツド11におけるイオン電流ゾンデ10と点火プ
ラグ12とを有する装置は、点火プラグ12から
出発して所定時間後イオン電流ゾンデ10へ達す
る炎前面の走行時間の検出に用いられる。第3図
には、点火プラグ12における点火時点の度数分
布と、イオン電流ゾンデ10における炎前面の到
達時間の度数分布とが、時間軸t上に示されてい
る。この場合13で表わした点火トリガの度数分
布の中心と14で表わしたイオン電流ゾンデへの
到達時間の度数分布の中心との間の時間は、炎前
面の平均走行時間TLに等しい。炎前面の走行時
間TLの絶対値も同じく空気過剰率λと共に変化
する。
The device shown in FIG. 2 with an ionic current probe 10 and a spark plug 12 in a cylinder head 11 of an internal combustion engine is characterized in that a flame front starts from the spark plug 12 and reaches the ionic current probe 10 after a predetermined time. Used to detect time. In FIG. 3, the frequency distribution of the ignition point in the spark plug 12 and the frequency distribution of the arrival time of the flame front in the ionic current sonde 10 are shown on the time axis t. In this case, the time between the center of the frequency distribution of the ignition trigger, denoted 13, and the center of the frequency distribution of the arrival time to the ion current sonde, denoted 14, is equal to the average transit time T L of the flame front. The absolute value of the travel time T L of the flame front also changes with the excess air ratio λ.

燃料−空気−混合比が一定の場合即ちλの値が
一定の場合その都度の炎前面の走行時間値は、第
3図に示されているように、所定の平均値TL
中心として分布する。
When the fuel-air mixture ratio is constant, that is, when the value of λ is constant, the respective travel time values of the flame front are distributed around a predetermined average value T L , as shown in FIG. do.

この平均値と個々の走行時間値との偏差から、
偏差の平均値ΔTLが形成される。それぞれの平
均値TL,ΔTLはλの値に依存する。ΔTL/TL
もλに依存する。即ち走行時間値TLの変化率も
空気過剰率λと共に変化する。この関係を第4図
に示す。この図においては縦軸に、走行時間の変
化分の平均値を走行時間の平均値で割つた値をと
り横軸には空気過剰率λがとつてある。この図か
ら、走行時間値の変化率は空気過剰率λと共に増
加して行くことがわかる。
From the deviation between this average value and the individual running time values,
An average value ΔT L of the deviations is formed. The respective average values T L and ΔT L depend on the value of λ. ΔT L /T L
also depends on λ. That is, the rate of change of the running time value T L also changes with the excess air ratio λ. This relationship is shown in FIG. In this figure, the vertical axis is the value obtained by dividing the average value of the change in travel time by the average value of the travel time, and the horizontal axis is the excess air ratio λ. From this figure, it can be seen that the rate of change of the traveling time value increases with the excess air ratio λ.

第5図に示されている装置は、炎前面の走行時
間の測定に対して特に好適である。何故ならばこ
の装置を用いれば、内燃機関のシリンダヘツド内
にイオン電流ゾンデを取付ける付加孔を設けなく
てよいからである。第5図に2つの点火源極1
6,17を有する点火プラグソケツト15が示さ
れている。ソケツト15にはさらに2つの電極1
8,19が取付けられていて、イオン電流はこの
両電極間を流れる。両電極間対16,17と1
8,19との距離はわずか数ミリである。走行時
間値を測定するにはこの距離で十分である。
The device shown in FIG. 5 is particularly suitable for measuring the transit time of the flame front. This is because with this device it is not necessary to provide additional holes in the cylinder head of the internal combustion engine for mounting the ion current probe. Figure 5 shows two ignition source poles 1.
A spark plug socket 15 having 6,17 is shown. There are two more electrodes 1 in the socket 15.
8 and 19 are attached, and the ionic current flows between these two electrodes. Pairs 16, 17 and 1 between both electrodes
8 and 19 is only a few millimeters away. This distance is sufficient to measure travel time values.

第6図は本発明の方法を実施する装置の実施例
のブロツク図を示す。図において1は、内燃機関
の連続する作業サイクルにおけるイオン電流の走
行時間を検出する装置を示す。この検出装置1
は、第2図に示されているイオン電流ゾンデ10
に相応する。2は検出したイオン電流の走行時間
を電気信号に変換する装置、例えば増幅器として
構成される回路段を示す。3はイオン電流の走行
時間値の変化を表わす信号を形成する回路段であ
るサンプルホールド回路を示す。4はこの変化信
号を保持する、例えばコンデンサにより形成され
る記憶器を示す。5は、イオン電流の走行時間値
の変化を表わす実際値信号を、内燃機関の動作パ
ラメータ例えば回転数n吸気管圧力Psに依存す
る設定値と比較する比較器を示す。この設定値
は、8で示されている設定値発生器により形成さ
れる。6は設定値と実際値との偏差を積分する積
分器を示す。7は燃料−空気混合気の混合比を変
化する調整操作部材たとえば電磁弁、または排気
ガスの帰還量を制御する調整操作部材を示す。こ
のようにして、検出された偏差の値に依存して、
燃料−空気混合気の質量比または排気ガスの帰還
量が制御される。
FIG. 6 shows a block diagram of an embodiment of an apparatus for carrying out the method of the invention. In the figure, 1 designates a device for detecting the running time of an ionic current during successive working cycles of an internal combustion engine. This detection device 1
is the ionic current sonde 10 shown in FIG.
corresponds to Reference numeral 2 indicates a device for converting the transit time of the detected ion current into an electrical signal, for example a circuit stage configured as an amplifier. Reference numeral 3 denotes a sample and hold circuit, which is a circuit stage that forms a signal representing a change in the transit time value of the ion current. Reference numeral 4 indicates a memory formed by, for example, a capacitor, which holds this changing signal. 5 designates a comparator which compares the actual value signal representing the change in the transit time value of the ion current with a set value that depends on the operating parameters of the internal combustion engine, such as the rotational speed n and the intake manifold pressure Ps. This setpoint value is formed by a setpoint generator indicated at 8. 6 indicates an integrator that integrates the deviation between the set value and the actual value. Reference numeral 7 designates an adjustment operation member that changes the mixture ratio of the fuel-air mixture, such as a solenoid valve, or an adjustment operation member that controls the amount of exhaust gas returned. In this way, depending on the value of the detected deviation,
The mass ratio of the fuel-air mixture or the amount of exhaust gas recirculation is controlled.

前述のようにイオン電流の走行時間値の変化を
求めるために、それ自体公知のサンプルホールド
回路を設ける。この回路により、前後して加わる
少なくとも2つの測定値を記憶することができ
る。両測定値から差信号をその都度求めて、第5
図で説明した方法で設定値と比較することのでき
る変化を形成する。即ちサンプルホールド回路を
用いて、それぞれ相続く各2つの炎前面の走行時
間値の差を実際値として形成する。次にこの実際
値としての差を前もつて設定された規定の走行時
間差の値と比較する、即ち実際値である差が内燃
機関の所定の作動状態を特徴づける値の範囲内に
あるか否かを検出する。この比較結果から制御信
号を求めこの値に依存して、燃料−空気混合気の
質量比または排気ガスの帰還量を制御する。
In order to determine the change in the transit time value of the ion current as described above, a sample and hold circuit, which is known per se, is provided. This circuit makes it possible to store at least two measured values one after the other. The difference signal is obtained each time from both measured values, and the fifth
The method described in the figure forms a change that can be compared with the set value. In other words, a sample-and-hold circuit is used to form the difference between the transit time values of each two successive flame fronts as the actual value. This actual value difference is then compared with a predetermined value for the travel time difference, i.e. whether the actual value difference is within the range of values characterizing the given operating state of the internal combustion engine. Detect. A control signal is obtained from the comparison result, and depending on this value, the mass ratio of the fuel-air mixture or the amount of exhaust gas returned is controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は内燃機関の種々のシリンダのイオン電
流の時間変化を表わした波形図、第2図は点火プ
ラグとイオン電流ゾンデとが配置されている内燃
機関の燃焼室、第3図は点火プラグにおける点火
時点(点火角)の度数分布と、第2図の装置のイ
オン電流ゾンデへの到着時点(到着角)度数分布
Hとを時間軸上に示した図、第4図はΔTL/TL
とλとの関係を示すグラフ、第5図は点火プラグ
とイオン電流ゾンデとを一体にした装置の正面
図、第6図は本発明の方法を実施する回路装置の
ブロツク図である。 1……イオン電流ゾンデ、2……イオン電流を
電気信号に変換する回路段、3……サンプルホー
ルド回路、4……記憶器、5……比較段、6……
積分器、7……調整部材、8……動作パラメータ
発信器、10……イオン電流ゾンデ、11……シ
リンダヘツド、12……点火プラグ、15……ソ
ケツト、16,17……点火電極、18,19…
…イオン電流検出電極。
Fig. 1 is a waveform diagram showing the time change of the ionic current in various cylinders of an internal combustion engine, Fig. 2 is a combustion chamber of the internal combustion engine in which a spark plug and an ion current sonde are arranged, and Fig. 3 is a diagram showing the spark plug A diagram showing the frequency distribution of the ignition point (ignition angle) at , and the frequency distribution H of the arrival time (arrival angle) of the device in FIG. 2 to the ion current sonde on the time axis. L
FIG. 5 is a front view of a device in which a spark plug and an ion current sensor are integrated, and FIG. 6 is a block diagram of a circuit device for carrying out the method of the present invention. 1... Ion current sonde, 2... Circuit stage for converting the ion current into an electrical signal, 3... Sample hold circuit, 4... Memory device, 5... Comparison stage, 6...
Integrator, 7... Adjustment member, 8... Operating parameter transmitter, 10... Ion current probe, 11... Cylinder head, 12... Spark plug, 15... Socket, 16, 17... Ignition electrode, 18 ,19...
...Ion current detection electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 内燃機関の動作パラメータの変化に依存して
変化する内燃機関の燃料−空気−混合比または排
気ガス帰還率を制御する方法において、内燃機関
の燃焼室においてイオン電流をイオン電流ゾンデ
により検出し、該イオン電流から内燃機関の燃焼
室における炎前面の走行時間を求め、相続く各2
つの走行時間値の間の変化を実際値として設定値
と比較し、制御偏差に依存して調整素子を介して
内燃機関の燃料−空気−混合比または排気ガス帰
還率を変化することを特徴とする内燃機関の燃料
−空気−混合比または排気ガス帰還率を制御する
方法。
1. A method for controlling the fuel-air-mixing ratio or the exhaust gas feedback rate of an internal combustion engine that changes depending on changes in operating parameters of the internal combustion engine, the method comprising: detecting an ion current in a combustion chamber of the internal combustion engine with an ion current probe; The travel time of the flame front in the combustion chamber of the internal combustion engine is determined from the ion current, and each successive 2
The change between two travel time values is compared as an actual value with a set value, and the fuel-air-mixture ratio or the exhaust gas feedback ratio of the internal combustion engine is varied via a regulating element as a function of the control deviation. A method for controlling the fuel-air-mixing ratio or exhaust gas return rate of an internal combustion engine.
JP59096690A 1974-09-11 1984-05-16 Method of controlling performance characteristic of internalcombustion engine Granted JPS6040751A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19742443413 DE2443413C2 (en) 1974-09-11 1974-09-11 Method and device for regulating the operating state of an internal combustion engine
DE2443413.7 1974-09-11

Publications (2)

Publication Number Publication Date
JPS6040751A JPS6040751A (en) 1985-03-04
JPS6215751B2 true JPS6215751B2 (en) 1987-04-09

Family

ID=5925405

Family Applications (2)

Application Number Title Priority Date Filing Date
JP50109408A Expired JPS6050973B2 (en) 1974-09-11 1975-09-09 Method of controlling fuel-air-mixing ratio or exhaust gas return rate of internal combustion engine
JP59096690A Granted JPS6040751A (en) 1974-09-11 1984-05-16 Method of controlling performance characteristic of internalcombustion engine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP50109408A Expired JPS6050973B2 (en) 1974-09-11 1975-09-09 Method of controlling fuel-air-mixing ratio or exhaust gas return rate of internal combustion engine

Country Status (4)

Country Link
JP (2) JPS6050973B2 (en)
DE (1) DE2443413C2 (en)
FR (1) FR2284767A1 (en)
GB (1) GB1519005A (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2507917C2 (en) * 1975-02-24 1986-01-02 Robert Bosch Gmbh, 7000 Stuttgart Device for regulating the optimal operating behavior of an internal combustion engine
DE2642738C2 (en) * 1976-09-23 1986-08-07 Robert Bosch Gmbh, 7000 Stuttgart Method for regulating the operating behavior of an internal combustion engine in a specified operating range
DE2802202C2 (en) * 1978-01-19 1986-09-04 Robert Bosch Gmbh, 7000 Stuttgart Device for detecting pressure fluctuations in the combustion chamber of an internal combustion engine
IT1093349B (en) * 1978-03-03 1985-07-19 Alfa Romeo Spa DEVICE FOR THE PRE-IGNITION RELIEF IN AN INTERNAL COMBUSTION ENGINE
FR2432097A1 (en) * 1978-07-26 1980-02-22 Inst Francais Du Petrole METHOD AND DEVICE FOR AUTOMATICALLY ADJUSTING THE IGNITION OF A CONTROLLED IGNITION ENGINE
IT1098483B (en) * 1978-09-05 1985-09-07 Alfa Romeo Spa REFINING DEVICE FOR THE IGNITION ADVANCE OF IGNITION OF AN INTERNAL COMBUSTION ENGINE WITH IGNITION
IT1100740B (en) * 1978-12-18 1985-09-28 Alfa Romeo Spa INSTRUMENT FOR THE SELECTION OF SELF-IGNITION OF AN INTERNAL COMBUSTION ENGINE
DE2919273C2 (en) * 1979-05-12 1982-10-28 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Arrangement for inertia-free or particularly fast temperature measurement
JPS5826157B2 (en) * 1979-07-28 1983-06-01 日産自動車株式会社 Spark plug with built-in oxygen sensor element
DE2939580A1 (en) * 1979-09-29 1981-04-09 Robert Bosch Gmbh, 7000 Stuttgart METHOD FOR REGULATING THE IGNITION TIMING
DE2939690A1 (en) * 1979-09-29 1981-04-16 Robert Bosch Gmbh, 7000 Stuttgart IGNITION TIMING METHOD
DE3139000C2 (en) * 1980-10-17 1986-03-06 Michael G. Dipl.-Ing. ETH Rolle May Method and control device for adjusting the ignition point in a spark-ignition internal combustion engine
CH648638A5 (en) * 1981-09-09 1985-03-29 Inst Francais Du Petrole METHOD FOR ADJUSTING THE TIME OF CONTROL OF THE INITIATION OF COMBUSTION IN AN ENGINE.
JPS5882039A (en) * 1981-11-11 1983-05-17 Hitachi Ltd Controller for air-fuel ratio for internal-combustion engine
DE3151415C2 (en) * 1981-12-24 1986-11-20 Daimler-Benz Ag, 7000 Stuttgart Method for measuring the electrode spacing of the spark plugs of a motor vehicle and device for carrying out the method
DE3210810C2 (en) 1982-03-24 1984-11-08 Mataro Co. Ltd., Georgetown, Grand Cayman Islands Control system for influencing the composition of the charges to be burned in an externally ignited internal combustion engine
GB2131177B (en) * 1982-11-23 1986-07-30 Ford Motor Co Flame front sensor
JPS59168270A (en) * 1983-03-12 1984-09-21 Fuji Heavy Ind Ltd Ignition timing control device
DE3327766A1 (en) * 1983-08-02 1985-02-14 Atlas Fahrzeugtechnik GmbH, 5980 Werdohl KNOCK DETECTION CIRCUIT ON AN OTTO ENGINE
DE3342723C2 (en) * 1983-11-25 1986-07-03 Gunter Dipl.-Phys. Dr. 7500 Karlsruhe Hartig Ignition device for internal combustion engines
AT386256B (en) * 1984-07-02 1988-07-25 Atlas Fahrzeugtechnik Gmbh ARRANGEMENT FOR GENERATING A TRIGGER PULSE FOR THE IGNITION OF AN INTERNAL COMBUSTION ENGINE
DE3519028C2 (en) * 1985-05-25 1993-10-28 Bosch Gmbh Robert Device for detecting knocking combustion processes in an internal combustion engine
DE3736160A1 (en) * 1987-10-26 1989-05-03 Fev Motorentech Gmbh & Co Kg METHOD FOR DETECTING AND EVALUATING KNOCKING COMBUSTION
DE3821740A1 (en) * 1988-06-28 1990-01-11 Jan Thomas Dipl Ing Haas Independent cylinder control of the ignition/fuel injection in internal combustion engines
US5018498A (en) * 1989-12-04 1991-05-28 Orbital Walbro Corporation Air/fuel ratio control in an internal combustion engine
US5036669A (en) * 1989-12-26 1991-08-06 Caterpillar Inc. Apparatus and method for controlling the air/fuel ratio of an internal combustion engine
JP2922027B2 (en) * 1991-08-01 1999-07-19 株式会社日立製作所 Device for detecting combustion state of internal combustion engine
JP3150429B2 (en) * 1992-07-21 2001-03-26 ダイハツ工業株式会社 Lean limit detection method using ion current
DE19757893A1 (en) 1997-12-24 1999-07-01 Bosch Gmbh Robert Fuel / air mixture control system of an internal combustion engine
JP5753142B2 (en) 2012-09-19 2015-07-22 本田技研工業株式会社 Combustion control device for internal combustion engine and method for burning homogeneous lean mixture

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE534951C (en) 1928-10-10 1931-10-06 Warren French Stanton Automatic regulation for internal combustion engines
DE1039488B (en) * 1954-10-12 1958-09-25 Dr Med Johannes Rentsch Index card, especially for entering medical reports
DE2231109C2 (en) 1972-06-24 1974-10-03 Societe Industrielle D'electronique Et D'informatique, Paris Device for controlling fuel injection in internal combustion engines
US3815561A (en) * 1972-09-14 1974-06-11 Bendix Corp Closed loop engine control system
DE2253249A1 (en) * 1972-10-30 1974-05-02 Ehrhardt Helmut METHOD OF INFLUENCING COMBUSTION IN POWER MACHINES AND COMBUSTION SYSTEMS BY USING ELECTRIC FIELDS
US3789816A (en) 1973-03-29 1974-02-05 Bendix Corp Lean limit internal combustion engine roughness control system
DE2417187C2 (en) 1974-04-09 1982-12-23 Robert Bosch Gmbh, 7000 Stuttgart Method and device for regulating the operating behavior of an internal combustion engine

Also Published As

Publication number Publication date
JPS5154125A (en) 1976-05-13
JPS6050973B2 (en) 1985-11-11
FR2284767A1 (en) 1976-04-09
JPS6040751A (en) 1985-03-04
FR2284767B1 (en) 1979-09-14
GB1519005A (en) 1978-07-26
DE2443413C2 (en) 1983-11-17
DE2443413A1 (en) 1976-03-25

Similar Documents

Publication Publication Date Title
JPS6215751B2 (en)
US4064846A (en) Method and apparatus for controlling an internal combustion engine
US7137382B2 (en) Optimal wide open throttle air/fuel ratio control
US7134423B2 (en) Ignition diagnosis and combustion feedback control system using an ionization signal
JPH0240866B2 (en)
US4271811A (en) Feedback control of exhaust gas recirculation based on combustion condition
JPS6153460A (en) Method and device for generating trigger pulse igniting internal combustion engine
JPS599742B2 (en) Method and device for controlling the operating characteristics of an internal combustion engine
US20040088102A1 (en) Exhaust gas control using a spark plug ionization signal
US20070186902A1 (en) System and Method for Pre-Processing Ionization Signal to Include Enhanced Knock Information
USRE32301E (en) Method and apparatus for controlling the composition of the combustible mixture of an engine
Eriksson et al. Ionization current interpretation for ignition control in internal combustion engines
CN1975363B (en) Method and device for operating an internal combustion engine
EP0275169A2 (en) Adaptive control system for and method of controlling an internal combustion engine
JPH025902B2 (en)
US4825838A (en) Air/fuel ratio control apparatus for an internal combustion engine
US5157613A (en) Adaptive control system for an engine
JPS58222944A (en) Control of composition of supplied air and external ignition type internal combustion engine
JPH0827203B2 (en) Engine intake air amount detector
Howlett et al. Neural network techniques for monitoring and control of internal combustion engines
Anderson et al. Ignitability experiments in a fast burn, lean burn engine
US6550312B1 (en) Method for determining the air/fuel ratio in an internal combustion engine combustion chamber
Hellring et al. Robust AFR estimation using the ion current and neural networks
JP2002508470A (en) Method for measuring particulate content of exhaust gas of internal combustion engine
SU1061702A3 (en) Method and device for controlling operating characteristics of internal combustion engine