JPS6050973B2 - Method of controlling fuel-air-mixing ratio or exhaust gas return rate of internal combustion engine - Google Patents

Method of controlling fuel-air-mixing ratio or exhaust gas return rate of internal combustion engine

Info

Publication number
JPS6050973B2
JPS6050973B2 JP50109408A JP10940875A JPS6050973B2 JP S6050973 B2 JPS6050973 B2 JP S6050973B2 JP 50109408 A JP50109408 A JP 50109408A JP 10940875 A JP10940875 A JP 10940875A JP S6050973 B2 JPS6050973 B2 JP S6050973B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
exhaust gas
fuel
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50109408A
Other languages
Japanese (ja)
Other versions
JPS5154125A (en
Inventor
バレリオ・ビアンキ
ライネル・ブルケル
オツト−・グレツクレル
ラインハルト・ラツチユ
エルンスト・リンデル
マルテイン ミユレル ハンス
ツエツヒナル マルテイン
レムプケ マンフレ−ト
ツエレル ハンス
ヴア−ル ヨ−ゼフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JPS5154125A publication Critical patent/JPS5154125A/ja
Publication of JPS6050973B2 publication Critical patent/JPS6050973B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/021Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using an ionic current sensor

Description

【発明の詳細な説明】 本発明は、内燃機関の動作パラメータの変化に依存して
変化する内燃機関の燃料一空気一混合比または排気ガス
帰還率を制御する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the fuel-to-air mixture ratio or the exhaust gas feedback rate of an internal combustion engine, which varies depending on changes in the operating parameters of the internal combustion engine.

厳しい排気ガスの規制および一般的な燃料不足のため内
燃機関を、その排気ガスの有害成分を最小にしおよび/
または燃料消費が最小となる動作範囲で、動作させる方
法が探求されている。この種の要求を満たすため先ず第
1に、内燃機関を出来るだけ希薄な燃料一空気混合気で
動作させる方法即ち所謂内燃機関の希薄走行限界て動作
させることが提案されている。この動作領域においては
、排気ガスの有害成分はかなり減少し燃料消費の低減も
期待できる。この場合希薄走行限界を識別する値として
は、先ず内燃機関のシリンダ内部の圧力の変動分を用い
る。しかし上述の問題をさらに詳しく考察すると、圧力
特性は、内燃機関の制御できない動作パラメータ例えば
空気過剰率、充填量、乱流、の変化により決定されるこ
とが明らかとなつている。
Strict exhaust gas regulations and general fuel shortages have made it difficult for internal combustion engines to minimize harmful components of their exhaust gases and/or
Alternatively, methods are being sought to operate within an operating range that minimizes fuel consumption. In order to meet this type of requirement, it has first been proposed to operate the internal combustion engine with a fuel-air mixture as lean as possible, that is, to operate the internal combustion engine at the so-called lean running limit. In this operating range, the harmful components of the exhaust gas are considerably reduced, and a reduction in fuel consumption can also be expected. In this case, first, the variation in pressure inside the cylinder of the internal combustion engine is used as the value for identifying the lean running limit. However, if the above-mentioned problems are considered in more detail, it becomes clear that the pressure characteristics are determined by variations in the uncontrollable operating parameters of the internal combustion engine, such as air excess, charge, turbulence, etc.

燃焼室の圧力をクランク軸における角速度の瞬時値を介
して測定すると、上記以外の変動分例えばクランク機構
の振動物体、自動車の走行路の凹凸、内燃機関の機関本
体へ加わる何らかの力、による妨害要素が発生している
。内燃機関のシリンダ内の通常の圧力特性に重畳されて
クランク軸の角速度の変動として表われる上述の変動は
、低域濾波器により回避することができる。しかしこの
種の濾波器の使用は大いに問題がある。何故ならば内燃
機関は広い回転数範囲にわたつて駆動させなければなら
ないからである。それ故、回転数(周波数)の小さい場
合と大きい場合とに適する濾波器を製作することは困難
である。上述の問題から出発して本発明の課題は、内燃
機関を上述の難点あるいは欠点が現れないように、制御
する方法を提案することである。
If the pressure in the combustion chamber is measured via the instantaneous value of the angular velocity at the crankshaft, other fluctuations such as vibrating objects in the crank mechanism, irregularities in the road of the automobile, or any forces exerted on the engine body of the internal combustion engine can interfere with disturbances. is occurring. The above-mentioned fluctuations, which are superimposed on the normal pressure characteristics in the cylinders of the internal combustion engine and manifest themselves as fluctuations in the angular velocity of the crankshaft, can be avoided by means of a low-pass filter. However, the use of this type of filter is highly problematic. This is because the internal combustion engine must be operated over a wide rotational speed range. Therefore, it is difficult to manufacture a filter suitable for both low and high rotational speeds (frequencies). Starting from the above-mentioned problem, it is an object of the invention to propose a method for controlling an internal combustion engine in such a way that the above-mentioned difficulties or disadvantages do not occur.

上記課題の方法は本発明により、内燃機関の燃焼室の、
連続する作業サイクルにおけるイオン電流に相応する電
気信号をサンプリングホールドして、イオン電流の、そ
の都度所定の時間間隔にわたつての積分値の相対変化に
相応する電気信号を実際値として形成し、該実際値信号
を内燃機関の動作パラメータに依存する設定値と比較し
偏差を検出して積分し、該積分した偏差を、燃料供給装
置の調整部材へ燃料一空気一混合比を変化するために導
びくか、または排気ガス帰還率を変化する調整部材へ導
くことにより解決される。
According to the invention, the method for the above-mentioned problem is achieved by:
The electrical signals corresponding to the ionic current in successive working cycles are sampled and held to form an electrical signal corresponding to the relative change in the integral value of the ionic current over a respective predetermined time interval as an actual value; The actual value signal is compared with a set value depending on the operating parameters of the internal combustion engine, the deviation is detected and integrated, and the integrated deviation is introduced to the regulating element of the fuel supply system for changing the fuel-air-mixture ratio. The solution is to introduce a regulating element that changes the rate of return of the exhaust gas or the rate of return of the exhaust gas.

さらに前述の制御を簡単に確実に行なえる、上述の方法
を実施する装置が後述のように示される。
Furthermore, an apparatus for carrying out the above-mentioned method, which allows the above-mentioned control to be carried out simply and reliably, will be shown below.

この場合の第1の目的は、この制御装置が自動車の乱暴
な運転の場合でも確実に動作すること、および必要とあ
れば自動車に既に取付けられている測定値発信器と共働
できるように構成することである。さらにこの装置は、
低廉なコストで製造できるものでなければならない。次
に本発明による方法を図面を用いて詳述する。
The first objective in this case is that this control device operates reliably even in the case of rough driving of the vehicle and that it is designed so that, if necessary, it can cooperate with the measured value transmitter already installed in the vehicle. It is to be. Furthermore, this device
It must be able to be manufactured at low cost. Next, the method according to the present invention will be explained in detail using the drawings.

この方法により、内燃機関が少くとも一部は、希薄走行
限界の動作範囲て運転されるべきものである。この場合
所謂希薄走行限界とは、最初に燃焼の遅れの現われる動
作範囲のことてある。燃焼の遅れは、空気過剰率がλ=
1よりも5〜10%多くなると即ち明らかに希薄混合気
とした場合に始めて現われる。このような所定の走行限
界領域においてはその燃料消費量は一般に、化学量論的
混合比を有する燃料一空気混合気(空気過剰率λ=1)
の供給された内燃機関の動作領域における燃料消費量よ
りも、明らかに少なくなる。内燃機関の燃焼室に2つの
電極を取付けた場合、炎が両電極に到達している燃焼過
程の間は、この両電極間にイオン電流が流れる。このイ
オン電流が内燃機関の動作している動作領域を識別する
ために用いられる。この場合イオン電流は、内燃機関に
供給される燃料一空気混合気の空気過剰率λに依存して
いる。λは、内燃機関のピストンの1サイクルでイオン
電流を積分した値の相対変化によつて、検出することが
できる。この相対変化は空気過剰率λと共に増加する。
第1図のグラ・フには時間tに対するイオン電流の経過
が示されている。この図において、第1曲線は第1シリ
ンダに、第2曲線は第2シリンダに、第3曲線は第3シ
リンダに、第4曲線は第4シリンダに所属するものであ
る。これらのイオン電流をその都度所定時間領域で積分
すれば、あるいは一層目的に適するようには内燃機関の
ピストンの1サイクルでその都度積分すれば、空気過剰
率λと共に変化する電気信号を発生することができる。
第1〜第4の各シリンダ毎に、後述の第5図のブロック
図で示されている回路装置がそれぞれ別個に配属される
。第2図には経験的に測定された、空気過剰率λに対す
るイオン電流の相対変化率τ丁/丁が示されている。
With this method, the internal combustion engine is to be operated at least partially in the operating range of the lean running limit. In this case, the so-called lean running limit is the operating range in which the combustion delay first appears. The delay in combustion is caused by the excess air ratio λ=
It only appears when the amount is 5 to 10% greater than 1, that is, when the mixture is clearly lean. In such a predetermined driving limit region, the fuel consumption is generally a fuel-air mixture having a stoichiometric mixture ratio (excess air ratio λ=1).
The fuel consumption is clearly lower than the fuel consumption in the operating range of the internal combustion engine supplied with . When two electrodes are installed in the combustion chamber of an internal combustion engine, an ionic current flows between the two electrodes during the combustion process when the flame reaches both electrodes. This ion current is used to identify the operating region in which the internal combustion engine is operating. In this case, the ion current depends on the excess air ratio λ of the fuel-air mixture supplied to the internal combustion engine. λ can be detected by the relative change in the integrated value of the ion current over one cycle of the piston of the internal combustion engine. This relative change increases with excess air ratio λ.
The graph in FIG. 1 shows the course of the ion current versus time t. In this figure, the first curve belongs to the first cylinder, the second curve belongs to the second cylinder, the third curve belongs to the third cylinder, and the fourth curve belongs to the fourth cylinder. If these ionic currents are integrated in each case over a predetermined time range, or, more suitable for the purpose, over one cycle of the piston of the internal combustion engine, it is possible to generate an electrical signal that varies with the excess air ratio λ. Can be done.
A circuit device shown in the block diagram of FIG. 5, which will be described later, is separately assigned to each of the first to fourth cylinders. FIG. 2 shows the empirically determined relative change rate of ion current τ/d with respect to excess air ratio λ.

この場合了は内燃機関のピストンの1サイクルで積分さ
れた、シリンダ内のイオン電流を表わし、τ丁は2つの
相続く値丁の間の差を表わす。この図から空気過剰率入
が増加するとX丁/丁も増加することが経験的にわかる
。その結果内燃機関の動作特性を制御するために、相応
の電気信号を用いることができる。例えばλが大きすぎ
る場合内燃機関に供給される燃料一空気混合気の混合比
を濃縮化方向に、すなわち空気数λが再び1になる方向
に調整しなければならないか、あるいは戻される排気ガ
スの量を低減する。イオン電流は例えば、第3図に示す
イオン電流ゾンデ10により検出することができる。こ
の場合イオン電流ゾンデ10は内燃機関のシリンダヘッ
ド11の内部に配置される。ここのは点火プラグ12も
取付けられている。この場合イオン電流ゾンデ10は、
燃焼過程の間流れるイオン電流を両電極間て検出する時
は、特別の構成素子とする必要はなく、点火プラグ12
と同じ構成にすることができる。そのため合計2つのプ
ラグが内燃機関の燃焼室に取り付けられる。この場合プ
ラグ12が点火プラグとして用いられ、プラグ10がイ
オン電流ゾンデとして用いられる。第4図に示されてい
る装置は、イオン電流の測定に対して特に好適である。
In this case, R represents the ionic current in the cylinder, integrated over one cycle of the piston of the internal combustion engine, and T represents the difference between two successive values. From this figure, it can be seen empirically that as the excess air rate increases, the X ton/ton also increases. Corresponding electrical signals can then be used to control the operating characteristics of the internal combustion engine. For example, if λ is too large, either the fuel-air mixture supplied to the internal combustion engine must be adjusted in the direction of enrichment, that is, the air number λ becomes 1 again, or the exhaust gas returned Reduce quantity. The ion current can be detected by, for example, an ion current probe 10 shown in FIG. In this case, the ion current sensor 10 is arranged inside a cylinder head 11 of an internal combustion engine. The spark plug 12 is also installed here. In this case, the ion current sonde 10 is
When detecting the ionic current flowing between the two electrodes during the combustion process, there is no need for special components; the spark plug 12
can have the same configuration. A total of two plugs are therefore installed in the combustion chamber of the internal combustion engine. In this case, the plug 12 is used as a spark plug and the plug 10 is used as an ion current probe. The apparatus shown in FIG. 4 is particularly suitable for measuring ionic currents.

何故ならばこの装置を用いれば、内燃機関のシリンダヘ
ッド内にイオン電流ゾンデを取付ける付加孔を設けなく
てよいからである。第4図に2つの点火電極16,17
を有する点火プラグのソケット15が示されている。ソ
ケット15にはさらに2つの電極18,19が取付けら
れていて、イオン電流は電極対16,17と電極対18
,19との間を流れる。両電極16,17と18,19
との間の距離はわずか数ミリである。第5図は本発明の
方法を実施する装置の実施例のブロック図を示す。
This is because, with this device, it is not necessary to provide additional holes in the cylinder head of the internal combustion engine for mounting the ion current probe. Figure 4 shows two ignition electrodes 16, 17.
A spark plug socket 15 is shown having a. Two further electrodes 18 and 19 are attached to the socket 15, and the ion current flows through the electrode pairs 16 and 17 and the electrode pair 18.
, 19. Both electrodes 16, 17 and 18, 19
The distance between them is only a few millimeters. FIG. 5 shows a block diagram of an embodiment of an apparatus for carrying out the method of the invention.

図において1は内燃機関の連続する作業サイクルにおけ
るイオン電流を検出する装置を示す。この検出装置1は
、第3図に示されているイオン電流ゾンデ10に相応す
る。2は検出したイオン電流を電気信号に変換する装置
、例えば増幅器として構成される回路段を示す。
In the figure, 1 indicates a device for detecting the ionic current during successive working cycles of an internal combustion engine. This detection device 1 corresponds to the ion current probe 10 shown in FIG. 2 indicates a device for converting the detected ionic current into an electrical signal, for example a circuit stage configured as an amplifier.

3はイオン電流の相対変化を表わす信号を形成する回路
段であるサンプリングホールド回路を示す。
Reference numeral 3 indicates a sampling and holding circuit which is a circuit stage for forming a signal representing a relative change in the ion current.

4はこの相対変化信号を保持する、例えばコンデンサに
より形成される記憶器を示す。
4 denotes a memory formed, for example, by a capacitor, which holds this relative change signal.

5は、イオン電流の相対変化を表わす実際値信号を、内
燃機関の動作パラメータ例えば回転数n、吸気管圧力P
sに依存する設定値と比較する比較器を示す。
5 transmits the actual value signal representing the relative change of the ionic current to the operating parameters of the internal combustion engine, such as the rotational speed n, the intake manifold pressure P
A comparator is shown for comparison with a set value that depends on s.

この設定値は、8で示されている設定値発生器により形
成される。6は設定値と実際値との偏差を積分する積分
器を示す。
This setpoint value is formed by a setpoint generator indicated at 8. 6 indicates an integrator that integrates the deviation between the set value and the actual value.

7は燃料一空気混合気の混合比を変化する調整操作部材
たとえば電磁弁、または排気ガスの帰還量を制御する調
整操作部材を示す。このようにして、検出された偏差の
値に依存して、燃料一空気混合気の質量比または排気ガ
スの帰還量が制御される。前述のようにイオン電流の相
対変化を検出するために、それ自体公知のサンプリング
ホールド回路を設ける。
Reference numeral 7 designates an adjustment operation member that changes the mixture ratio of fuel-air mixture, such as a solenoid valve, or an adjustment operation member that controls the amount of exhaust gas returned. In this way, the mass ratio of the fuel-air mixture or the amount of exhaust gas returned is controlled depending on the value of the detected deviation. In order to detect relative changes in the ionic current as described above, a sampling and holding circuit, which is known per se, is provided.

この回路により、前後して加わる少くとも2つの測定値
を記憶することができる。両測定値から信号をそれぞれ
形成して、第5図で説明した方法で設定値と比較するこ
とのてきる変化を、検出する。検出された差の値に依存
して、燃料一空気混合気の質量比または排気ガスの帰還
量を制御する。サンプリングホールド回路は、例えば公
知文献、データ変換ハンドブック、ドナルドBjルック
著、ハイブリッド●システム◆コーポレーション発行、
第1版(DATACONVERSION5HANDBO
OK,byDOnaldB.Bruck,Hybrid
SystemsCOrpOraTlOn,FirstE
ditiOn)の4●1〜4・7に記載されている。
This circuit makes it possible to store at least two measured values one after the other. Signals are respectively formed from both measured values to detect changes which can be compared with the set value in the manner described in FIG. Depending on the value of the detected difference, the mass ratio of the fuel-air mixture or the amount of exhaust gas returned is controlled. The sampling and hold circuit is described in, for example, known literature, Data Conversion Handbook, written by Donald B.J. Look, published by Hybrid ● System◆Corporation,
1st edition (DATACONVERSION5HANDBO
OK, byDOnaldB. Bruck, Hybrid
SystemsCOrpOraTlOn, FirstE
ditiOn) 4●1 to 4.7.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は内燃機関の種々のシリンダのイオン電O流の時
間変化を表わした波形図、第2図は空気過剰率に対する
イオン電流の平均相対変化率を示すグラフ、第3図は点
火プラグとイオン電流ゾンデとが配置されている内燃機
関の燃焼室、第4図は点火プラグとイオン電流ゾンデと
を一体にした装置の正面図、第5図は本発明の方法を実
施する回路装置のブロック図である。 1・・・イオン電流ゾンデ、2・・・イオン電流を電気
信号に変換する回路段、3・・・サンプリングホールド
回路、4・・・記憶器、5・・・比較器、6・・・積分
器、7・・・調整部材、8・・・動作パラメータ発信器
、10・・・イオン電流ゾンデ、11・・・シリンダヘ
ッド、12・・・点火プラグ、15・・・ソケット、1
6,17・・・点火電極、18,19・・・イオン電流
検出電極。
Fig. 1 is a waveform diagram showing the time change of the ion current O current in various cylinders of an internal combustion engine, Fig. 2 is a graph showing the average relative change rate of the ion current with respect to the excess air ratio, and Fig. 3 is a graph showing the average relative change rate of the ion current in various cylinders of an internal combustion engine. A combustion chamber of an internal combustion engine in which an ion current sonde is arranged, FIG. 4 is a front view of a device that integrates a spark plug and an ion current sonde, and FIG. 5 is a block diagram of a circuit device implementing the method of the present invention. It is a diagram. DESCRIPTION OF SYMBOLS 1...Ion current sonde, 2...Circuit stage for converting ion current into an electric signal, 3...Sampling and hold circuit, 4...Storage device, 5...Comparator, 6...Integrator 7... Adjustment member, 8... Operating parameter transmitter, 10... Ion current sonde, 11... Cylinder head, 12... Spark plug, 15... Socket, 1
6, 17... Ignition electrode, 18, 19... Ion current detection electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 内燃機関の動作パラメータの変化に依存して変化す
る内燃機関の燃料−空気−混合比または排気ガス帰還率
を制御する方法において、内燃機関の燃焼室の、連続す
る作業サイクルにおけるイオン電流を検出し、各イオン
電流に相応する電気信号をサンプリングホールドして、
イオン電流の、その都度所定の時間間隔にわたつての積
分値の相対変化に相応する電気信号を実際値として形成
し、該実際値信号を内燃機関の動作パラメータに依存す
る設定値と比較し偏差を検出して積分し、該積分した偏
差を、燃料供給装置の調整部材へ燃料−空気−混合比を
変化するため導びくか、または排気ガス帰還率を変化す
る調整部材へ導くことを特徴とする内燃機関の燃料−空
気−混合比または排気ガス帰還率を制御する方法。
1. Detection of ionic currents in successive working cycles of a combustion chamber of an internal combustion engine in a method for controlling the fuel-air-mixture ratio or the exhaust gas return rate of an internal combustion engine that varies depending on changes in operating parameters of the internal combustion engine. Then, sample and hold the electrical signals corresponding to each ion current,
An electrical signal corresponding to the relative change in the integral value of the ionic current over a particular time interval is formed as an actual value, and this actual value signal is compared with a set value that depends on the operating parameters of the internal combustion engine to determine the deviation. and directing the integrated deviation to a regulating member of the fuel supply device for changing the fuel-air mixture ratio or to a regulating member for changing the exhaust gas return rate. A method for controlling the fuel-air-mixing ratio or exhaust gas return rate of an internal combustion engine.
JP50109408A 1974-09-11 1975-09-09 Method of controlling fuel-air-mixing ratio or exhaust gas return rate of internal combustion engine Expired JPS6050973B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2443413.7 1974-09-11
DE19742443413 DE2443413C2 (en) 1974-09-11 1974-09-11 Method and device for regulating the operating state of an internal combustion engine

Publications (2)

Publication Number Publication Date
JPS5154125A JPS5154125A (en) 1976-05-13
JPS6050973B2 true JPS6050973B2 (en) 1985-11-11

Family

ID=5925405

Family Applications (2)

Application Number Title Priority Date Filing Date
JP50109408A Expired JPS6050973B2 (en) 1974-09-11 1975-09-09 Method of controlling fuel-air-mixing ratio or exhaust gas return rate of internal combustion engine
JP59096690A Granted JPS6040751A (en) 1974-09-11 1984-05-16 Method of controlling performance characteristic of internalcombustion engine

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP59096690A Granted JPS6040751A (en) 1974-09-11 1984-05-16 Method of controlling performance characteristic of internalcombustion engine

Country Status (4)

Country Link
JP (2) JPS6050973B2 (en)
DE (1) DE2443413C2 (en)
FR (1) FR2284767A1 (en)
GB (1) GB1519005A (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2507917C2 (en) * 1975-02-24 1986-01-02 Robert Bosch Gmbh, 7000 Stuttgart Device for regulating the optimal operating behavior of an internal combustion engine
DE2642738C2 (en) * 1976-09-23 1986-08-07 Robert Bosch Gmbh, 7000 Stuttgart Method for regulating the operating behavior of an internal combustion engine in a specified operating range
DE2802202C2 (en) * 1978-01-19 1986-09-04 Robert Bosch Gmbh, 7000 Stuttgart Device for detecting pressure fluctuations in the combustion chamber of an internal combustion engine
IT1093349B (en) * 1978-03-03 1985-07-19 Alfa Romeo Spa DEVICE FOR THE PRE-IGNITION RELIEF IN AN INTERNAL COMBUSTION ENGINE
FR2432097A1 (en) * 1978-07-26 1980-02-22 Inst Francais Du Petrole METHOD AND DEVICE FOR AUTOMATICALLY ADJUSTING THE IGNITION OF A CONTROLLED IGNITION ENGINE
IT1098483B (en) * 1978-09-05 1985-09-07 Alfa Romeo Spa REFINING DEVICE FOR THE IGNITION ADVANCE OF IGNITION OF AN INTERNAL COMBUSTION ENGINE WITH IGNITION
IT1100740B (en) * 1978-12-18 1985-09-28 Alfa Romeo Spa INSTRUMENT FOR THE SELECTION OF SELF-IGNITION OF AN INTERNAL COMBUSTION ENGINE
DE2919273C2 (en) * 1979-05-12 1982-10-28 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Arrangement for inertia-free or particularly fast temperature measurement
JPS5826157B2 (en) * 1979-07-28 1983-06-01 日産自動車株式会社 Spark plug with built-in oxygen sensor element
DE2939580A1 (en) * 1979-09-29 1981-04-09 Robert Bosch Gmbh, 7000 Stuttgart METHOD FOR REGULATING THE IGNITION TIMING
DE2939690A1 (en) * 1979-09-29 1981-04-16 Robert Bosch Gmbh, 7000 Stuttgart IGNITION TIMING METHOD
DE3139000C2 (en) * 1980-10-17 1986-03-06 Michael G. Dipl.-Ing. ETH Rolle May Method and control device for adjusting the ignition point in a spark-ignition internal combustion engine
CH648638A5 (en) * 1981-09-09 1985-03-29 Inst Francais Du Petrole METHOD FOR ADJUSTING THE TIME OF CONTROL OF THE INITIATION OF COMBUSTION IN AN ENGINE.
JPS5882039A (en) * 1981-11-11 1983-05-17 Hitachi Ltd Controller for air-fuel ratio for internal-combustion engine
DE3151415C2 (en) * 1981-12-24 1986-11-20 Daimler-Benz Ag, 7000 Stuttgart Method for measuring the electrode spacing of the spark plugs of a motor vehicle and device for carrying out the method
DE3210810C2 (en) 1982-03-24 1984-11-08 Mataro Co. Ltd., Georgetown, Grand Cayman Islands Control system for influencing the composition of the charges to be burned in an externally ignited internal combustion engine
GB2131177B (en) * 1982-11-23 1986-07-30 Ford Motor Co Flame front sensor
JPS59168270A (en) * 1983-03-12 1984-09-21 Fuji Heavy Ind Ltd Ignition timing control device
DE3327766A1 (en) * 1983-08-02 1985-02-14 Atlas Fahrzeugtechnik GmbH, 5980 Werdohl KNOCK DETECTION CIRCUIT ON AN OTTO ENGINE
DE3342723C2 (en) * 1983-11-25 1986-07-03 Gunter Dipl.-Phys. Dr. 7500 Karlsruhe Hartig Ignition device for internal combustion engines
AT386256B (en) * 1984-07-02 1988-07-25 Atlas Fahrzeugtechnik Gmbh ARRANGEMENT FOR GENERATING A TRIGGER PULSE FOR THE IGNITION OF AN INTERNAL COMBUSTION ENGINE
DE3519028C2 (en) * 1985-05-25 1993-10-28 Bosch Gmbh Robert Device for detecting knocking combustion processes in an internal combustion engine
DE3736160A1 (en) * 1987-10-26 1989-05-03 Fev Motorentech Gmbh & Co Kg METHOD FOR DETECTING AND EVALUATING KNOCKING COMBUSTION
DE3821740A1 (en) * 1988-06-28 1990-01-11 Jan Thomas Dipl Ing Haas Independent cylinder control of the ignition/fuel injection in internal combustion engines
US5018498A (en) * 1989-12-04 1991-05-28 Orbital Walbro Corporation Air/fuel ratio control in an internal combustion engine
US5036669A (en) * 1989-12-26 1991-08-06 Caterpillar Inc. Apparatus and method for controlling the air/fuel ratio of an internal combustion engine
JP2922027B2 (en) * 1991-08-01 1999-07-19 株式会社日立製作所 Device for detecting combustion state of internal combustion engine
JP3150429B2 (en) * 1992-07-21 2001-03-26 ダイハツ工業株式会社 Lean limit detection method using ion current
DE19757893A1 (en) 1997-12-24 1999-07-01 Bosch Gmbh Robert Fuel / air mixture control system of an internal combustion engine
JP5753142B2 (en) * 2012-09-19 2015-07-22 本田技研工業株式会社 Combustion control device for internal combustion engine and method for burning homogeneous lean mixture

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE534951C (en) 1928-10-10 1931-10-06 Warren French Stanton Automatic regulation for internal combustion engines
DE1039488B (en) * 1954-10-12 1958-09-25 Dr Med Johannes Rentsch Index card, especially for entering medical reports
DE2231109C2 (en) 1972-06-24 1974-10-03 Societe Industrielle D'electronique Et D'informatique, Paris Device for controlling fuel injection in internal combustion engines
US3815561A (en) * 1972-09-14 1974-06-11 Bendix Corp Closed loop engine control system
DE2253249A1 (en) * 1972-10-30 1974-05-02 Ehrhardt Helmut METHOD OF INFLUENCING COMBUSTION IN POWER MACHINES AND COMBUSTION SYSTEMS BY USING ELECTRIC FIELDS
US3789816A (en) 1973-03-29 1974-02-05 Bendix Corp Lean limit internal combustion engine roughness control system
DE2417187C2 (en) 1974-04-09 1982-12-23 Robert Bosch Gmbh, 7000 Stuttgart Method and device for regulating the operating behavior of an internal combustion engine

Also Published As

Publication number Publication date
GB1519005A (en) 1978-07-26
FR2284767B1 (en) 1979-09-14
DE2443413C2 (en) 1983-11-17
JPS5154125A (en) 1976-05-13
DE2443413A1 (en) 1976-03-25
FR2284767A1 (en) 1976-04-09
JPS6040751A (en) 1985-03-04
JPS6215751B2 (en) 1987-04-09

Similar Documents

Publication Publication Date Title
JPS6050973B2 (en) Method of controlling fuel-air-mixing ratio or exhaust gas return rate of internal combustion engine
US4064846A (en) Method and apparatus for controlling an internal combustion engine
EP0275169B1 (en) Adaptive control system for and method of controlling an internal combustion engine
US4271811A (en) Feedback control of exhaust gas recirculation based on combustion condition
Zhu et al. Closed-loop ignition timing control for SI engines using ionization current feedback
US6082330A (en) Method of cylinder-selective control of an internal combustion engine
USRE32301E (en) Method and apparatus for controlling the composition of the combustible mixture of an engine
JPH0240866B2 (en)
EP0081648A1 (en) Fail-safe system for automotive engine control system for fail-safe operation as crank angle sensor fails operation thereof and fail-safe method therefor, and detection of fault in crank angle sensor
EP0273601B1 (en) Engine control and combustion quality detection system and method
CN1975363B (en) Method and device for operating an internal combustion engine
EP1712781A1 (en) Operation controller for engine, vehicle with the operation controller, method for calculating center of gravity ofcombustion in engine, and operation control method for engine
US5157613A (en) Adaptive control system for an engine
JPS6153460A (en) Method and device for generating trigger pulse igniting internal combustion engine
JPH025902B2 (en)
US4483295A (en) Control device for multicylinder engine
Anderson et al. Ignitability experiments in a fast burn, lean burn engine
Howlett et al. Neural network techniques for monitoring and control of internal combustion engines
Hellring et al. Robust AFR estimation using the ion current and neural networks
CN103256166A (en) Knock control device of internal combustion engine
US5415035A (en) Combustion state-detecting system for internal combustion engines
US4483183A (en) System for measuring crank angle for internal combustion engine
US5023795A (en) Fuel injection control system for internal combustion engine with compensation of fuel amount consumed for wetting induction path
EP0210766B1 (en) Adaptive control system for an internal combustion engine
EP1079087B1 (en) Method of controlling a direct fuel injection engine and storage medium storing the same