JPS62157479A - Driving method for solid-state image pickup device - Google Patents

Driving method for solid-state image pickup device

Info

Publication number
JPS62157479A
JPS62157479A JP60297022A JP29702285A JPS62157479A JP S62157479 A JPS62157479 A JP S62157479A JP 60297022 A JP60297022 A JP 60297022A JP 29702285 A JP29702285 A JP 29702285A JP S62157479 A JPS62157479 A JP S62157479A
Authority
JP
Japan
Prior art keywords
charge
solid
pulse
state imaging
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60297022A
Other languages
Japanese (ja)
Other versions
JPH0473834B2 (en
Inventor
Tetsuo Yamada
哲生 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60297022A priority Critical patent/JPS62157479A/en
Publication of JPS62157479A publication Critical patent/JPS62157479A/en
Publication of JPH0473834B2 publication Critical patent/JPH0473834B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To expand a dynamic range by changing the width of a pulse to specify a charge reading period impressed to a charge transferring means in accordance with a light irradiating strength and making the barrier electric potential of an excessive charge discharging means lower than the barrier electric potential of a charge reading means. CONSTITUTION:The width of a pulse applied to a transferring electrode 6 is made longer in accordance with a light strength, and a constant low voltage is impressed to an overflowing control gate. The second electrode is kept to a low level, and then, the channel electric potential is the level shown by 31 and to an overflowing control gate 7, a constant voltage to give a level 32 a little higher than 31 is applied. Thus, when the shift channel is opened, the charging quantity to flow from a photodiode 2 to a transferring channel 3 is in proportion to the intensity of the light. Consequently, when the light is strong, to the whole of an N layer 2 of a photodiode and a transferring channel 3, the charge is accumulated, and when the electric potential of the transferring electrode 6 is lowered, the excessive charge can be thrown away to an overflowing drain side.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は固体1lil像装置の駆動方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a method for driving a solid-state 1 lil image device.

〔発明の技術的背景〕[Technical background of the invention]

固体lI!像装置は小型、軽量、長野向等のPlれた特
長を有しておりビデオカメラ等への利用が増加している
Solid lI! Imaging devices have outstanding features such as being small, lightweight, and suitable for Nagano fields, and are increasingly being used in video cameras and the like.

従来の固体比@装置の構成を第8図の断面図により説明
する。p型基板1の表面側にn型領域である電荷転送チ
ャネル3、n型領域であるフォトダイオード2、n+領
領域あるオーバフロードレイン4がそれぞれ形成され、
電荷転送チャネル3およびこれとフォトダイオード2間
のシフトチャネル5上には転送電極6が、またフォトダ
イオード2とオーバフロードレイン4間の上にはオーバ
フロー制御ゲート7がそれぞれ設けられている。
The configuration of a conventional solid ratio @ device will be explained with reference to the sectional view of FIG. A charge transfer channel 3 which is an n-type region, a photodiode 2 which is an n-type region, and an overflow drain 4 which is an n+ region are formed on the surface side of the p-type substrate 1.
A transfer electrode 6 is provided on the charge transfer channel 3 and the shift channel 5 between the charge transfer channel 3 and the photodiode 2, and an overflow control gate 7 is provided above the photodiode 2 and the overflow drain 4.

このような固体搬像装置の動作を第9図ないし第13図
を参照して説明する。
The operation of such a solid-state image transfer device will be explained with reference to FIGS. 9 to 13.

第9 FJ t、tオーバフロー制−ゲート7に所定の
パルス電圧を印加し、転送電極6には何も印加されてい
ない状態を示している。この場合シフトチャネル5の電
位12はほぼ0でシフトチャネルは閏じられており、フ
ォトダイオード2の電荷?S積層に蓄積された信号電荷
13は転送されない。なお、転送チャネル電位は参照番
号11で示されている。
9th FJ t, t A predetermined pulse voltage is applied to the overflow control gate 7, and nothing is applied to the transfer electrode 6. In this case, the potential 12 of the shift channel 5 is almost 0, the shift channel is interdigitated, and the charge of the photodiode 2? The signal charges 13 accumulated in the S stack are not transferred. Note that the transfer channel potential is indicated by reference number 11.

また、オーバフロー制御ゲート7下の電位はパルス゛F
IN圧の印加によって通常のレベル14aからレベル1
4bに上昇する。したがって光電変換により蓄積された
電荷がレベル14aよりも降下したときは過剰電荷はオ
ーバフロードレイン4に流れ込み、ドレイン電位15を
形成する。
Also, the potential under the overflow control gate 7 is pulsed ゛F
Level 1 changes from normal level 14a by applying IN pressure.
It rises to 4b. Therefore, when the charges accumulated by photoelectric conversion fall below the level 14a, the excess charges flow into the overflow drain 4 and form the drain potential 15.

第10図はオーバフロー制御ゲート7には何も印加され
ず、シフトチャネル6にパルス状電圧が印加された様子
を示しており、転送チャネル電位11’J3よびシフト
チ11ネル電位12′は第9図に比べて上背しているた
め光電変換により蓄積された電荷13は転送電極間へ流
れ込むことになる。
FIG. 10 shows a state in which nothing is applied to the overflow control gate 7 and a pulsed voltage is applied to the shift channel 6, and the transfer channel potential 11'J3 and the shift channel 11 channel potential 12' are as shown in FIG. Since it is tilted upward compared to , the charges 13 accumulated by photoelectric conversion flow into between the transfer electrodes.

第11図は実際の固体Il[1像装置の駆動におけるオ
ーバフロー制御グー1〜7J5よび転送電極6にそれぞ
れ印加されるパルスP。、およびPTRを示しており、
t  ごとに発生される短いパルスであるNT PTHに対し、POFはt 114T内の時間t114
T1だけレベル■ のハイ信号で残りのtINT2の間
は〇−信号となっている。
FIG. 11 shows the pulses P applied to the overflow control groups 1 to 7J5 and the transfer electrode 6 in driving the actual solid-state Il[1 imager. , and PTR,
For NT PTH, which is a short pulse generated every t, POF is a time t114 within t114T.
Only T1 is a high signal of level ■, and the remaining time tINT2 is a - signal.

PTRが到来することによって蓄積された信号電荷は電
荷転送チャネル3に移送され信号読出しが行なわれ、そ
の後はシフトチャネル5を閉じ、オーパフロー制御ゲー
トを開けることにより過剰電荷を排出しておき、tIN
T2の期間ではオーバフロー電位を下降させておき、最
大電荷蓄積量を増加させるようにしている。
The signal charge accumulated by the arrival of PTR is transferred to the charge transfer channel 3 and signal readout is performed. After that, the shift channel 5 is closed and the overflow control gate is opened to discharge excess charge.
During the period T2, the overflow potential is lowered to increase the maximum charge storage amount.

ここで蓄積時間tに対するフォトダイオードの0層2に
蓄積される電荷量Q、の関係を第12図のグラフに示す
。このグラフは横軸を時間t1縦軸をフォトダイオード
n層における蓄積電荷mQ としており、傾きは光強度
1.を表わす。
Here, the relationship between the amount of charge Q accumulated in the 0 layer 2 of the photodiode and the accumulation time t is shown in the graph of FIG. In this graph, the horizontal axis is the time t, the vertical axis is the accumulated charge mQ in the photodiode n layer, and the slope is the light intensity 1. represents.

時間tINTIの間はオーバフロー電位が高くなってい
るため、このときの最大電荷” P141がよりt  
よりも短い時間で電荷蓄積が行なわれる場NT1 合、すなわち光強度が座標(t18□1.QPHI )
を通る場合の傾きI  よりも急である場合にはオH1 一バフローが生ずる。第12図中の直線16はこのよう
な場合を示しており、直線17は飽和しない場合の例を
示している。
Since the overflow potential is high during time tINTI, the maximum charge "P141" at this time is higher than tINTI.
If charge accumulation occurs in a shorter time than NT1, that is, the light intensity becomes the coordinate (t18□1.QPHI)
If the slope is steeper than the slope I when passing through H1, a buffer flow occurs. A straight line 16 in FIG. 12 shows such a case, and a straight line 17 shows an example where saturation does not occur.

時間t  が経過するとオーバフロー制御グーNTI トが閉じるため最大蓄85電荷聞はQ PH2まで増加
する。
When the time t has elapsed, the overflow control gate is closed, so the maximum storage capacity of 85 charges increases to Q PH2.

したがって時間t  による蓄積動作によってNT 読み出される電荷ff1Q  ’ と光強度I、との関
係は第13図のグラフに示されるように1  におPH
1 いて折れ点Cを有する2つの直線AおよびBを組合わせ
たものとする。このような光電変換特性はニー特性と称
され、強い光に対するダイナミックレンジを広げるのに
有効である。
Therefore, the relationship between the charge ff1Q' read out by the accumulation operation over time t and the light intensity I is as shown in the graph of FIG.
1, and two straight lines A and B having a bending point C are combined. Such photoelectric conversion characteristics are called knee characteristics, and are effective in widening the dynamic range against strong light.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、このようなニー特性を実現するためには
フォトダイオードから電荷転送チャネルへ電荷を移動さ
せるシフトパルスに応じた制御パルスをオーバフロー制
御ゲートに印加しなければならず、制御が複雑となる。
However, in order to achieve such a knee characteristic, a control pulse corresponding to a shift pulse that moves charges from the photodiode to the charge transfer channel must be applied to the overflow control gate, which makes control complicated.

特に第14図に断面構造を示す縦型オーバフロドレイン
においてはニー特性の実現が困難である。
In particular, it is difficult to realize knee characteristics in a vertical overflow drain whose cross-sectional structure is shown in FIG.

すなわち、この構造ではn型基板21内に形成されたp
ウェル22に形成されたフォトダイオード1、ゲート2
6により電荷がシフトされる電荷転送チャネル25を有
しており、フォトダイオード1の直下のpウェルは不純
物濃度が薄い浅いウェル23となっている。この構造に
おいて、n型基板21に逆バイアス電圧を印加しておき
、フォトダイオードnt124の過剰電荷を浅いウェル
23を介してn型基板21に排出することができるが、
この浅いウェル23の電位変化は電界の二次元的拡がり
等によりn型基板の逆バイアス電圧の変化に比べて約1
15程度とかなり小さい。したがってオーバフロー制御
のための電圧パルスの振幅を数十Vの高電圧にしなけれ
ばニー特性が得られないこととなり、実現が困難である
That is, in this structure, the p
Photodiode 1 and gate 2 formed in well 22
The p-well directly under the photodiode 1 is a shallow well 23 with a low impurity concentration. In this structure, by applying a reverse bias voltage to the n-type substrate 21, the excess charge of the photodiode nt124 can be discharged to the n-type substrate 21 through the shallow well 23.
The change in the potential of this shallow well 23 is approximately 1 compared to the change in the reverse bias voltage of the n-type substrate due to the two-dimensional spread of the electric field.
It's quite small, about 15. Therefore, the knee characteristic cannot be obtained unless the amplitude of the voltage pulse for overflow control is set to a high voltage of several tens of volts, which is difficult to achieve.

〔発明の目的〕[Purpose of the invention]

本発明はこのような問題を解決するためなされたもので
、オーパフo−電位のパルス変調が不要で容易にニー特
性を実現できる固体撮像装置の駆動方法を提供すること
を目的とする。
The present invention has been made to solve such problems, and an object of the present invention is to provide a method for driving a solid-state imaging device that does not require pulse modulation of the O-puff O-potential and can easily realize knee characteristics.

〔発明の概要〕[Summary of the invention]

本発明は入射光を光電変換して信号電荷を発生すると共
にこの信号電荷を発生すると共にこの信号電荷を蓄積す
る電荷蓄積層を有する複数の光電変換部と、この光電変
換部に蓄積された信号電荷を読み出す蓄積領域を伴った
電荷読出手段と、前記光電変換部C発生した過剰電荷を
排出する過剰電荷排出手段とを備えた固体搬像装置の駆
動方法において、前記電荷転送手段に印加される電荷読
出期間を規定するパルスの幅を光照射強度に応じて変動
させると共に前記過剰電荷抽出手段の障壁電位を前記電
荷読出手段の障壁電位よりも低くしたことを特徴として
いる。したがってオーバフロー制御電位を変化させるこ
となくダイナミックレンジを拡げることができる。
The present invention includes a plurality of photoelectric conversion units that photoelectrically convert incident light to generate signal charges, a charge storage layer that generates the signal charges, and stores the signal charges, and a signal that is accumulated in the photoelectric conversion units. In a method for driving a solid-state image device, which includes a charge reading means with an accumulation region for reading charges, and an excess charge discharging means for discharging excess charges generated by the photoelectric conversion unit C, the charge transfer means is applied with a charge. The present invention is characterized in that the width of the pulse that defines the charge readout period is varied in accordance with the intensity of light irradiation, and the barrier potential of the excess charge extraction means is lower than the barrier potential of the charge readout means. Therefore, the dynamic range can be expanded without changing the overflow control potential.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照しながら本発明の実施例を詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第3図および第4図は本発明が適用される固体III像
装置の構成を説明するもので第3図は固体銀(g!装置
の平面図、第4図はその×1−×2断面図であり、第8
図に示したものと同じ部分には同じ符号を付けてその詳
細な説明を省略する。これによれば第4図では電荷転送
チ1Fネルの次の電極8゜9が描かれている点だけが異
なり、その構成は全く同じである。
3 and 4 illustrate the configuration of a solid-state III imaging device to which the present invention is applied. FIG. 3 is a plan view of the solid-state silver (g! Figure 8
The same parts as those shown in the figures are given the same reference numerals, and detailed explanation thereof will be omitted. According to this, the only difference in FIG. 4 is that the next electrode 8.9 of the charge transfer channel 1F channel is drawn, and the structure is exactly the same.

第1図は本発明における駆動方法を示す電位分布図であ
って第4図に対応させて描いである。
FIG. 1 is a potential distribution diagram showing the driving method according to the present invention, and is drawn in correspondence with FIG. 4.

本発明においては転送電極6に加えるパルスの幅を光強
度に応じて長くし、オーバフロー制御ゲートには一定の
低い電圧を印加するようにする。
In the present invention, the width of the pulse applied to the transfer electrode 6 is increased in accordance with the light intensity, and a constant low voltage is applied to the overflow control gate.

第2図は転送電極に印加されるパルスを示す波形図であ
って、第2図(a)は従来の制御パルスP とほぼ同じ
長さt  のパルス、第2図(b)TRFSI 第2図(C)はこれよりも長いパルスを示している。こ
れらのパルス幅としては例えば1μs〜1msの広い範
囲で選択することができる。
FIG. 2 is a waveform diagram showing pulses applied to the transfer electrodes, in which FIG. 2(a) is a pulse with approximately the same length t as the conventional control pulse P, and FIG. 2(b) is a pulse of TRFSI. (C) shows a longer pulse. These pulse widths can be selected from a wide range of, for example, 1 μs to 1 ms.

第2の電極をローレベルに保っておけばその下のチャネ
ル電位は31で示されるレベルであり、またオーバフロ
ー制御ゲート7には31よりもわずかに高いレベル32
を与える定電圧を加えているものとする。また、転送電
極6に加えられる電圧によってシフトチャネル5下の電
位は33に、転送チャネル3の電位は34になる。
If the second electrode is kept at a low level, the channel potential below it will be at the level 31, and the overflow control gate 7 will be at a level 32, which is slightly higher than 31.
Assume that a constant voltage is applied that gives . Further, due to the voltage applied to the transfer electrode 6, the potential under the shift channel 5 becomes 33, and the potential on the transfer channel 3 becomes 34.

このようにシフトチャネルが開いているときにフォトダ
イオード2から転送チャネル3へ向って流れ込む電荷量
は光の強さに比例する。したがって光が強いときは転送
電極6に加えるパルスの幅を長くとることによりフォト
ダイオードのnFN2と転送チャネル3の全体に電荷を
蓄積することができ、転送電極6の電位が低下したとき
は過剰電荷をオーバフロードレイン側へ捨てることがで
きる。
In this way, when the shift channel is open, the amount of charge flowing from the photodiode 2 toward the transfer channel 3 is proportional to the intensity of light. Therefore, when the light is strong, by increasing the width of the pulse applied to the transfer electrode 6, charge can be accumulated in the nFN2 of the photodiode and the entire transfer channel 3, and when the potential of the transfer electrode 6 decreases, excess charge can be accumulated. can be discarded to the overflow drain side.

第1図中36で示したのはフォトダイオードに蓄積され
時間tFS内に読み出された電荷、37はtFSの期間
内に光電変換され、信号成分として使われる電荷、38
は過大光照射時にt、8期間で発生した過剰電荷でtF
S期間経過後にオーバフロードレイン4に捨てられるも
のをそれぞれ示している。
In Fig. 1, 36 indicates the charge stored in the photodiode and read out within the time tFS, 37 indicates the charge photoelectrically converted within the period tFS and is used as a signal component, and 38
is the excess charge generated during the period t and 8 during excessive light irradiation, and tF
Each of the figures shows what is discarded into the overflow drain 4 after the S period has passed.

ここで期間tFSのシフトパルス電圧の印加によって転
送電極6下の埋め込みチャネル3に読み出される電荷f
ftQ3は次の式で表わされる。
Here, charge f is read out to the buried channel 3 under the transfer electrode 6 by applying a shift pulse voltage for a period tFS.
ftQ3 is expressed by the following formula.

Q8=ηI p  (i   + t r6)−’−”
−”’(T p≦IP、>NT =ηI  t  +Q   (IPHくIP <l5H
)P   FS    PH −QIH(lSHくIP ) ここにη  :光電変換係数、 ■、 :照射光強度、 I   :Q  =01Hとなる照射光強度、3M  
    S t  :シフトパルスが印加されないフオHT トダイオードの蓄積閘門、 Q  :最終飽和電荷量である。
Q8=ηI p (i + t r6)−'−”
−”'(T p≦IP, >NT = ηI t +Q (IPH
) P FS PH −QIH (lSH × IP ) where η : Photoelectric conversion coefficient, ■, : Irradiation light intensity, I : Irradiation light intensity for which Q = 01H, 3M
S t : Storage gate of the photo diode to which no shift pulse is applied, Q : Final saturation charge amount.

H したがってIPがIPHくIPくIsHの期間ではQ 
はI とt の積に比例し、tFSの時間を適S   
  P     FS 宜選択することによって光電変換曲線の傾きQ3/ηt
FSを設定することができる。
H Therefore, in the period when IP is IPH x IP x IsH, Q
is proportional to the product of I and t, and if the time of tFS is
By selecting P FS as appropriate, the slope of the photoelectric conversion curve Q3/ηt
FS can be set.

第5図はその様子を示したもので、第2図(a)(b)
、(C)に対応して読出し電荷量直線41゜42.43
が定められることがわかる。また、この光電変換曲線は
IPHにおいて折れ曲り点を有するニー特性を持ってい
ることがわかる。
Figure 5 shows this situation, and Figures 2 (a) and (b)
, (C), the read charge amount straight line 41°42.43
It can be seen that is determined. Further, it can be seen that this photoelectric conversion curve has a knee characteristic with a bending point at IPH.

また、QpHの電荷量はオーバフロー制御ゲートの高さ
によって異なるから、オーバフロー制御ゲート7の電位
を変えることによりニー曲線の折れ曲り点(ニーポイン
ト)を変えることができる。
Furthermore, since the amount of charge of QpH varies depending on the height of the overflow control gate, the bending point (knee point) of the knee curve can be changed by changing the potential of the overflow control gate 7.

第6図はその様子を示すグラフであって、オーバフロー
電位v1.V  、V  (V、>V2>V3)に対応
してニーポイントが51.52.53と変わっているこ
とがわかる。
FIG. 6 is a graph showing this situation, and shows the overflow potential v1. It can be seen that the knee point changes to 51.52.53 corresponding to V and V (V,>V2>V3).

なお、ニーポイントの変動はシフトパルス電圧を低くし
ても実現できる。
Note that the knee point can be varied by lowering the shift pulse voltage.

第6図は本発明の駆動方法を可能ならしめる固体囮偉シ
ステムを示すもので、固体撮像装置61にこれを駆動す
るための駆動パルス発生回路62と読出した信号を処理
する信号処理回路63とが接続された通常の構成に加え
て光量を検出する光量検出器65とその出力を入力して
読出しパルス幅を設定する読出しパルス幅設定回路64
が設けられ駆動パルス発生回路62との間で信号を交換
している。ここで光量検出器は例えばフォトトランジス
タであって被写体の平均光量を検出し、読出しパルス幅
設定回路は例えばカウンタを備えて得られた光量によっ
て適当なカウント値を駆動パルス発生回路に送り適当な
時間幅を有する読出しパルスを発生させるものである。
FIG. 6 shows a solid-state decoy system that enables the driving method of the present invention, which includes a solid-state imaging device 61, a driving pulse generation circuit 62 for driving the solid-state imaging device 61, and a signal processing circuit 63 for processing read signals. In addition to the normal configuration in which a light amount detector 65 is connected to detect the amount of light, and a read pulse width setting circuit 64 that inputs the output and sets the read pulse width.
is provided to exchange signals with the drive pulse generation circuit 62. Here, the light amount detector is, for example, a phototransistor, which detects the average light amount of the subject, and the readout pulse width setting circuit is equipped with, for example, a counter, and sends an appropriate count value to the drive pulse generation circuit according to the obtained light amount. This generates a read pulse having a width.

なお、特別の光量検出器を用いず、第6図の点線で示す
ように固体撮像装置中の特定画素出力により読出しパル
ス幅を設定することも可能である。
Note that it is also possible to set the readout pulse width by the output of a specific pixel in the solid-state imaging device, as shown by the dotted line in FIG. 6, without using a special light amount detector.

以上のように、任意のニー特性は読出しパルスtFSの
時間、オーバフロー電位、読出し電位を適宜選択するこ
とにより得ることができ、所望のダイナミックレンジを
有する固体1I11@装置の読出し駆動が可能になる。
As described above, arbitrary knee characteristics can be obtained by appropriately selecting the time of the read pulse tFS, the overflow potential, and the read potential, making it possible to read out a solid-state 1I11@ device having a desired dynamic range.

また、電荷転送装置の最大転送電荷量QTHを読出し最
大電荷ff101Nよりも大きく設計しておき、オーバ
フロードレインが有効に作用するようにしておくことに
より過剰電荷のあふれ出しくブルーミング)を確実に防
止することができ、ブルーミング防止ドレインを有する
フォトダイオードを備えた固体@像装買にも本発明を適
用することができる。
In addition, by reading the maximum transfer charge amount QTH of the charge transfer device and designing it to be larger than the maximum charge ff101N so that the overflow drain functions effectively, overflow of excess charge (blooming) can be reliably prevented. The present invention can also be applied to solid-state imaging devices with photodiodes having anti-blooming drains.

さらに縦型オーバフロードレイン構造の固体撮像装置等
のオーバフロー電位制御効率の劣るものに対してはオー
バフロー電位を固定化できる本発明は最適である。
Further, the present invention, which can fix the overflow potential, is most suitable for solid-state imaging devices having a vertical overflow drain structure, which have poor overflow potential control efficiency.

(発明の効果) 以上のように本発明にかかる固体11a(!Q装置の駆
動方法によれば、過剰電荷排出手段の障壁電位を読取だ
めの読出時のシフト電極電位より低くし、かつ続出期間
を規定するパルス幅を光照射強度に応じて変えるように
しているので、過剰電荷排出手段の複雑な制御を行なう
ことなくダイナミックレンジの広い固体搬像装置の読出
しが可能となる。
(Effects of the Invention) As described above, according to the driving method of the solid state 11a (! Since the pulse width that defines the pulse width is changed in accordance with the light irradiation intensity, it is possible to read out a solid-state image transfer device with a wide dynamic range without performing complicated control of the excess charge discharging means.

また、過剰電荷排出手段の?12雑な制御が不要である
ため縦型オーバフロードレインを有する固体撮像装置へ
の適用が容易となる。
Also, is there a means of draining excess charge? 12 Since no complicated control is required, the present invention can be easily applied to a solid-state imaging device having a vertical overflow drain.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する電位分布図、第2図は
転送電極6に印加されるパルスを示す波形図、第3図は
固体!li@装欝の平面図、第4図はその断面図、第5
図は本発明にJ3ける光強度と読出し電荷量との関係を
示すグラフ、第6図はニーポイントを変更する様子を示
すグラフ、第7図は本発明を実現する装置の構成を示す
ブロック図、第8図は固体搬像装置の断面図、第9図お
よび第10図は従来の固体搬像装置の動作を示す電位分
布図、第11図は従来用いられている制御パルスを示す
波形図、第12図は時間と蓄ft?+電荷組との関係を
示すグラフ、第13図はニー特性を説明するグラフ、第
14図は縦型オーバフロードレインを有する固体撮像装
置の一例を示す断面図である。 1・・・基板、2・・・フォトダイオード、3・・・転
送チャネル、4・・・オーバフロードレイン、5・・・
シフトヂレネル、6・・・転送ゲート、7・・・オーバ
フロー制御ゲート、51.52.53・・・ニーポイン
ト。 出願人代理人  佐  藤  −雄 鳥1図 為2図 も3図 尾ヰ図 艷6図  7′− 第7図
FIG. 1 is a potential distribution diagram explaining the present invention in detail, FIG. 2 is a waveform diagram showing pulses applied to the transfer electrode 6, and FIG. 3 is a solid state! The plan view of li@sou, Figure 4 is its sectional view, and Figure 5 is
The figure is a graph showing the relationship between light intensity and readout charge amount in J3 of the present invention, Figure 6 is a graph showing how the knee point is changed, and Figure 7 is a block diagram showing the configuration of a device realizing the present invention. , FIG. 8 is a sectional view of a solid-state image transfer device, FIGS. 9 and 10 are potential distribution diagrams showing the operation of a conventional solid-state image transfer device, and FIG. 11 is a waveform diagram showing conventionally used control pulses. , Figure 12 shows time and savings in ft? FIG. 13 is a graph showing the relationship with the + charge group, FIG. 13 is a graph explaining knee characteristics, and FIG. 14 is a cross-sectional view showing an example of a solid-state imaging device having a vertical overflow drain. DESCRIPTION OF SYMBOLS 1...Substrate, 2...Photodiode, 3...Transfer channel, 4...Overflow drain, 5...
Shift channel, 6... Transfer gate, 7... Overflow control gate, 51.52.53... Knee point. Applicant's Representative Sato - Rooster 1 Figure 2 Figure 3 Tail Figure 6 Figure 7'- Figure 7

Claims (1)

【特許請求の範囲】 1、入射光を光電変換して信号電荷を発生すると共にこ
の信号電荷を蓄積する電荷蓄積層を有する複数の光電変
換部と、この光電変換部に蓄積された信号電荷を読み出
す蓄積領域を伴った電荷読出手段と、前記光電変換部で
発生した過剰電荷を排出する過剰電荷排出手段とを備え
た固体撮像装置の駆動方法において、 前記電荷転送手段に印加される電荷読出期間を規定する
パルスの幅を光照射強度に応じて変動させると共に前記
過剰電荷排出手段の障壁電位を前記パルス印加時の電荷
読出手段の障壁電位よりも低くしたことを特徴とする固
体撮像装置の駆動方法。 2、過剰電荷排出手段の障壁電位が定電位で与えられた
ことを特徴とする特許請求の範囲第1項記載の固体撮像
装置の駆動方法。 3、電荷読出の蓄積領域における最大蓄積電荷量が電荷
読出手段の最大転送電荷量も小であることを特徴とする
特許請求の範囲第1項または第2項記載の固体撮像装置
の駆動方法。 4、電荷排出手段がその排出ドレインを光電変換部の深
部に設けた縦型オーバフロードレイン構造を有している
ことを特徴とする特許請求の範囲第1項ないし第3項の
いずれかに記載の固体撮像装置の駆動方法。
[Claims] 1. A plurality of photoelectric conversion sections each having a charge storage layer that photoelectrically converts incident light to generate signal charges and accumulates the signal charges; In a method for driving a solid-state imaging device, the solid-state imaging device includes a charge readout means with an accumulation region to be read out, and an excess charge discharge means for discharging excess charge generated in the photoelectric conversion section, comprising: a charge readout period applied to the charge transfer means; Driving a solid-state imaging device, characterized in that the width of the pulse that defines the pulse is varied in accordance with the intensity of light irradiation, and the barrier potential of the excess charge discharging means is lower than the barrier potential of the charge reading means when the pulse is applied. Method. 2. The method for driving a solid-state imaging device according to claim 1, wherein the barrier potential of the excess charge discharge means is given at a constant potential. 3. The method for driving a solid-state imaging device according to claim 1 or 2, wherein the maximum amount of charge stored in the storage region for charge readout is also smaller than the maximum amount of charge transferred by the charge readout means. 4. The device according to any one of claims 1 to 3, wherein the charge discharge means has a vertical overflow drain structure in which the discharge drain is provided deep in the photoelectric conversion section. A method for driving a solid-state imaging device.
JP60297022A 1985-12-28 1985-12-28 Driving method for solid-state image pickup device Granted JPS62157479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60297022A JPS62157479A (en) 1985-12-28 1985-12-28 Driving method for solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60297022A JPS62157479A (en) 1985-12-28 1985-12-28 Driving method for solid-state image pickup device

Publications (2)

Publication Number Publication Date
JPS62157479A true JPS62157479A (en) 1987-07-13
JPH0473834B2 JPH0473834B2 (en) 1992-11-24

Family

ID=17841214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60297022A Granted JPS62157479A (en) 1985-12-28 1985-12-28 Driving method for solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS62157479A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157581A (en) * 1986-12-22 1988-06-30 Hamamatsu Photonics Kk Solid-state image pickup element
JPH04168882A (en) * 1990-11-01 1992-06-17 Canon Inc Image pickup device having gradation control function
US5166800A (en) * 1990-03-26 1992-11-24 Olympus Optical Co., Ltd. Solid-state imaging device having a widened dynamic range
US6486460B1 (en) 1998-09-11 2002-11-26 Nec Corporation Solid-state image sensing device and method of driving the same
US6760073B1 (en) 1998-09-18 2004-07-06 Nec Electronics Corporation Solid-state image sensor
JP2006074663A (en) * 2004-09-06 2006-03-16 Renesas Technology Corp Solid-state imaging apparatus
JP2007081818A (en) * 2005-09-14 2007-03-29 Renesas Technology Corp Solid-state image sensing device and its driving method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157581A (en) * 1986-12-22 1988-06-30 Hamamatsu Photonics Kk Solid-state image pickup element
JPH0511828B2 (en) * 1986-12-22 1993-02-16 Hamamatsu Photonics Kk
US5166800A (en) * 1990-03-26 1992-11-24 Olympus Optical Co., Ltd. Solid-state imaging device having a widened dynamic range
JPH04168882A (en) * 1990-11-01 1992-06-17 Canon Inc Image pickup device having gradation control function
US6486460B1 (en) 1998-09-11 2002-11-26 Nec Corporation Solid-state image sensing device and method of driving the same
US6760073B1 (en) 1998-09-18 2004-07-06 Nec Electronics Corporation Solid-state image sensor
JP2006074663A (en) * 2004-09-06 2006-03-16 Renesas Technology Corp Solid-state imaging apparatus
JP4529027B2 (en) * 2004-09-06 2010-08-25 ルネサスエレクトロニクス株式会社 Solid-state imaging device
JP2007081818A (en) * 2005-09-14 2007-03-29 Renesas Technology Corp Solid-state image sensing device and its driving method
JP4658755B2 (en) * 2005-09-14 2011-03-23 ルネサスエレクトロニクス株式会社 Solid-state imaging device and driving method thereof

Also Published As

Publication number Publication date
JPH0473834B2 (en) 1992-11-24

Similar Documents

Publication Publication Date Title
US4450484A (en) Solid states image sensor array having circuit for suppressing image blooming and smear
EP0186162B1 (en) Solid state image sensor
JPS6369267A (en) Solid-state image sensing device
JPH05502778A (en) Anti-blooming structure for solid-state image sensor
KR20010039867A (en) Driving method of solid-state image pickup device and image pickup system
JPS62157479A (en) Driving method for solid-state image pickup device
US5270558A (en) Integrated electronic shutter for charge-coupled devices
US4985776A (en) Method of driving solid-state imaging element
JPH022793A (en) Two-dimensional ccd image pickup element driving method
US4860326A (en) Solid-state image pickup device
JPH01500471A (en) Electronic shutter for image sensor using photodiode
Hynecek Design and performance of a high-resolution image sensor for color TV applications
US4670766A (en) Anti-blooming image sensor
JPS6058779A (en) Solid-state image pickup device
JPH0150156B2 (en)
JP3366634B2 (en) Integrated electronic shutter for charge-coupled devices
JPS59105779A (en) Solid-state image pickup device
JPS61174765A (en) Solid image pickup device
JP2758739B2 (en) Driving method of solid-state imaging device
JPS5586273A (en) Solid-state pickup unit
JP2000138865A (en) Method and system for extending dynamic range or ccd image pickup device
JPH0221783A (en) Drive method for solid-state image pickup element
JP2000101060A (en) Solid-state image sensing element and control method thereof
JPS6298876A (en) Drive method for solid-state image pickup device
JPH035672B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees