JPS6215519B2 - - Google Patents

Info

Publication number
JPS6215519B2
JPS6215519B2 JP57136916A JP13691682A JPS6215519B2 JP S6215519 B2 JPS6215519 B2 JP S6215519B2 JP 57136916 A JP57136916 A JP 57136916A JP 13691682 A JP13691682 A JP 13691682A JP S6215519 B2 JPS6215519 B2 JP S6215519B2
Authority
JP
Japan
Prior art keywords
polycrystal
crystal
temperature
single crystal
giant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57136916A
Other languages
Japanese (ja)
Other versions
JPS5926993A (en
Inventor
Takeshi Hirota
Harufumi Sakino
Eiichi Hirota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57136916A priority Critical patent/JPS5926993A/en
Publication of JPS5926993A publication Critical patent/JPS5926993A/en
Publication of JPS6215519B2 publication Critical patent/JPS6215519B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸化物単結晶の製造方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for producing an oxide single crystal.

従来例の構成とその問題点 現在、酸化物単結晶として、磁気記録用磁気ヘ
ツド材料のフエライト単結晶、水晶発振素子、レ
ーザ用YAG単結晶、センサ、表面波デバイス用
LiNbO3、LiTaO3単結晶等が、電子・機械工業の
分野で多数使われている。たとえば、特に単結晶
フエライトのうち、Mn−Zn−フエライトは、そ
の結晶方向の違いによる機械的特性(耐摩耗性、
面荒れ性等)、および磁気的特性等を有効に利用
して、オーデイオ・ビデオテープレコーダ、コン
ピユータ用磁気デイスク等の磁気ヘツド材料とし
て、広く使用されている。特に単結晶フエライト
は、多結晶フエライトと比べ、磁気ヘツド加工時
に発生するチツピング、カケ等が少なく、歩留り
よく生産されている。
Conventional configurations and their problems Currently, oxide single crystals are used in ferrite single crystals for magnetic head materials for magnetic recording, crystal oscillation elements, YAG single crystals for lasers, sensors, and surface wave devices.
LiNbO 3 , LiTaO 3 single crystals, etc. are widely used in the fields of electronic and mechanical industries. For example, among single-crystal ferrites, Mn-Zn-ferrite has mechanical properties (wear resistance,
It is widely used as a magnetic head material for audio/video tape recorders, magnetic disks for computers, etc. by effectively utilizing its surface roughness (surface roughness, etc.) and magnetic properties. In particular, single-crystal ferrite produces fewer chips, chips, etc. that occur during magnetic head processing than polycrystalline ferrite, and is produced at a higher yield.

従来の単結晶製造法には、チヨクラルスキー
法、ブリツジマン法、ベイヌーイ法、フラツクス
法、水熱合成法、高温高圧反応法等各種の方法が
ある。ところで、従来、単結晶フエライトは、ブ
リツジマン法で製造されるのが一般的であつた、
このブリツジマン法は、原料フエライトを一度融
点以上に加熱して溶解し、次に徐々に低温度部を
通過させることにより、液相から固相折出を行な
わせ、単結晶を得るものである。よつて、高温度
に耐え得る原料融解用ルツボが必要であり、フエ
ライト単結晶製造の場合では、白金製ルツボが用
いられている。この白金製ルツボの使用のため、
単結晶フエライトは高価なものになつている。さ
らに、通常のブリツジマン法では、結晶方位の制
御がかなり困難であり、単結晶を加工する際、利
用できる部分が減少して歩留りが低下する原因と
なつている。
Conventional methods for producing single crystals include various methods such as the Czyochralski method, the Bridgeman method, the Beinoulli method, the flux method, the hydrothermal synthesis method, and the high temperature and high pressure reaction method. By the way, conventionally, single crystal ferrite was generally produced by the Bridgeman method.
In this Bridgeman method, the raw material ferrite is heated once to a temperature above its melting point to melt it, and then gradually passed through a low-temperature section to perform solid phase precipitation from the liquid phase to obtain a single crystal. Therefore, a crucible for melting raw materials that can withstand high temperatures is required, and in the case of producing ferrite single crystals, platinum crucibles are used. Because of the use of this platinum crucible,
Single crystal ferrite has become expensive. Furthermore, in the ordinary Bridgeman method, it is quite difficult to control the crystal orientation, and when processing a single crystal, the usable area decreases, causing a decrease in yield.

発明の目的 本発明は上記従来の欠点を解消するもので、上
記ブリツジマン法の欠点を補い、液相から固相へ
の析出という過程を経ずに、固相から固相への反
応によつて、組成偏析が少なく、均質に制御され
た結晶方位を有する単結晶を、高歩留りで多量に
生産する方法を提供することを目的とするもので
ある。
Purpose of the Invention The present invention is intended to solve the above-mentioned drawbacks of the conventional Bridgeman method. The object of the present invention is to provide a method for producing large quantities of single crystals with a high yield and low compositional segregation and uniformly controlled crystal orientation.

発明の構成 上記目的を達成するため、本発明の酸化物単結
晶の製造方法は、酸化物単結晶と、この酸化物単
結晶と同一組成またはそれに近い組成で、この酸
化物単結晶と同一結晶構造を有し、かつ加熱する
とある特定の温度Tcから緩やかに多結晶の一部
から巨大結晶粒子が発生する粒成長を示す酸化物
多結晶とを接合し、アルゴンガスもしくは窒素ガ
スの少なくともいずれか一方を主成分とする雰囲
気中において、前記接合体に対して巨大結晶粒が
生じ始める温度よりも高い温度で加熱処理を施し
て、前記酸化物多結晶を単結晶とするものであ
る。
Composition of the Invention In order to achieve the above object, the method for producing an oxide single crystal of the present invention includes an oxide single crystal, a crystal having the same composition as this oxide single crystal or a composition close to it, and a crystal having the same composition as this oxide single crystal. An oxide polycrystal which has a structure and exhibits grain growth in which giant crystal grains are gradually generated from a part of the polycrystal when heated at a certain temperature T c is bonded, and at least either argon gas or nitrogen gas is used. The oxide polycrystal is made into a single crystal by subjecting the bonded body to a heat treatment in an atmosphere containing one of the two as a main component at a temperature higher than the temperature at which giant crystal grains begin to form.

本発明の製造法を、さらに詳しく説明する。第
1図は、本発明で用いる接合体の概略を示すもの
のひとつである。第1図aは外観を示し、bは単
結晶化熱処理後の接合体の中央部切断面を模式的
に示したもので、1は一対の薄板状の単結晶、2
は両単結晶1間に挾まれるとともに単結晶化熱処
理を受ける多結晶、3は多結晶2から単結晶化し
た部分、Lは単結晶1と多結晶2の接合境界から
測つた単結晶化した部分3の長さ、4は多結晶2
表面から成長した巨大結晶粒子である。
The manufacturing method of the present invention will be explained in more detail. FIG. 1 shows one of the outlines of the conjugate used in the present invention. Fig. 1a shows the external appearance, and b schematically shows the central cut section of the joined body after heat treatment for single crystallization, in which 1 is a pair of thin plate-like single crystals, 2
is a polycrystal sandwiched between both single crystals 1 and subjected to single crystallization heat treatment, 3 is a single crystallized portion from polycrystal 2, and L is a single crystallized portion measured from the junction boundary between single crystal 1 and polycrystal 2. The length of the part 3, 4 is the polycrystalline 2
They are giant crystal grains that grow from the surface.

第2図において、曲線Bは、本発明で用いる多
結晶を、ArガスもしくはN2ガスを主成分とする
雰囲気下で、3時間加熱したときの、加熱温度に
対する多結晶の平均結晶粒径を示したものであ
る。また、曲線Aは、たとえばフエライトにおけ
る、特開昭55−162496号公報でいう「異常粒成
長」による多結晶の結晶粒の成長を示すものであ
る。又、曲線Cは特開昭55−162496号公報でいう
「連続結晶粒子成長」による多結晶の結晶粒の成
長を示すものである。なお、加熱時間の3時間
は、実際の製造時における加熱処理時間としたも
のである。
In Fig. 2, curve B shows the average crystal grain size of the polycrystal as a function of the heating temperature when the polycrystal used in the present invention is heated for 3 hours in an atmosphere mainly composed of Ar gas or N 2 gas. This is what is shown. Curve A shows the growth of polycrystalline grains in ferrite, for example, due to "abnormal grain growth" as referred to in Japanese Patent Application Laid-Open No. 162496/1983. Curve C shows the growth of polycrystalline grains by "continuous grain growth" as described in JP-A-55-162496. Note that the heating time of 3 hours is the heat treatment time during actual manufacturing.

第3図は、第2図の曲線Bで示される多結晶の
結晶粒子の粒成長の様子を示したもので、第2図
で示された各温度T1、Tc、T2、T3における多結
晶内部切断面を、aからdに向けて順に模式的に
表わしている。ここでTcは、本発明で用いる多
結晶が巨大結晶の粒成長を開始する温度であり、
T1はTcより20〜50℃低い温度、T2はTcとT3
ほぼ中間の温度で、多結晶の表面全体が巨大結晶
粒で被われてしまう温度である。ただし、T3
は、多結晶全体が巨大結晶粒から構成されるよう
になる温度である。これらの温度における多結晶
の様子は、第3図を参照すると容易に理解される
ものである。
FIG. 3 shows the grain growth of polycrystalline grains shown by curve B in FIG. 2. At each temperature T 1 , T c , T 2 , T 3 shown in FIG. The internal cut planes of the polycrystal are schematically shown in order from a to d. Here, T c is the temperature at which the polycrystal used in the present invention starts grain growth of giant crystals,
T 1 is a temperature 20 to 50° C. lower than T c , and T 2 is a temperature approximately between T c and T 3 , which is a temperature at which the entire surface of the polycrystal is covered with giant crystal grains. However, T 3
is the temperature at which the entire polycrystal is composed of giant grains. The appearance of polycrystals at these temperatures can be easily understood by referring to FIG.

第2図の曲線Aの異常粒成長多結晶は、温度T
cになるまでほとんど粒成長をおこさず、Tcに達
すると、突発的に、一部の巨大結晶がその周囲の
微結晶を食つて、いつきに非常に大きくなるもの
である。この巨大結晶は、第3図に示すような多
結晶の表面からの発生に限定されることなく、内
部からも一様に発生するものである。
The abnormal grain growth polycrystal of curve A in FIG.
Grain growth hardly occurs until T c is reached, and some giant crystals suddenly eat surrounding microcrystals and suddenly become very large. These giant crystals are not limited to being generated from the surface of the polycrystal as shown in FIG. 3, but are uniformly generated from the inside as well.

本発明は第2図の曲線Aに示すような異常成長
多結晶を用いず、曲線Bに示すようないわゆる二
重構造(Duplex構造)的な粒成長をする多結晶
を用いることによる、新しい酸化物単結晶の製造
方法を提案するものである。
The present invention does not use abnormally grown polycrystals as shown in curve A of FIG. 2, but uses polycrystals with so-called duplex structure grain growth as shown in curve B. This paper proposes a method for manufacturing monocrystalline monocrystals.

また本発明は、このように第2図の曲線Bのよ
うな粒成長を示す多結晶を用いるに加え、加熱処
理温度をTc以上、好ましくはT3以下、よつてTc
からT3までの温度範囲のもとで加熱処理し、さ
らに加熱処理雰囲気を適当に制御するものであ
る。
In addition to using polycrystals exhibiting grain growth as shown in curve B in FIG .
The heat treatment is carried out in a temperature range from 3 to T3, and the heat treatment atmosphere is appropriately controlled.

ところで、単結晶と多結晶を接合し、加熱処理
して単結晶化させる接合型単結晶の製造に際し、
第2図の曲線Aで示される異常粒成長多結晶を用
いる場合では、Tc未満の温度にて加熱処理する
ことにより、単結晶と多結晶の接合界面から、多
結晶側に向かつて単結晶化が進む。一方Tc以上
の温度で加熱処理すると、多結晶内部に巨大結晶
粒がいつきに発生し、多結晶全体にわたつて成長
し、単結晶化が阻害されたり、単結晶化しても、
その内部に島状の結晶粒が残存したりして、均質
な単結晶が得られなくなる。通常、接合型単結晶
の製造に際し、多結晶の結晶粒径が小さければ小
さい程、接合界面から多結晶中心部に向かつて単
結晶化の界面が移動する時に受ける駆動力が大き
くなるため、この多結晶は熱処理中粒径が小さく
一定であることが求められる。よつてTc未満の
温度で加熱処理する必要がある。
By the way, when manufacturing a bonded single crystal in which a single crystal and a polycrystal are bonded and heat-treated to form a single crystal,
When using an abnormally grown polycrystal as shown by curve A in Fig. 2, heat treatment at a temperature lower than Tc allows the single crystal to move from the bonding interface between the single crystal and the polycrystal toward the polycrystal side. is becoming more and more popular. On the other hand, if heat treatment is performed at a temperature higher than T c , giant crystal grains will eventually occur inside the polycrystal and grow throughout the polycrystal, inhibiting single crystallization or even after single crystallization.
Island-like crystal grains may remain inside the crystal, making it impossible to obtain a homogeneous single crystal. Normally, when manufacturing bonded single crystals, the smaller the polycrystal grain size, the greater the driving force received when the single crystallization interface moves from the bonding interface toward the center of the polycrystal. Polycrystals are required to have a small and constant grain size during heat treatment. Therefore, it is necessary to perform the heat treatment at a temperature lower than T c .

本発明で用いる多結晶は、第2図の曲線Bで示
されるような多結晶の一部分から巨大結晶粒子が
発生して粒成長をする多結晶であるため、加熱処
理温度はTc未満で行なう必要はなく、Tc以上の
温度で加熱処理した方が、単結晶化速度(単結晶
−多結晶界面移動速度)が増大する。しかし、あ
まり加熱処理温度を上げすぎて、T3の温度以上
になると、多結晶の内部の結晶粒成長のため、先
程述べた理由から、逆に単結晶化が阻害された
り、島状の結晶粒が単結晶化した部分に取り残さ
れたりするため、均質な単結晶が得られにくくな
る。よつて本発明では、Tc以上、好ましくは、
cからT3までの温度領域で加熱処理するもので
ある。この温度では、表面に現われる巨大結晶粒
子は、単結晶と多結晶の接合界面では発生せず、
接合界面以外の端面においてのみ発生する。ただ
し、本発明の製造法では、単結晶化速度が、巨大
結晶粒子が粒成長する速度より著しく大きいた
め、第1図bに見られるような単結晶化が進むも
のである。
Since the polycrystal used in the present invention is a polycrystal in which giant crystal grains are generated from a part of the polycrystal and undergo grain growth as shown by curve B in Fig. 2, the heat treatment temperature is performed at a temperature lower than T c . It is not necessary, and the single crystallization rate (single crystal-polycrystal interface movement rate) increases when the heat treatment is performed at a temperature higher than Tc . However, if the heat treatment temperature is raised too much and the temperature exceeds T 3 , crystal grains will grow inside the polycrystal, and for the reasons mentioned earlier, single crystallization will be inhibited or island-shaped crystals will form. Since the grains are left behind in the single crystallized area, it becomes difficult to obtain a homogeneous single crystal. Therefore, in the present invention, T c or more, preferably,
Heat treatment is performed in a temperature range from T c to T 3 . At this temperature, giant crystal grains that appear on the surface do not occur at the junction interface between single crystal and polycrystal;
This occurs only at end faces other than the bonding interface. However, in the production method of the present invention, the single crystallization rate is significantly higher than the growth rate of giant crystal grains, so single crystallization as seen in FIG. 1b progresses.

本発明で用いる多結晶はArガスまたはN2ガス
の少なくともいずれか一方の雰囲気中で加熱処理
すると、単結晶化速度が増大する。この多結晶
は、他の雰囲気、たとえば空気中で加熱処理する
と、接合界面から多結晶の中心部へ向かう単結晶
化が生じなかつたり、単結晶化が進んでも著しく
(1/50〜1/100)成長速度が小さくなるものであ
る。ただし、ArガスまたはN2ガスに若干(0.001
〜1.0体積%)のH2ガスを混合すると、多結晶に
よつては単結晶化速度が大きくなるものもある。
When the polycrystal used in the present invention is heat-treated in an atmosphere of at least one of Ar gas and N 2 gas, the single crystallization rate increases. When this polycrystal is heat-treated in other atmospheres, such as air, single crystallization from the bonding interface toward the center of the polycrystal does not occur, or even if single crystallization progresses, it is significantly reduced (1/50 to 1/100 ) The growth rate decreases. However, some (0.001
For some polycrystals, the rate of single crystallization increases when H2 gas (~1.0% by volume) is mixed.

前述のように、本発明では、ある一定の加熱時
間内(1〜12時間の加熱処理時間内)で、第2図
の曲線Bに示すように、ある温度範囲(約50〜60
℃)内で、巨大結晶粒が発生、成長する領域を有
する多結晶を用いている。このような場合には、
熱処理温度を、巨大結晶粒が多結晶表面に発生す
る温度に設定した方が、短時間に結晶化が進み、
周辺部の巨大結晶部を除去することにより、中心
部の単結晶化した部分を有効に利用することがで
きる。
As mentioned above, in the present invention, within a certain heating time (within a heating treatment time of 1 to 12 hours), as shown by curve B in FIG.
A polycrystalline material having a region in which giant crystal grains are generated and grows within a temperature range of In such a case,
If the heat treatment temperature is set to a temperature at which giant crystal grains are generated on the polycrystalline surface, crystallization will proceed in a shorter time.
By removing the giant crystal portion at the periphery, the single crystal portion at the center can be effectively utilized.

本発明者等は、熱処理温度の設定に先立ち、
T1、Tc、T2、T3の各温度において、雰囲気、多
結晶の種類、加熱処理時間等、同一条件下で実験
を行ない、第1図bに示す単結晶化長さLを測定
した。長さLの測定は、加熱処理後の接合体を中
央部で切断し、切断面を鏡面研磨した後、強酸で
エツチングし、その表面を観察することにより行
なつた。各温度T1、Tc、T2、T3にて加熱処理し
た場合の長さLの値の比は、1:3:10:4であ
つた。ただし、T1、Tc、T2、T3は各々30℃間隔
であり、本実験で用いた多結晶ではTc=1300℃
であつた。T1では、加熱処理後の多結晶は、単
結晶化した部分と、微結晶粒子からなる部分とか
らなり、巨大結晶は見出されなかつた。Tc
は、第1図bのように、周辺部に一部巨大結晶粒
子4が発生していたが、単結晶化した部分3に
は、巨大結晶粒子4の発生は見出されなかつた。
確認のため、接合体を数個所薄く短冊状に切断
し、同様な方法で単結晶化部分を観察したが、巨
大結晶粒子4は見出されなかつた。T2の場合で
もTcの場合と同様であつた。T3では、単結晶化
した部分の界面前方に巨大結晶が存在し、界面の
移動を阻止していた。TcおよびT2における周辺
部の巨大結晶粒子4部分の最大長さは、単結晶化
長さLの1/10から1/20であり、ここを切断除去す
ることによつて、後の単結晶利用上何ら問題はな
く、したがつて、T2の近傍温度で加熱処理する
時が最も効率がよいことが判つた。
Prior to setting the heat treatment temperature, the present inventors
Experiments were conducted at each temperature of T 1 , T c , T 2 , and T 3 under the same conditions including atmosphere, type of polycrystal, heat treatment time, etc., and the single crystallization length L shown in Figure 1 b was measured. did. The length L was measured by cutting the heat-treated joined body at the center, mirror-polishing the cut surface, etching it with strong acid, and observing the surface. The ratio of length L values when heat treated at each temperature T 1 , T c , T 2 , T 3 was 1:3:10:4. However, T 1 , T c , T 2 , and T 3 are each 30°C apart, and in the polycrystalline used in this experiment, T c = 1300°C.
It was hot. At T 1 , the polycrystal after heat treatment consisted of a single crystallized portion and a portion consisting of microcrystalline particles, and no giant crystals were found. At T c , as shown in FIG. 1b, some giant crystal particles 4 were generated in the peripheral area, but no giant crystal particles 4 were found in the single crystallized portion 3.
For confirmation, the bonded body was cut into thin strips at several locations and the single crystallized portions were observed using the same method, but no giant crystal particles 4 were found. The case of T 2 was similar to the case of T c . In T 3 , a giant crystal existed in front of the interface of the single-crystalline part, blocking movement of the interface. The maximum length of the four portions of giant crystal grains at the periphery at T c and T 2 is 1/10 to 1/20 of the single crystallization length L, and by cutting and removing them, the subsequent single crystal grains can be There was no problem in using the crystal, and therefore it was found that heat treatment at a temperature near T 2 was most efficient.

本発明で製造された単結晶を、通常のブリツジ
マン法で製造されたものと比較すると、磁気特性
(透磁率、飽和磁束密度、抗磁力等)、電気特性
(電気抵抗)等について何ら差がなく、量産した
場合についても特性のバラツキが少なく、歩留り
の点では、ブリツジマン法より秀れたものであつ
た。このように、本発明の製造方法は、酸化物単
結晶の製法として非常に価値があることは明らか
である。
When the single crystal produced by the present invention is compared with that produced by the ordinary Bridgeman method, there is no difference in magnetic properties (magnetic permeability, saturation magnetic flux density, coercive force, etc.), electrical properties (electrical resistance), etc. Even when mass-produced, there was little variation in properties, and in terms of yield, it was superior to the Bridgeman method. Thus, it is clear that the manufacturing method of the present invention is extremely valuable as a method for manufacturing oxide single crystals.

実施例の説明 実施例 1 組成比が、52モル%Fe2O3、32モル%MnO、16
モル%ZnOで、第2図の曲線Bのような粒成長を
する結晶Mn−Zn−フエライトを、一般のセラミ
ツクスを作成する方法(原料配合→混合→仮焼→
粉砕→成形→本焼成)で作成した。本実施例で
は、本焼成として、ホツトプレス法(1270℃−
300Kg/cm2−3時間)を用いた。得られた多結晶
は、気孔率が0.01%で、平均結晶粒径が20μmで
あつた。これを30×20×15mm2の直方体に切断し、
30×20mm2の二面を、#2000メツシユおよび#4000
メツシユのSiC砥粒、粒径3μmのダイヤモンド
砥粒で研磨し、鏡面に仕上げた。一方、同じ組成
比を持ち、ブリツジマン法で作成した単結晶を、
厚さ1.0〜1.5mmで30×20mm2の面が〔100〕面に、
側面がそれぞれ〔110〕面になるように、薄板に
切断した。この単結晶薄板も、多結晶と同じ様
に、SiC砥粒、3μmダイヤモンド砥粒で研磨
し、鏡面に仕上げた。
Description of Examples Example 1 Composition ratio: 52 mol% Fe 2 O 3 , 32 mol% MnO, 16
A general method for making ceramics from crystalline Mn-Zn-ferrite with mol% ZnO and grain growth as shown in curve B in Figure 2 (raw material formulation → mixing → calcination →
It was created by crushing → molding → final firing). In this example, the hot press method (1270℃-
300Kg/cm 2 -3 hours). The obtained polycrystal had a porosity of 0.01% and an average grain size of 20 μm. Cut this into a rectangular parallelepiped of 30 x 20 x 15 mm2 ,
Two sides of 30 x 20 mm 2 , #2000 mesh and #4000
Polished with mesh SiC abrasive grains and diamond abrasive grains with a grain size of 3 μm to give a mirror finish. On the other hand, a single crystal with the same composition ratio and created by the Bridgeman method,
The thickness is 1.0 to 1.5 mm, and the 30 x 20 mm 2 surface is the [100] surface,
It was cut into thin plates so that each side was a [110] plane. This single-crystal thin plate was also polished to a mirror finish using SiC abrasive grains and 3 μm diamond abrasive grains, just like the polycrystalline one.

多結晶の直方体、単結晶の薄板とも清浄した
後、30×20mm2の接合面に希硝酸を塗布し、相互に
貼り合わせて接合体となし、これをアルミナパウ
ダに包んで型材の中に入れ、N2ガスを流した雰
囲気中で、接合面に垂直に加圧してホツトプレス
(1250℃−30Kg/cm2−30分)した。このホツトプ
レスにより、単結晶と多結晶は接合面で完全に固
相反応により固着した。このホツトプレス熱処理
では、単結晶化はおこらず、多結晶も粒成長して
いなかつた。
After cleaning both the polycrystalline rectangular parallelepiped and the single crystal thin plate, dilute nitric acid was applied to the joint surfaces of 30 x 20 mm 2 , and they were bonded together to form a joint, which was then wrapped in alumina powder and placed in a mold. , hot pressing (1250° C., 30 Kg/cm 2 , 30 minutes) was carried out by applying pressure perpendicular to the joint surfaces in an atmosphere in which N 2 gas was flowed. By this hot pressing, the single crystal and polycrystal were completely fixed at the joint surface by solid phase reaction. In this hot press heat treatment, single crystallization did not occur, and no polycrystalline grain growth occurred.

前もつて、この多結晶をN2ガス中で3時間加
熱処理し、巨大結晶が表面に発生する温度をチエ
ツクし、Tc=1300℃、T2=1360℃であることを
確認しておいたのち、先程の接合体を、N2ガス
雰囲気中で、1320℃で、3時間加熱処理した。加
熱処理後、接合体の中央部をダイヤモンドカツタ
で切断して取り出し、切断面を鏡面研磨し、50
℃、8規定の塩酸で2〜3分エツチングし、この
切断表面を観際した。単結晶化した長さLは3〜
4mmであり、周辺部の巨大結晶が多結晶の中心部
に向つて伸びた長さは0.2〜0.3mmであつた。
Previously, we heat-treated this polycrystal in N 2 gas for 3 hours, checked the temperature at which giant crystals were generated on the surface, and confirmed that T c = 1300°C and T 2 = 1360°C. After that, the bonded body was heat-treated at 1320° C. for 3 hours in an N 2 gas atmosphere. After heat treatment, the center of the bonded body is cut with a diamond cutter, the cut surface is mirror-polished, and
Etching was performed for 2 to 3 minutes with 8N hydrochloric acid at a temperature of 0.degree. C., and the cut surface was observed. The single crystallized length L is 3~
4 mm, and the length of the giant crystals at the periphery extending toward the center of the polycrystal was 0.2 to 0.3 mm.

比較のため、ホツトプレス後の接合体に対し、
加熱処理温度だけを1270℃、1360℃に変えて同様
の加熱処理を行なつた。この結果、1270℃の加熱
処理温度の場合では、単結晶化長さLは0.2〜0.3
mmであり、ほとんど単結晶化していなかつた。一
方1360℃の加熱処理温度の場合では、単結晶化長
さLは1mm程度であり、かつ多結晶内部は、粒径
が0.1〜1.0mm程度の巨大結晶粒子に粒成長してい
た。次に、加熱処理温度を1320℃一定とし、加熱
処理雰囲気のみを、Arガス、CO2ガス、空気中
と変えた加熱処理を行なつた。この結果、Arガ
ス中ではN2ガスと同程度に単結晶化したものが
得られ、CO2ガスおよび空気中では、強還元にな
りすぎたり、全然単結晶化が進行していなかつた
りしたものしか得られなかつた。
For comparison, for the joined body after hot pressing,
Similar heat treatments were carried out except that the heat treatment temperature was changed to 1270°C and 1360°C. As a result, in the case of a heat treatment temperature of 1270°C, the single crystallization length L is 0.2 to 0.3
mm, and was hardly single crystallized. On the other hand, in the case of the heat treatment temperature of 1360° C., the single crystallization length L was about 1 mm, and the inside of the polycrystal had grown into giant crystal grains with a grain size of about 0.1 to 1.0 mm. Next, heat treatment was performed at a constant heat treatment temperature of 1320° C., and only the heat treatment atmosphere was changed to Ar gas, CO 2 gas, or air. As a result, in Ar gas, a single crystal was obtained to the same extent as in N 2 gas, but in CO 2 gas and air, the reduction was too strong, or the single crystallization did not progress at all. All I could get was that.

さらに、本発明により製造された単結晶Mn−
Zn−フエライトを切り出し、磁気特性を測定し
た。透磁率は周波数1KHzで約8000、抗磁力は
0.05Oeであり、種子の単結晶と同じものであつ
た。
Furthermore, the single crystal Mn-
Zn-ferrite was cut out and its magnetic properties were measured. The magnetic permeability is approximately 8000 at a frequency of 1KHz, and the coercive force is
It was 0.05 Oe and was the same as the single crystal of the seed.

実施例 2 組成比が、51モル%Fe2O3、25モル%MnO、24
モル%ZnOで、第2図の曲線Bのような粒成長を
するもの(以下、「B多結晶」と呼ぶ)と、同組
成で曲線Aのような異常粒成長をするもの(以
下、「A多結晶」と呼ぶ)との二種類の多結晶
を、実施例1と同様な方法で作成した。これらと
同組成比を有する単結晶を準備し、実施例1と同
様な方法で、ホツトプレスにより接合体を得た。
これらB多結晶およびA多結晶は、ともに気孔率
は0.01%、平均結晶粒径は15μm、それぞれの巨
大結晶粒が発生、成長を始める温度Tcは同じ
1310℃であつた。B多結晶では、全体が巨大結晶
粒からなるときの温度T3は、1360℃であつた。
Example 2 Composition ratio: 51 mol% Fe 2 O 3 , 25 mol% MnO, 24
mol% ZnO with grain growth as shown in curve B in Figure 2 (hereinafter referred to as ``B polycrystals''), and those with the same composition that exhibit abnormal grain growth as shown in curve A (hereinafter referred to as ``B polycrystals''). Two types of polycrystals (referred to as "polycrystal A") were prepared in the same manner as in Example 1. Single crystals having the same composition ratio as these were prepared, and a bonded body was obtained by hot pressing in the same manner as in Example 1.
These B polycrystals and A polycrystals both have a porosity of 0.01%, an average crystal grain size of 15 μm, and the temperature T c at which each giant crystal grain starts to generate and grow is the same.
It was 1310℃. In the B polycrystal, the temperature T 3 when the whole was composed of giant crystal grains was 1360°C.

これら二種類の接合体を複数個ずつ準備し、
Arガス雰囲気下において、1280℃、1310℃、
1340℃で3時間加熱処理し、その後接合体の中央
部を切断して取り出し、鏡面研磨、エツチングを
行なつて、単結晶化の様子を観察した。A多結晶
を用いたものでは、1280℃で加熱処理した場合の
単結晶化長さLは2.0mmであり、B多結晶を用い
た場合も同じ2.0mmであつた。このとき、多結晶
の平均結晶粒径はほとんど同じ15μmであつた。
しかし、1310℃で加熱処理した場合では、A多結
晶を用いたものでは、多結晶内部に、1.0〜2.0mm
径の巨大結晶が発生し、単結晶化長さLは1.0mm
に留まつていた。一方B多結晶を用いたもので
は、接合界面以外の周辺部に巨大結晶が認められ
たが、その大きさは約0.2mm程度であり、単結晶
化長さLは2.5〜3.0mmであつた。1340℃で加熱処
理した場合では、A結晶を用いたものでは単結晶
化はほとんど認められず、平均結晶粒径が0.5mm
の巨大結晶のみからなつていた。一方B多結晶を
用いたものでは、単結晶化長さLは3.5〜4.0mmで
あり、周辺の巨大結晶粒の大きさは、約0.3〜0.4
であつた。なお比較のため第2図の曲線Cのよう
な粒成長をするのを用いて同様に1280℃〜1360℃
の温度範囲で単結晶化実験を行なつたが多結晶体
は単結晶化しなかつた。
Prepare multiple pieces of these two types of zygotes,
Under Ar gas atmosphere, 1280℃, 1310℃,
After heat treatment at 1340° C. for 3 hours, the joined body was cut at the center and taken out, mirror polished and etched, and the state of single crystallization was observed. In the case of using A polycrystal, the single crystallization length L when heat-treated at 1280° C. was 2.0 mm, and the same was 2.0 mm when B polycrystal was used. At this time, the average crystal grain size of the polycrystals was almost the same, 15 μm.
However, when heat treated at 1310℃, 1.0 to 2.0 mm of
A giant crystal with a diameter of 1.0 mm is generated, and the single crystal length L is 1.0 mm.
It stayed there. On the other hand, in the case using B polycrystal, giant crystals were observed in the peripheral area other than the bonding interface, but the size was about 0.2 mm, and the single crystallization length L was 2.5 to 3.0 mm. . When heat-treated at 1340°C, almost no single crystallization was observed in the A crystal, and the average crystal grain size was 0.5 mm.
It was made up only of giant crystals. On the other hand, in the case of using B polycrystal, the single crystallization length L is 3.5 to 4.0 mm, and the size of the surrounding giant crystal grains is about 0.3 to 0.4 mm.
It was hot. For comparison, we used a sample with grain growth as shown in curve C in Figure 2, and similarly
Single crystallization experiments were carried out in the temperature range of , but the polycrystalline material did not become single crystallized.

発明の効果 以上のように本発明によれば、液相から固相へ
の析出という過程を経ずに、固相から固相への反
応によるものであるため、組成偏析が少なく、均
質に制御された結晶方位を有する単結晶を得るこ
とができ、かつこの単結晶化成長速度を高めるこ
とができて、この単結晶を高歩留りで多量に生産
することができるのみならず、従来のブリツジマ
ン法における高温度(1600〜1750℃)を必要とし
ないため、白金ルツボのような高価な容器を用い
る必要はなく、焼成炉も通常のセラミツクス用の
ものを利用することができる。
Effects of the Invention As described above, according to the present invention, since the reaction occurs from a solid phase to a solid phase without going through the process of precipitation from a liquid phase to a solid phase, there is little compositional segregation and uniform control is achieved. It is possible to obtain a single crystal with a specific crystal orientation, increase the growth rate of this single crystal, and produce this single crystal in large quantities with a high yield. Since high temperatures (1600 to 1750°C) are not required, there is no need to use an expensive container such as a platinum crucible, and a firing furnace for ordinary ceramics can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは本発明で用いる単結晶−多結晶の接
合体の一例の外観を示す図、同図bは加熱処理後
の接合体の中央部断面の模式図、第2図は加熱処
理温度に対する粒成長の様子を示す図、第3図は
本発明で用いる多結晶の粒成長の様子を示す図で
ある。 1……単結晶、2……多結晶、3……単結晶化
した部分、4……巨大結晶粒子。
Figure 1a is a diagram showing the appearance of an example of a single-crystal-polycrystalline bonded body used in the present invention, Figure 1b is a schematic cross-sectional view of the central part of the bonded body after heat treatment, and Figure 2 is a diagram showing the heat treatment temperature. FIG. 3 is a diagram showing the grain growth of polycrystals used in the present invention. 1...Single crystal, 2...Polycrystal, 3...Single crystallized portion, 4...Giant crystal particle.

Claims (1)

【特許請求の範囲】 1 酸化物単結晶と、この酸化物単結晶と同一組
成またはそれに近い組成で、この酸化物単結晶と
同結晶構造を有し、かつ加熱するとある特定の温
度(Tc)から緩やかに多結晶の一部分から巨大
結晶粒子が発生する粒成長を示す酸化物多結晶と
を接合し、アルゴンガスもしくは窒素ガスの少な
くともいずれか一方を主成分とする雰囲気中にお
いて、前記接合体に対して、巨大結晶粒子を生じ
始める温度(Tc)よりも高い温度で加熱処理を
施して、前記酸化物多結晶を単結晶とすることを
特徴とする酸化物単結晶の製造方法。 2 酸化物単結晶および酸化物多結晶としてフエ
ライト磁性体を用いたことを特徴とする特許請求
の範囲第1項記載の酸化物単結晶の製造方法。
[Scope of Claims] 1. An oxide single crystal, which has the same composition as this oxide single crystal or a composition close to it, has the same crystal structure as this oxide single crystal, and has a temperature of a certain temperature (T c ) and an oxide polycrystal exhibiting grain growth in which giant crystal grains are gradually generated from a part of the polycrystal, and the bonded body is A method for producing an oxide single crystal, characterized in that the oxide polycrystal is converted into a single crystal by subjecting the oxide polycrystal to a heat treatment at a temperature higher than the temperature (T c ) at which giant crystal grains start to form. 2. The method for producing an oxide single crystal according to claim 1, characterized in that a ferrite magnetic material is used as the oxide single crystal and the oxide polycrystal.
JP57136916A 1982-08-05 1982-08-05 Preparation of oxide single crystal Granted JPS5926993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57136916A JPS5926993A (en) 1982-08-05 1982-08-05 Preparation of oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57136916A JPS5926993A (en) 1982-08-05 1982-08-05 Preparation of oxide single crystal

Publications (2)

Publication Number Publication Date
JPS5926993A JPS5926993A (en) 1984-02-13
JPS6215519B2 true JPS6215519B2 (en) 1987-04-08

Family

ID=15186568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57136916A Granted JPS5926993A (en) 1982-08-05 1982-08-05 Preparation of oxide single crystal

Country Status (1)

Country Link
JP (1) JPS5926993A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162496A (en) * 1979-05-31 1980-12-17 Ngk Insulators Ltd Manufacture of single crystal
JPS58156588A (en) * 1982-03-09 1983-09-17 Matsushita Electric Ind Co Ltd Preparation of single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162496A (en) * 1979-05-31 1980-12-17 Ngk Insulators Ltd Manufacture of single crystal
JPS58156588A (en) * 1982-03-09 1983-09-17 Matsushita Electric Ind Co Ltd Preparation of single crystal

Also Published As

Publication number Publication date
JPS5926993A (en) 1984-02-13

Similar Documents

Publication Publication Date Title
US4900393A (en) Process for producing single-crystal ceramics
JPS6215518B2 (en)
JPS6215519B2 (en)
JPS5926994A (en) Preparation of oxide single crystal
JPH0336798B2 (en)
JPS5978997A (en) Manufacture of oxide single crystal
JPS582289A (en) Manufacture of single crystal body
JPS6249647B2 (en)
JPS5918188A (en) Preparation of ferrite of single crystal
JPS59152285A (en) Preparation of single crystal
JPH0471874B2 (en)
JPH0211559B2 (en)
JPS6021892A (en) Substrate treated to form single crystal on surface and preparation thereof
JPS629559B2 (en)
JP2579728B2 (en) Method for producing Mn-Zn single crystal ferrite
JPS61146780A (en) Manufacture of single crystal
JPH0796476B2 (en) Manufacturing method of single crystal ferrite
JPH0243715B2 (en) TANKETSUSHONOSEIZOHO
JPS62216986A (en) Production of single crystal ferrite
JPS63182286A (en) Production of single crystal of oxide
JPS61101484A (en) Production of single crystal ferrite
JPS61236679A (en) Preparation of single crystal ferrite sphere
JPS63117985A (en) Production of single crystal of oxide
JPH04240195A (en) Production of single-crystalline ferrite
JPS62162686A (en) Production of oxide single crystal