JPS61146780A - Manufacture of single crystal - Google Patents

Manufacture of single crystal

Info

Publication number
JPS61146780A
JPS61146780A JP26853384A JP26853384A JPS61146780A JP S61146780 A JPS61146780 A JP S61146780A JP 26853384 A JP26853384 A JP 26853384A JP 26853384 A JP26853384 A JP 26853384A JP S61146780 A JPS61146780 A JP S61146780A
Authority
JP
Japan
Prior art keywords
single crystal
joined
temp
heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26853384A
Other languages
Japanese (ja)
Inventor
Hidetoshi Isaji
伊佐次 秀敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP26853384A priority Critical patent/JPS61146780A/en
Publication of JPS61146780A publication Critical patent/JPS61146780A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain the titled large-sized single crystal in good yield by polishing specularly the surface of a polycrystalline body and a single crystal to be joined, joining both ground surfaces to obtain a joined body, and heating the joined body in the specified temp. range and at a specified temp. increasing rate. CONSTITUTION:A mixture consisting of about 32mol% MnO, about 16mol% ZnO, and about 52mol% Fe2O3 is calcined to obtain a polycrystalline body of manganese, zinc, ferrite, etc. A ferrite single crystal having the composition almost identical to the polycrystalline body is prepared. Both polycrystalline body and single crystal are cut out into plates having about the same size, and both surfaces to be joined are ground with diamond abrasive grains. A strong acid such as hydrochloric acid is coated on both surfaces to be joined, and the polycrystal body and the single crystal are put on each other to obtain a joined body. The joined body joined as such is heated in the temp. range from 50 deg.C lower than the discontinuous grain growing temp. to 40 deg.C higher than the temp. and at the temp. increasing rate of 1-20 deg.C/hr to transform the whole polycrystalline body into a single crystal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多結晶体の均一な単結晶化に関するもので、
特にVTR等の磁気ヘッドに有用な単結晶フェライト等
の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to uniform single crystallization of polycrystals,
In particular, the present invention relates to a method of manufacturing single crystal ferrite useful for magnetic heads such as VTRs.

(従来の技術) 従来、単結晶の製造法として、本出願人は特開昭55−
162496号公報において固相反応法による単結晶製
造法を開示した。この製造法では、種となる単結晶と多
結晶体の接合面を鏡面研磨した後、塩酸、硝酸等の強酸
を接合面に介在させて接合し、多結晶体の不連続粒成長
温度未満の一定の温度で加熱して多結晶体を単結晶化し
ていた。
(Prior art) Conventionally, as a method for producing single crystals, the applicant has
No. 162496 discloses a single crystal production method using a solid phase reaction method. In this manufacturing method, the joint surfaces of the seed single crystal and polycrystalline material are mirror-polished, and then they are joined using a strong acid such as hydrochloric acid or nitric acid, which is lower than the discontinuous grain growth temperature of the polycrystalline material. Polycrystals were turned into single crystals by heating at a constant temperature.

第4図は典型的な熱処理スケジュールの例を示すグラフ
であり、T6は多結晶体の不連続粒成長温度未満のある
温度を示している。第4図に示すように、従来の熱処理
スケジュールでは接合体をT。
FIG. 4 is a graph showing an example of a typical heat treatment schedule, where T6 indicates a temperature below the discontinuous grain growth temperature of the polycrystalline material. As shown in FIG. 4, the conventional heat treatment schedule produces a bonded body of T.

まで昇温後、Toの温度に保持して加熱を行い多結晶体
を単結晶化していた。
After raising the temperature to a temperature of To, heating was performed while maintaining the temperature at To to convert the polycrystal into a single crystal.

(発明が解決しようとする問題点) 上述した製造法においては、種単結晶を核として多結晶
体方向に結晶成長させるために、その保持温度T0を多
結晶体の不連続結晶粒成長温度より2〜5℃低い温度に
設定して接合体をその温度に正確に保持する必要があっ
た。しかしながら、実際の生産に使用する電気炉等の熱
処理設備では、温度分布の良好なものでも2〜5℃の温
度分布のかたよりが存在しそれを防ぐことはできず、温
度分布不均一のため接合体自体に温度分布不均一が生じ
、接合体の一部が不連続成長温度未満であるにもかかわ
らず、他の部分が不連続成長温度を越えて異相の単結晶
を生成し均一な単結晶を得ることができない欠点があっ
た。
(Problems to be Solved by the Invention) In the above manufacturing method, in order to grow crystals in the direction of the polycrystal using the seed single crystal as a nucleus, the holding temperature T0 is set to be lower than the discontinuous grain growth temperature of the polycrystal. It was necessary to set the temperature 2-5° C. lower and hold the joined body precisely at that temperature. However, in heat treatment equipment such as electric furnaces used in actual production, even if the temperature distribution is good, there is a deviation of 2 to 5 degrees Celsius in the temperature distribution, and this cannot be prevented. Non-uniform temperature distribution occurs in the body itself, and even though part of the bonded body is below the discontinuous growth temperature, other parts exceed the discontinuous growth temperature, producing a single crystal with a different phase, resulting in a uniform single crystal. There was a drawback that it was not possible to obtain

さらに、僅かな組成の変動および焼成条件の微妙な差に
よって、他結晶体の不連続粒成長温度が変動し、常に一
定の保持温度で加熱するだけでは均一な単結晶を得るこ
とができなかった。そのため、単結晶の収率が低いと共
に大きな単結晶が得られない欠点があった。
Furthermore, due to slight variations in composition and subtle differences in firing conditions, the discontinuous grain growth temperature of other crystals fluctuates, making it impossible to obtain uniform single crystals simply by heating at a constant holding temperature. . Therefore, the yield of single crystals was low and large single crystals could not be obtained.

第5図は上述した異相の単結晶の出現状態を示す斜視図
で、1は種単結晶、2は生成された単結晶、3は異相の
単結晶を示している。
FIG. 5 is a perspective view showing the appearance of the above-mentioned single crystal with a different phase, in which 1 indicates a seed single crystal, 2 indicates a generated single crystal, and 3 indicates a single crystal with a different phase.

本発明の目的は上述した不具合を解消し、熱処理スケジ
ュールを改良して異相の単結晶の出現を防止し、収率よ
く大きな単結晶を得ることができる単結晶の製造法を提
供しようとするものである。
The purpose of the present invention is to eliminate the above-mentioned problems, improve the heat treatment schedule, prevent the appearance of single crystals of different phases, and provide a method for producing single crystals that can obtain large single crystals with good yield. It is.

(問題点を解決するための手段) 本発明の単結晶の製造法は、多結晶体と単結晶とを接触
して加熱することにより、単結晶を多結晶体方向に結晶
成長させて単結晶を得る方法において、 多結晶体と単結晶の接合面を鏡面研磨し、その鏡面研磨
面間に好ましくは酸を介在させて多結晶体と単結晶を接
合し、接合した状態で多結晶体の不連続粒成長温度点の
前後−50℃〜+40℃の温度範囲内を平均昇温速度1
℃/時〜20℃/時で昇温加熱し、多結晶体を単結晶化
することを特徴とするものである。
(Means for Solving the Problems) The method for producing a single crystal of the present invention is to grow the single crystal in the direction of the polycrystal by contacting and heating the polycrystal and the single crystal. In the method for obtaining a polycrystal, the joint surfaces of the polycrystal and the single crystal are mirror-polished, the polycrystal and the single crystal are joined by preferably interposing an acid between the mirror-polished surfaces, and the polycrystal is bonded in the joined state. Average heating rate 1 within the temperature range of -50℃ to +40℃ before and after the discontinuous grain growth temperature point
It is characterized by heating at a rate of .degree. C./hour to 20.degree. C./hour to convert the polycrystalline body into a single crystal.

(作  用) 本発明者等が加熱スケジュールを種々検討の結果、上述
した加熱時の温度分布の不均一および多結晶体の不連続
粒成長温度の変動を除去し望ましい単結晶を得るために
は、加熱時に単結晶と多結晶体よりなる接合体を接合し
た状態で、多結晶体の不連続粒成長温度点の前後−50
t〜+40℃の温度範囲内を平均昇温速度1℃/時〜2
0t/時で昇温加熱する、即ち上記不連続粒成長温度の
前後をゆるやかに昇温すると良いことを見出した。
(Function) As a result of various studies on heating schedules, the present inventors found that in order to obtain a desirable single crystal by eliminating the above-mentioned non-uniform temperature distribution during heating and fluctuations in the discontinuous grain growth temperature of polycrystals. , -50 before and after the discontinuous grain growth temperature point of the polycrystal in a state where the bonded body consisting of a single crystal and a polycrystal is joined during heating.
Average heating rate 1°C/hour to 2 within the temperature range of t to +40°C
It has been found that it is good to heat at a rate of 0 t/hour, that is, to gradually raise the temperature around the above discontinuous grain growth temperature.

(実施例) 以下、本発明を実施例に基づき詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail based on examples.

本発明の単結晶の製造方法は多結晶体であればどのよう
な組成のものにでも適用できるが、実際に好適に使用さ
れるものとしては以下のような組成があげられる。
Although the method for producing a single crystal of the present invention can be applied to polycrystals of any composition, the following compositions are actually preferred.

Iフェライト Mn0 20〜40モル%Zn0 5〜
30モル% Fe、03残(好ましく li 48〜60 % ル%
 )■フェライト Ni0 15〜40モル%Zn0 
15〜40モル% Fe2O+残(好ましく it 45〜55−r−ル%
 )■ガーネット;ガーネットには3Y21]3 −5
Fe、D3と3Y203  ・51.03とがあり何れ
も本発明の方法で製造可能である。
I ferrite Mn0 20-40 mol% Zn0 5-
30 mol% Fe, 03 balance (preferably 48-60% li%
) ■ Ferrite Ni0 15-40 mol% Zn0
15-40 mol% Fe2O+ balance (preferably it 45-55 mol%
) ■ Garnet; 3Y21 for garnet] 3 -5
There are Fe, D3 and 3Y203.51.03, both of which can be produced by the method of the present invention.

その配合割合はY2O3:Fe203=3 :5又はy
、o、:^l1203・3:5である。
The mixing ratio is Y2O3:Fe203=3:5 or y
, o, :^l1203・3:5.

■スピネル; スピネルはMgO: A R2’s の
組成であり、配合割合はMgO:^β203=1:1で
ある。
■ Spinel; Spinel has a composition of MgO: A R2's, and the blending ratio is MgO:^β203=1:1.

まへず、上述したような組成の多結晶体ブロックを準備
し、その接合面をダイヤモンド砥粒で鏡面研磨する。一
方、種として同一の大きさの接合面をもつ同一組成の単
結晶を準備し、同様にその接合面を鏡面研磨する。その
後、両接合面に塩酸、硝酸等の強酸を滴下し、単結晶と
多結晶体を接合した。このとき、結晶成長しない多結晶
体からなるダミー材を準備して、多結晶体に関して単結
晶と対向する面に鏡面研磨機強酸を介して接合すると、
単結晶化のためにより好適である。次に、接合体を接合
した状態で、多結晶体の不連続粒成長温度点の前後−5
0℃〜+40℃の温度範囲内を平均昇温速度1℃/時〜
20℃/時で昇温加熱して、多結晶体全体を単結晶化す
る。
First, a polycrystalline block having the composition as described above is prepared, and its joint surface is mirror-polished with diamond abrasive grains. On the other hand, a single crystal with the same composition and a bonding surface of the same size is prepared as a seed, and the bonding surface is mirror-polished in the same manner. Thereafter, a strong acid such as hydrochloric acid or nitric acid was dropped onto both bonding surfaces to bond the single crystal and polycrystalline body. At this time, if a dummy material made of a polycrystalline material that does not grow is prepared and bonded to the surface of the polycrystalline material facing the single crystal using a mirror polisher with strong acid,
More suitable for single crystallization. Next, with the bonded body bonded, -5 before and after the discontinuous grain growth temperature point of the polycrystalline body
Average heating rate of 1°C/hour within the temperature range of 0°C to +40°C
The entire polycrystal is turned into a single crystal by heating at a rate of 20° C./hour.

このとき、昇温加熱に先立って接合体を相対湿度70%
以上の雰囲気に2時間以上保持すると好適である。また
、単結晶化した後に小さな方位の異なる結晶である残留
ダレインを消滅するため、熱処理スケジュール完了後さ
らに不連続粒成長温度以上の温度に保持すると好適であ
る。
At this time, the relative humidity of the bonded body is 70% prior to heating at elevated temperature.
It is preferable to maintain the above atmosphere for 2 hours or more. In addition, in order to eliminate residual dalein, which is small crystals with different orientations, after single crystallization, it is preferable to maintain the temperature at a temperature higher than the discontinuous grain growth temperature after the heat treatment schedule is completed.

また、上述した例における不連続結晶粒成長温度は第1
表に示す範囲にある。
In addition, the discontinuous grain growth temperature in the above example is the first
Within the range shown in the table.

第1表 実施例 1 純度99.9%の炭酸マンガンを焙焼して得られた酸化
マンガンと、純度99.9%の酸化亜鉛および酸化第二
鉄を原料とし、その組成がMn O= 32 、0モル
%。
Table 1 Example 1 Manganese oxide obtained by roasting manganese carbonate with a purity of 99.9%, zinc oxide and ferric oxide with a purity of 99.9% are used as raw materials, and the composition is Mn O = 32 , 0 mol%.

Zn O= 16 、0モル%、Fe203=52.Q
%ル%、の調合物Aと、MnO=28.0モル%、 Z
n0=17.0モル%、 Fe 20 、=55.0モ
ル%の調合物Bをそれぞれ成形し、平衡酸素分圧下で1
320℃、4時間焼成してマンガン亜鉛フェライト多結
晶体AおよびBを得た。
ZnO=16, 0 mol%, Fe203=52. Q
Formulation A with MnO = 28.0 mol %, Z
Formulation B with n0 = 17.0 mol% and Fe 20 = 55.0 mol% was molded, respectively, and 1
Manganese zinc ferrite polycrystals A and B were obtained by firing at 320° C. for 4 hours.

これらのフェライト多結晶体AおよびBと、そのフェラ
イト多結晶体とほぼ同一組成を有する高圧ブリッジマン
法で製造されたフェライト単結晶AおよびBの各々から
、10 X 30 X 5mmと10 X 30 XQ
、5mmの板を切り出し、それぞれの接合面をダイヤモ
ンド砥粒を用いて研磨した。その後、各接合面に6Nの
塩酸を塗布し、多結晶フェライト板と単結晶フェライト
板とを重ね合わせてフェライト接合体AおよびBを得た
10 x 30 x 5 mm and 10 x 30
, 5 mm plates were cut out, and the joint surfaces of each were polished using diamond abrasive grains. Thereafter, 6N hydrochloric acid was applied to each joint surface, and the polycrystalline ferrite plate and the single-crystal ferrite plate were overlapped to obtain ferrite joints A and B.

これらフェライト接合体AおよびBの各々から試料Nα
1〜11の試料を準備し、後述するそれぞれ異なる加熱
スケジュールにより加熱し、固相反応を生起させて本発
明による単結晶体を得た。
Sample Nα from each of these ferrite bonded bodies A and B
Samples Nos. 1 to 11 were prepared and heated according to different heating schedules described below to cause a solid phase reaction and obtain a single crystal according to the present invention.

第1図〜第3図は、上述した本発明における加熱スケジ
ュールを示すグラフである。すなわち、第1図は試料N
α1〜9に対する加熱スケジュールを示し、図中P、か
らP2の昇温速度aを各々変化させている。第2図は試
料Nα10に対する加熱スケジュールを示し、図中P1
からP2までは10℃/時、P2からP3までは5℃/
時の昇温速度で加熱し、その平均昇温速度は6.2℃/
時である。
1 to 3 are graphs showing the heating schedule in the present invention described above. That is, Fig. 1 shows sample N
The heating schedule for α1 to α9 is shown, and the temperature increase rate a from P to P2 in the figure is changed respectively. Figure 2 shows the heating schedule for sample Nα10, in which P1
10℃/hour from P2 to P2, 5℃/hour from P2 to P3
The average heating rate was 6.2℃/
It's time.

また、第3図は試料No、11に対する加熱スケジュー
ルを示し、図中P1〜P8まで計8時間の間昇温と保持
を階段的に行って加熱し、その平均昇温速度は10℃/
時である。なふ、上述した実施例中マンガン亜鉛フェラ
イト多結晶の不連続結晶粒成長温度は約1370℃であ
った。結果を各試料の完全に単結晶したものの出現率(
%)で第2表に示す。
In addition, Fig. 3 shows the heating schedule for sample No. 11, in which the temperature was raised and held in steps for a total of 8 hours from P1 to P8 in the figure, and the average temperature increase rate was 10 ° C /
It's time. In the above-mentioned examples, the discontinuous grain growth temperature of the manganese-zinc ferrite polycrystal was about 1370°C. The results are expressed as the appearance rate of completely single crystals for each sample (
%) shown in Table 2.

第2表 □  (単位;%) 第2表から明らかなように、本発明の範囲である試料N
o、 1〜Nα7及びNo、10〜Nα11は異相の単
結晶の出現率が低いのに対し、本発明の範囲外のNo。
Table 2 □ (Unit: %) As is clear from Table 2, sample N is within the scope of the present invention.
No. o, 1 to Nα7 and No. 10 to Nα11 have a low appearance rate of single crystals with different phases, whereas No. o is outside the scope of the present invention.

8およびNα9は異相の単結晶の出現率が高いことがわ
かる。
8 and Nα9 have a high incidence of single crystals with different phases.

(発明の効果) 以上詳細に説明したところから明らかなように、本発明
の単結晶の製造法によれば、多結晶体全体が完全に単結
晶化した単結晶を収率よく得ることができる。また、大
きな単結晶を得ることができると共に多結晶体を単結晶
化する収率を向上することができる。さらに、本発明方
法により得られたフェライト単結晶はVTR磁気ヘッド
として好適に使用できる。
(Effects of the Invention) As is clear from the above detailed explanation, according to the method for producing a single crystal of the present invention, a single crystal in which the entire polycrystalline body is completely single crystallized can be obtained in good yield. . Moreover, it is possible to obtain large single crystals and to improve the yield of single crystallization of polycrystals. Furthermore, the ferrite single crystal obtained by the method of the present invention can be suitably used as a VTR magnetic head.

先回面の簡単な説明 第1図〜第3図は、各々本発明における加熱スケジュー
ルを示すグラフ、 第4図は、従来の典型的な熱処理加熱スケジュールを示
すグラフ、 第5図は、異相の単結晶の出現状態を示す斜視図である
Brief explanation of the previous aspect Figures 1 to 3 are graphs showing the heating schedule in the present invention, Figure 4 is a graph showing a typical conventional heat treatment heating schedule, and Figure 5 is a graph showing a heating schedule for a conventional heat treatment. FIG. 3 is a perspective view showing the state in which a single crystal appears.

l・・・種単結晶     2・・・生成された単結晶
3・・・異相の単結晶
l... Seed single crystal 2... Generated single crystal 3... Single crystal with different phase

Claims (1)

【特許請求の範囲】 1、多結晶体と単結晶とを接触して加熱することにより
、単結晶を多結晶体方向に結晶成長させて単結晶を得る
方法において、 多結晶体と単結晶の接合面を鏡面研磨し、 多結晶体と単結晶を接合し、接合した状態で多結晶体の
不連続粒成長温度点の前後−50℃〜+40℃の温度範
囲内を平均昇温速度1℃/時〜20℃/時で昇温加熱し
、多結晶体を単結晶化することを特徴とする単結晶の製
造法。 2、前記昇温加熱に先立って接合体間に酸を介在させ、
相対湿度70%以上の雰囲気に2時間以上保持すること
を特徴とする特許請求の範囲第1項記載の単結晶の製造
法。 3、前記平均昇温速度を3℃/時〜12℃/時で行なう
ことを特徴とする特許請求の範囲第1項記載の単結晶の
製造法。
[Claims] 1. A method for obtaining a single crystal by growing the single crystal in the direction of the polycrystal by contacting and heating the polycrystal and the single crystal, comprising: The joint surfaces are mirror-polished, the polycrystalline body and the single crystal are joined together, and the average temperature increase rate is 1°C within the temperature range of -50°C to +40°C before and after the discontinuous grain growth temperature point of the polycrystalline body in the joined state. 1. A method for producing a single crystal, which comprises heating the polycrystalline substance at a rate of 20° C./hour to a single crystal. 2. Interposing an acid between the bonded bodies prior to the temperature raising heating,
2. The method for producing a single crystal according to claim 1, wherein the single crystal is maintained in an atmosphere with a relative humidity of 70% or more for 2 hours or more. 3. The method for producing a single crystal according to claim 1, wherein the average heating rate is 3°C/hour to 12°C/hour.
JP26853384A 1984-12-21 1984-12-21 Manufacture of single crystal Pending JPS61146780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26853384A JPS61146780A (en) 1984-12-21 1984-12-21 Manufacture of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26853384A JPS61146780A (en) 1984-12-21 1984-12-21 Manufacture of single crystal

Publications (1)

Publication Number Publication Date
JPS61146780A true JPS61146780A (en) 1986-07-04

Family

ID=17459834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26853384A Pending JPS61146780A (en) 1984-12-21 1984-12-21 Manufacture of single crystal

Country Status (1)

Country Link
JP (1) JPS61146780A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048394A (en) * 1997-08-14 2000-04-11 Competitive Technologies Of Pa, Inc. Method for growing single crystals from polycrystalline precursors
US7208041B2 (en) 2000-02-23 2007-04-24 Ceracomp Co., Ltd. Method for single crystal growth of perovskite oxides
US8202364B2 (en) 2002-10-11 2012-06-19 Ceracomp Co., Ltd. Method for solid-state single crystal growth

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792599A (en) * 1980-11-28 1982-06-09 Ngk Insulators Ltd Production of single crystal of ferrite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792599A (en) * 1980-11-28 1982-06-09 Ngk Insulators Ltd Production of single crystal of ferrite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048394A (en) * 1997-08-14 2000-04-11 Competitive Technologies Of Pa, Inc. Method for growing single crystals from polycrystalline precursors
US7208041B2 (en) 2000-02-23 2007-04-24 Ceracomp Co., Ltd. Method for single crystal growth of perovskite oxides
US8202364B2 (en) 2002-10-11 2012-06-19 Ceracomp Co., Ltd. Method for solid-state single crystal growth

Similar Documents

Publication Publication Date Title
JPS61146780A (en) Manufacture of single crystal
JPS61146779A (en) Production of single crystal
JPS61146781A (en) Manufacture of single crystal
JPH0217517B2 (en)
JPS60195097A (en) Production of ferrite single crystal
JPS6241797A (en) Single crystal ferrite and production thereof
JP2579728B2 (en) Method for producing Mn-Zn single crystal ferrite
JPH05246800A (en) Production of single crystal ferrite
JPS58156588A (en) Preparation of single crystal
JPH04158503A (en) Manufacture of cemented mn-zn ferrite
JPH0143719B2 (en)
JPH0471874B2 (en)
JPS62223098A (en) Production of single crystal ferrite
JPH0474317B2 (en)
JPS62223097A (en) Production of single crystal ferrite
JPS6249647B2 (en)
JPS63210091A (en) Production of single crystal ferrite
JPS5926994A (en) Preparation of oxide single crystal
JPS61236680A (en) Preparation of single crystal ferrite
JPH0375517B2 (en)
JPS62216986A (en) Production of single crystal ferrite
JPS6215519B2 (en)
JPH0220600B2 (en)
JPS62223099A (en) Production of single crystal ferrite
JPS5918188A (en) Preparation of ferrite of single crystal