JPS5926993A - Preparation of oxide single crystal - Google Patents

Preparation of oxide single crystal

Info

Publication number
JPS5926993A
JPS5926993A JP57136916A JP13691682A JPS5926993A JP S5926993 A JPS5926993 A JP S5926993A JP 57136916 A JP57136916 A JP 57136916A JP 13691682 A JP13691682 A JP 13691682A JP S5926993 A JPS5926993 A JP S5926993A
Authority
JP
Japan
Prior art keywords
single crystal
polycrystal
crystal
oxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57136916A
Other languages
Japanese (ja)
Other versions
JPS6215519B2 (en
Inventor
Takeshi Hirota
健 廣田
Harufumi Sakino
先納 治文
Eiichi Hirota
廣田 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57136916A priority Critical patent/JPS5926993A/en
Publication of JPS5926993A publication Critical patent/JPS5926993A/en
Publication of JPS6215519B2 publication Critical patent/JPS6215519B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a single crystal having little deviation in composition and uniform controlled crystal orientation in high yield, by joining an oxide single crystal to an oxide polycrystal, and heating the joined material in a specific atmosphere at a high temperature. CONSTITUTION:An oxide polycrystal 2 having composition the same as or close to that of a pair of oxide single crystals, e.g. thin plate ferrite magnetic materials, is inserted between the pair of the oxide single crystals 1 and joined by a suitable method. The joined material is then heat-treated in an atmosphere consisting of at least one of argon gas or nitrogen gas as a main component at a temperature higher than the temperature for starting the growth of giant crystalline grains to convert the oxide polycrystal into the aimed single crystal. The growth rate for the forming the single crystal is increased by the method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明け、酸化物単結晶の製造方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for producing an oxide single crystal.

従来例の構成とその問題点 現在、酸化物単結晶として、磁気記録用磁気ヘッド材料
のフェライト単結晶、水晶発振素子、レーザ用YAG単
結晶、センサ、表向波デバイス用LiNbO3,LiT
aO3単結晶等が、電子・機械工業の分野で多数使われ
ている。たとえば、特に単結晶フェライトのうち、Mn
 −Zn−フェライトは、その結晶方位の違いによる機
械的特性(耐摩耗性、面荒れ性等)、および磁気的特性
等を有効に利用して、オーディオ・ビデオテープレコー
ダ、コンピュータ用磁気ディスク等の磁気ヘッド材料と
して、広く使用されている。特に単結晶フェライトは、
多結晶フェライトと比べ、磁気ヘッド加工時に発生する
チッピング、カケ等が少なく、歩留りよく生産されてい
る。
Structures of conventional examples and their problems At present, oxide single crystals include ferrite single crystals for magnetic head materials for magnetic recording, crystal oscillation elements, YAG single crystals for lasers, sensors, and LiNbO3 and LiT for surface wave devices.
AO3 single crystals and the like are widely used in the fields of electronic and mechanical industries. For example, especially among single crystal ferrites, Mn
-Zn-ferrite makes effective use of its mechanical properties (abrasion resistance, surface roughness, etc.) and magnetic properties due to the difference in crystal orientation, and is used for magnetic applications such as audio/video tape recorders and magnetic disks for computers. Widely used as head material. In particular, single crystal ferrite
Compared to polycrystalline ferrite, there are fewer chips, chips, etc. that occur during magnetic head processing, and it can be produced at a high yield.

従来の単結晶製造法には、チョクラルスキー法、ブリッ
ジマン法、ベイヌーイ法、フラックス法、水熱合成法、
高温高圧反応法等各種の方法がある。
Conventional single crystal manufacturing methods include the Czochralski method, Bridgman method, Beinoulli method, flux method, hydrothermal synthesis method,
There are various methods such as high temperature and high pressure reaction method.

ところで、従来、単結晶フェライトは、ブリッジマン法
で製造されるのが一般的であった。このブリッジマン法
は、原料フェライトを一度倣点以上に加熱して溶解し、
次に徐々に低温度部を通過させることにより、液相から
同相析出を行なわせ、単結晶を得ふものである。よって
、高温度に耐え得る原料融解用ルツボが必要であり、フ
ェライト単結晶製造の場合では、白金製ルツボが用いら
れている。この白金製ルツボの使用のため、単結晶フェ
ライトは高価なものになっている。さらに、通常のブリ
ッジマン法では、結晶方位の制御ががなり困難であり、
単結晶を加工する際、利用できる部分が減少して歩留り
が低下する原因となっている。
By the way, conventionally, single crystal ferrite has generally been manufactured by the Bridgman method. This Bridgman method heats the raw material ferrite once above the imitation point and melts it.
Next, by gradually passing through a low temperature section, in-phase precipitation is performed from the liquid phase, and a single crystal is obtained. Therefore, a crucible for melting raw materials that can withstand high temperatures is required, and in the case of producing ferrite single crystals, platinum crucibles are used. The use of this platinum crucible makes single crystal ferrite expensive. Furthermore, with the usual Bridgman method, it is difficult to control the crystal orientation;
When processing a single crystal, the usable portion decreases, causing a decrease in yield.

発明の目的 本発明は上記従来の欠点を解消するもので、上記ブリッ
ジマン法の欠点を補い、液相から固相への析出という過
程を経ずに、固相がら固相への反応によって、組成偏析
が少なく、均質にルIJ御された結晶方位を有する単結
晶を、高歩留りで多量に生産する方法を提供することを
目的とするもので発明の構成 上記目的を達成するため、本発明の酸化物単結晶の製造
方法は、酸化物単結晶と、この酸化物単結晶と同一組成
まだはそれに近い組成で、この酸化物単結晶と同一結晶
構造を有するj縁化物多結晶とを接合し、アルゴンガス
もしくは窒素ガスの少なくともいずれか一方を主成分と
する雰囲気中におりで、前記接合体に対して巨大結晶粒
か生じ始める温度よりも高い温度で加熱処理を施して、
前記酸化物多結晶を単結晶とするものである。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned drawbacks of the conventional Bridgman method. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing large amounts of single crystals with low compositional segregation and uniformly controlled crystal orientation with high yield. The method for producing an oxide single crystal involves joining an oxide single crystal to a rimmedium polycrystal which has the same composition as, or close to, the oxide single crystal and the same crystal structure as the oxide single crystal. and heat-treating the bonded body in an atmosphere containing at least one of argon gas or nitrogen gas as a main component at a temperature higher than the temperature at which giant crystal grains begin to form,
The oxide polycrystal is a single crystal.

本発明の製造法を、さらに詳しく説明する。第1図は、
本発明で用いる接合体の概略を示すもののひとつである
。第1図(a)は外観を示し、(b)は単結晶化熱処理
後の接合体の中央部切断面を模式的に示したもので、(
1)は一対の薄板状の屯結晶、(2)は両車結晶(1)
間に挾筐れるとともに単結晶化熱処理を受ける多結晶、
(3)は多結晶(2)から単結晶化した部分、(L)は
単結晶(υと多結晶(2)の接合境界から測った単結晶
化し7た部分(3)の長さ、(4)は多結晶(2〕表面
から成長した巨大結晶粒子である。
The manufacturing method of the present invention will be explained in more detail. Figure 1 shows
This is one of the outlines of the conjugate used in the present invention. FIG. 1(a) shows the external appearance, and FIG. 1(b) schematically shows the cross section at the center of the joined body after single crystallization heat treatment.
1) is a pair of thin plate-shaped tun crystals, (2) is a ryosha crystal (1)
A polycrystal which is sandwiched in between and undergoes single crystallization heat treatment,
(3) is the part that has been made into a single crystal from polycrystal (2), (L) is the length of the part (3) that has been made into a single crystal measured from the junction boundary between the single crystal (υ and polycrystal (2)), ( 4) are giant crystal grains grown from the polycrystalline (2) surface.

第2図において、曲線(B)は、本発明で用いる多結晶
を、Arガスもしく FiNtガスを主成分とする雰囲
気下で、6時間加熱したときの、加熱温度に対する多結
晶の平均結晶粒径を示したものである。
In FIG. 2, curve (B) shows the average grain size of the polycrystal as a function of the heating temperature when the polycrystal used in the present invention is heated for 6 hours in an atmosphere mainly composed of Ar gas or FiNt gas. This shows the diameter.

また、曲線(A)は、たとえばフェライトにおける、特
開昭55−162496号公報でいう「異常粒成長」に
よる多結晶の結晶粒の成長を示すものである。
Further, curve (A) shows the growth of polycrystalline grains in ferrite, for example, due to "abnormal grain growth" as referred to in Japanese Patent Application Laid-Open No. 162496/1983.

なお、加熱時間の6時間は、実際の製造時における加熱
処理時間としたものである。
Note that the heating time of 6 hours is the heat treatment time during actual manufacturing.

第6図は、第2図の曲線(B)で示される多結晶の結晶
粒子の粒成長の様子を示したもので、第2図で示された
各温度Tl+ Tcl T2+ Ts における多結晶
内部切断面を、(a)から((L)に向けて順に模式的
に表わしている。ここでToは、本発明で用いる多結晶
が巨大結晶の粒成長を開始する温度であり、TIはTc
より20〜50℃低い温度、T2けTCとTsのほぼ中
間の温度で、多結晶の表面全体が巨大結晶粒で被わわ、
てし7まう温度である。ただし、Tsけ、多結晶全体が
巨大結晶粒から構成されるようになる温度である。これ
らの温度における多結晶の様子は、第3図を参照すると
容易に理解されるものである。
Figure 6 shows the grain growth of the polycrystalline grains shown by the curve (B) in Figure 2. The planes are schematically represented in order from (a) to ((L). Here, To is the temperature at which the polycrystal used in the present invention starts grain growth of giant crystals, and TI is Tc
At a temperature 20 to 50°C lower than T2, which is approximately halfway between TC and Ts, the entire surface of the polycrystal is covered with giant crystal grains.
The temperature is 70 degrees. However, Ts is the temperature at which the entire polycrystal is composed of giant crystal grains. The appearance of polycrystals at these temperatures can be easily understood by referring to FIG.

第2図の曲線(A)の異常粒成長多結晶は、温度Tcに
なるまでほとんど粒成長をおこさず、Toに達すると、
突発的に、一部の巨大結晶がその周囲の微結晶を食って
、非常に大きくなるものである。この巨大結晶は、第6
図に示すような多結晶の表面からの発生に限定されるこ
とガく、内部からも一様に発生するものである。
The abnormal grain growth polycrystal shown by curve (A) in Fig. 2 hardly causes grain growth until the temperature reaches Tc, and when it reaches To,
Suddenly, some giant crystals eat the surrounding microcrystals and become extremely large. This giant crystal is the 6th
The generation is not limited to the surface of the polycrystal as shown in the figure, but it also occurs uniformly from within.

本発明は第2図の曲線(A) K示すような異常成長多
結晶を用いず、曲線(B)に示すような通常の多結晶を
用いることによる、新しい酸化物単結晶の製造方法を提
案するものである。
The present invention proposes a new method for manufacturing oxide single crystals by using normal polycrystals as shown in curve (B) instead of using abnormally grown polycrystals as shown in curves (A) and K in Figure 2. It is something to do.

また本発明は、このように第2図の曲線(B)のような
粒成長を示す多結晶を用いるに加え、加熱処理温度をT
c以上、好ましくはT3以下、よってT必)らTsまで
の温度範囲のもとて加熱処理し、さらに加熱処理雰囲気
を適描に制御するものである。
Furthermore, in addition to using polycrystals that exhibit grain growth as shown in curve (B) in FIG.
The heat treatment is carried out in a temperature range from c to Ts, preferably T3 or less, and the heat treatment atmosphere is controlled appropriately.

ところで、単結晶と多結晶を接合し、加熱処理して単結
晶化させる接合型単結晶の製造に際し、第2図の曲lf
@(A)で示される異常粒成長多結晶を用いる嚇合では
、T0未滴の温度にて加熱処理中−ることにより、単結
晶と多結晶の接合界面から、多結晶側に向かって単結晶
化が進む。一方T0以上の温度で加熱処理すると、多結
晶内部に巨大結晶粒が発生・成長し、単結晶化が阻害さ
れたり、単結晶化しても、その内部に島状の結晶粒が残
存したりして、均質な単結晶が得られなくなる。通常、
接合型単結晶の製造に際し、多結晶の結晶粒径が小さけ
ねば小さい程、接合界面から多結晶中心部に向かって単
結晶化の界面が移動する時に受ける駆動力が大きくなる
ため、この多結晶は熱処理中粒・径が小さく一定である
ことが求められる。よってTO未満の温度で加熱処理す
る必要がある。
By the way, when manufacturing a bonded single crystal in which a single crystal and a polycrystal are bonded and heat-treated to form a single crystal, curve lf in FIG.
In the case of using abnormally grown polycrystals shown in @(A), by heating at a temperature below T0, the single crystals grow from the bonding interface between the single crystal and the polycrystal toward the polycrystal side. Crystallization progresses. On the other hand, if heat treatment is performed at a temperature higher than T0, giant crystal grains will occur and grow inside the polycrystal, inhibiting single crystallization, or even after single crystal formation, island-like crystal grains may remain inside the polycrystal. As a result, a homogeneous single crystal cannot be obtained. usually,
When manufacturing bonded single crystals, the smaller the polycrystalline grain size, the greater the driving force received when the single crystallization interface moves from the bonding interface toward the center of the polycrystal. The grains and diameter of the crystals are required to be small and constant during heat treatment. Therefore, it is necessary to perform heat treatment at a temperature lower than TO.

本発明で用いる多結晶は、第2図の曲線(B)で示され
るような通常の粒成長をする多結晶であるため、加熱処
理温度は10未満で行なう必要はなく、70以上の温度
で加熱処理した方が、単結晶化速度(単結晶−多結晶界
面移動速度)が増大する。しかし、あまり加熱処理温度
を上げすぎて、T3の温度以上になると、多結晶の内部
の結晶粒成長のため、先程述べた理由から、逆に単結晶
化≠(阻害されたり、島状の結晶粒が単結晶化した部分
に取り残されたりするため、均質な単結晶が得ら?L[
’<くなる。よって本発明では、70以上、好まシ、く
け、ToからTIまでの温度領域で加熱処理するもので
ある。この温度では、表面に現わねる巨大結晶粒子は、
単結晶と多結晶の接合界面では発生せず、接合界面以外
の端面においてのみ発生する。ただし、本発明の製造法
では、単結晶化速度が、巨大結晶粒子が粒成長する速度
より著しく大きいため、第1図(1))に見られるよう
な単結晶化が進むものである。
Since the polycrystal used in the present invention is a polycrystal that undergoes normal grain growth as shown by curve (B) in Figure 2, it is not necessary to perform the heat treatment at a temperature of less than 10°C, but at a temperature of 70°C or higher. Heat treatment increases the single crystallization rate (single crystal-polycrystal interface movement rate). However, if the heat treatment temperature is raised too much and the temperature exceeds T3, crystal grains grow inside the polycrystal, and for the reasons mentioned earlier, single crystallization may be inhibited or islands of crystals may form. Because the grains are left behind in the single crystallized area, it is difficult to obtain a homogeneous single crystal.
'< becomes. Therefore, in the present invention, the heat treatment is carried out in a temperature range of 70°C or higher, preferably 100°C, 200°C, 200°C, 200°C, 200°C, 200°C, 200°C, 200°C, 200°C, 250°C, and 200°F to TI. At this temperature, the giant crystal grains that appear on the surface are
It does not occur at the joint interface between a single crystal and a polycrystal, but only at the end face other than the joint interface. However, in the production method of the present invention, the single crystallization rate is significantly higher than the growth rate of giant crystal grains, so the single crystallization progresses as shown in FIG. 1 (1)).

本発明で用いる多結晶はArガスまたはN2ガスの少な
くともいずれか一方の雰囲気中で加熱処理すると、単結
晶化速度が増大する。この多結晶は、他の雰囲気、たと
えば空気中で加熱処理すると、接合界面から多結晶の中
心部へ向かう単結晶化が生じなかったり、単結晶化が進
んでも著しく (1150〜1/100)成長速度が小
さくなるものである、たタシ、Ar カス’! 7’c
 HNt if スIC若干(,0,001〜1.[1
体積%)のN2ガスを混合すると、多結晶によっては単
結晶化速度が大きくなるものもある。
When the polycrystal used in the present invention is heat-treated in an atmosphere of at least one of Ar gas and N2 gas, the single crystallization rate increases. When this polycrystal is heat-treated in another atmosphere, such as air, single crystallization from the bonding interface toward the center of the polycrystal does not occur, or even if single crystallization progresses, it grows significantly (1150 to 1/100). It's the one that reduces the speed! 7'c
HNt if IC some (,0,001~1.[1
When N2 gas (volume %) is mixed, the rate of single crystallization increases for some polycrystals.

前述のように、本発明では、ある一定の加熱時間内(1
〜12時間の加熱処理時間内)で、第2図の曲線(B)
に示すように、ある温度範囲(約50〜60℃)内で、
巨大結晶粒が発生、成長する領域を有する多結晶を用い
ている。このような場合には、熱処理温度を、巨大結晶
粒が多結晶表面に発生する温度に設定した方が、短時間
に結晶化が進み、周辺部の巨大結晶部を除去することに
より、中心部の単結晶化した部分を有効に利用すること
ができる。
As mentioned above, in the present invention, within a certain heating time (1
~12 hours of heat treatment), curve (B) in Figure 2
As shown in
Polycrystals are used that have regions where giant crystal grains occur and grow. In such cases, it is better to set the heat treatment temperature to a temperature at which giant crystal grains are generated on the polycrystalline surface, so that crystallization progresses in a short time, and by removing the giant crystals on the periphery, the center The single crystallized portion of can be effectively used.

本発明者等は、熱処理温度の設定に先立ち、Tl。The present inventors set Tl before setting the heat treatment temperature.

TC+ T2+ T3の各温度において、雰囲気、多結
晶の種類、加熱処理時間等、同一条件下で実験を行ない
、第1図(b)に示す単結晶化長さくL)を測定した。
At each temperature of TC+T2+T3, an experiment was conducted under the same conditions such as atmosphere, type of polycrystal, heat treatment time, etc., and the single crystallization length L) shown in FIG. 1(b) was measured.

長さくL)の測定は、加熱処理後の接合体を中央部で切
断し、切断面を鏡面研磨した後、強酸でエツチングし−
1その表面を侍察することにより行かった。
The length L) was measured by cutting the heat-treated joined body at the center, mirror-polishing the cut surface, and then etching it with strong acid.
1 by inspecting its surface.

各温度Ts+Ta+ T21 Tlにて加熱処理した場
合の長ζ(L)の値の比は、1:ろ: 10 :4であ
った。ただし、’r、、 TO+ Tt+ TIf は
各々60℃間隔であり、本実験で用いた多結晶ではT。
The ratio of the length ζ (L) values when heat treated at each temperature Ts+Ta+T21 Tl was 1:L:10:4. However, 'r,, TO+ Tt+ TIf are each at intervals of 60°C, and T in the polycrystal used in this experiment.

=1600℃であった。T、では、加熱処理後の多結晶
は、単結晶化した部分と、微結晶粒子からなる部分とか
らなり、巨大結晶は見出されなかった。、Toでは、第
1図(b)のように、周辺部に一部巨大結晶粒子(4)
が発生していたが、単結晶化した部分(3)には、巨大
結晶粒子(4)の発生は見出され方かった。確認のため
、接合体を数個所薄く短冊状に切断し、同様な方法で単
結晶化部分を観察したが、巨大結晶粒子(4)は見出さ
り、な力)つた。T2の場合でもToの場合と同様であ
った。T3では、単結晶化した部分の界面前方に巨大結
晶75;存在し、界面の移動を阻止していた。TOおよ
びT2における周辺部の巨大結晶粒子(4)部分の最大
長さは、単結晶化長さくL)の1/10から1/20で
あり、ここを切断除去することによって、後の単結晶利
用上イロ]ら問題はなく、したがって、T、の近傍温度
でカロ熱処理する時が最も効率がよいことが判った。
=1600°C. In T, the polycrystal after heat treatment consisted of a single crystallized portion and a portion consisting of microcrystalline particles, and no giant crystals were found. , To, there are some giant crystal grains (4) in the periphery, as shown in Figure 1(b).
However, the generation of giant crystal grains (4) was hardly found in the single crystallized portion (3). For confirmation, the bonded body was cut into thin strips at several locations and the single crystallized portions were observed in the same manner, but giant crystal particles (4) were found. The case of T2 was similar to the case of To. In T3, a giant crystal 75 was present in front of the interface of the single crystallized portion, blocking movement of the interface. The maximum length of the peripheral giant crystal grain (4) portion in TO and T2 is 1/10 to 1/20 of the single crystallization length L), and by cutting and removing it, the subsequent single crystal There are no problems in terms of utilization, and therefore, it has been found that the most efficient method is to perform Calo heat treatment at a temperature near T.

本発明で製造された単結晶を、通常のブリッジマン法で
製造これたものと比較すると、磁気特性(透磁率、飽和
磁束密度、抗磁力等)、電気特性(電気抵抗)等につい
て伺ら差がなく、量産した場合についても特性のバラツ
キが少なく、歩留りの点では、ブリッジマン法より秀れ
たもので矛った。このように、本発明の製造方法は、酸
化物単結晶の製法として非常に価値があることは明らか
である。
When the single crystal produced by the present invention is compared with that produced by the ordinary Bridgman method, there are differences in magnetic properties (magnetic permeability, saturation magnetic flux density, coercive force, etc.), electrical properties (electrical resistance), etc. This method was superior to the Bridgman method in terms of yield, as there was no variation in characteristics even when mass-produced. Thus, it is clear that the manufacturing method of the present invention is extremely valuable as a method for manufacturing oxide single crystals.

実施例の説明 実施例−1 組成比が、52モルq6 Fe2O,、ろ2モルチMn
o、16モルチZnOで、第2図の曲線(B)のような
粒成長をする結晶Mn −Zn−フェライトを、−)投
のセラミックスを作成する方法(原料配合→混合→仮焼
→粉砕→成形→本焼成)で作成した。本実施例では、本
焼成と[2て、ホットプレス法(1270℃−300に
−”−6時間)を用いた。得られた多結晶は、気孔率が
0.01 %で、平均結晶粒径が20μmであった。こ
れを30X20X15 wttt”の直方体に切断し、
ろ0×20肩肩2の二面を、 +2000メツシユおよ
びす4000メツシユのEliC砥粒、粒径6μmのダ
イヤモンド砥粒で研磨し、鏡面に仕上げた。一方、同じ
組成比を持し、ブリッジマン法で作成した単結晶を、厚
さ1.0〜1.5W′IRで30X20jr&2の面が
[1003面に、側面がそれぞれ(110)面になるよ
うに、薄板に切断した。
Description of Examples Example-1 Composition ratio is 52 mol q6 Fe2O, 2 mol q6 Mn
A method for creating ceramics using 16 molt ZnO and crystalline Mn-Zn-ferrite with grain growth as shown in curve (B) in Figure 2. Created by molding → final firing). In this example, the main firing and the hot pressing method (1270°C - 300°C - 6 hours) were used. The obtained polycrystal had a porosity of 0.01% and an average grain size. The diameter was 20 μm. This was cut into a rectangular parallelepiped of 30 x 20 x 15 wttt.
The two surfaces of the 0×20 shoulder and shoulder 2 were polished to a mirror finish using EliC abrasive grains of +2000 mesh and +4000 mesh and diamond abrasive grains of 6 μm in diameter. On the other hand, a single crystal having the same composition ratio and made by the Bridgman method was prepared with a thickness of 1.0 to 1.5 W'IR so that the 30X20jr&2 plane became the [1003 plane and the side faces became the (110) plane. It was then cut into thin plates.

この単結晶薄板も、多結晶と同じ様に、SiC砥粒、3
μmダイヤモンド砥粒で研磨し、鏡面に仕上げた。
This single crystal thin plate also has SiC abrasive grains, 3
Polished with μm diamond abrasive grains to a mirror finish.

多結晶の直方体、単結晶の薄板とも清浄した後、30 
X 20 ffm”の接合面に希硝酸を塗布し、相互に
貼り合わせて接合体となし、これをアベナパウダに包ん
で型材の中に入れ、N2ガスを流した雰囲気中で、接合
面に垂直に加圧してホットプレス(1250℃−30k
y/crtt” −30分)した。このホットプレスに
より、単結晶と多結晶は接合面で完全に固相反応により
固着した。このホットプレス熱処理では、単結晶化はお
こらず、多結晶も粒成長していなかった。
After cleaning both the polycrystalline rectangular parallelepiped and the single crystal thin plate,
Apply dilute nitric acid to the joint surfaces of the "X 20 ffm" joints, stick them together to form a joint, wrap this in Avena powder, place it in a mold, and heat it perpendicular to the joint surfaces in an atmosphere with N2 gas flowing. Pressurize and hot press (1250℃-30k
y/crtt” -30 minutes). Through this hot press, the single crystal and polycrystal were completely fixed together at the bonding surface by a solid phase reaction. In this hot press heat treatment, single crystallization did not occur, and the polycrystal and polycrystal did not form grains. It wasn't growing.

前もって、この多結晶をN2ガス中でろ時間加熱処理し
、巨大結晶が表面に発生する温度をチェックし、To=
1300℃、T、=1360℃ であることを確鯵シ、
でおいたのち、先程の接合体を、N2ガス雰囲気中で、
1620℃で、ろ時間加熱処理した。加熱処理後、接合
体の中央部をダイヤモンドカッタで切断して取り出し7
、切断面を鏡面研磨し、50℃。
In advance, this polycrystal was heat treated in N2 gas for a period of time, the temperature at which giant crystals were generated on the surface was checked, and To=
Confirm that 1300℃, T, = 1360℃,
After that, the previously bonded body was placed in an N2 gas atmosphere.
Heat treatment was performed at 1620° C. for filtration time. After heat treatment, cut the center part of the joined body with a diamond cutter and take it out 7
, the cut surface was mirror polished and heated to 50°C.

8規定の塩酸で2〜3分エツチングし、この切断表面を
観察した。単結晶化した長さくL)はろ〜4朋であり、
周辺部の巨大結晶が多結晶の中心部に向って伸びた長さ
け0.2〜0.ろ闘であった。
Etching was performed for 2 to 3 minutes with 8N hydrochloric acid, and the cut surface was observed. The single crystallized length is L) halo ~ 4 h,
The length of the giant crystal at the periphery extending toward the center of the polycrystal is 0.2 to 0. It was a struggle.

比較のため、ホットプレス後の接合体に対し、加熱処理
温度だけを1270℃、1660℃に変えて同様の加熱
処理を行なった、この結果、1270℃の加熱処理温度
の場合では、単結晶化長さくL)は0.2〜0.3酎で
あり、はとんど単結晶化していなかった。一方1360
℃の加熱処理温度の場合では、単結晶化長さくL) V
i l tnm程度であり、かつ多結晶内部は、粒径が
0.1〜1゜O朋程度の巨大結晶粒子に粒成長I〜でい
た。次に、加熱処理温度を1320℃一定とし、加熱処
理υψ囲気のみを、Arガス、Co2ガス、空気中と変
えた加熱処理を行なった。この結果、Arガス中でけN
tガスと同程度に単結晶化したもの7′I;得られ、C
O2ガス訃よび空気中では、強還元になりすぎたり、全
熱単結晶化が進行していなかったりしたものしか得られ
なかった。
For comparison, the bonded body after hot pressing was subjected to the same heat treatment with only the heat treatment temperature changed to 1270℃ and 1660℃.As a result, in the case of the heat treatment temperature of 1270℃, single crystallization The length (L) was 0.2 to 0.3 mm, and it was hardly single crystallized. On the other hand 1360
In the case of heat treatment temperature of °C, single crystallization length L) V
The diameter of the polycrystal was approximately 100 nm, and the inside of the polycrystal had grown into giant crystal grains with a grain size of approximately 0.1 to 1°O. Next, the heat treatment temperature was kept constant at 1320° C., and the heat treatment υψ atmosphere was changed to Ar gas, Co2 gas, or air. As a result, N
Single crystallized to the same extent as t gas 7'I; obtained, C
In O2 gas or air, the reduction was too strong or the total thermal single crystallization did not proceed.

ざらに1本発明により製造された単結晶Mn −Zn−
7エライトを切り出し、磁気特性を測定し7た。
Zarani1 Single crystal Mn-Zn- produced according to the present invention
7 Elite was cut out and its magnetic properties were measured.

透磁率は周波数1に進で約8000 、  抗磁力は0
.0500であり、種子の単結晶と同じものであったー
実施例−2 組成比が、51モ/l/ % Fe20B、 25−E
/L/% Mn0 、21LモルLIIZnOで、第2
図の曲線(B)のような粒成長をするもの(以下、「B
多結晶」と呼ぶ)と、同系11成で曲線(A)のような
異常粒成長をするもの(以−ド、「A多結晶」と呼ぶ)
との二種類の多結晶を、実施例−1と同様な方法で作成
した。こり、らと同組成比を有する単結晶を準つ憾し、
実施例−IJ二l打1様な方法で、ホットプレスにより
接合イ木ケ得た。これらB多結晶およびA多結晶は、と
もに気子し率はo、oi%、平均結晶粒径は15μm、
それぞれの巨大結晶粒が発生、成長を始める温度T0け
同じ1310℃であった。B多結晶では、全体が巨大結
晶粒からなるときの温度Tsij11ろ60℃であった
Magnetic permeability is approximately 8000 at frequency 1, and coercive force is 0.
.. 0500 and was the same as the single crystal of the seed - Example 2 Composition ratio was 51 mo/l/% Fe20B, 25-E
/L/% Mn0, 21 L mol LIIZnO, second
Those that grow grains like curve (B) in the figure (hereinafter referred to as “B”)
(hereinafter referred to as "A polycrystal"), and those with abnormal grain growth as shown in curve (A) with the same 11 formation (hereinafter referred to as "A polycrystal").
Two types of polycrystals were prepared in the same manner as in Example-1. We hope to create a single crystal with the same composition ratio as the above,
Example - A bonded piece was obtained by hot pressing in the same manner as IJ. Both of these B polycrystals and A polycrystals have an atomization rate of o, oi%, an average crystal grain size of 15 μm,
The temperature T0 at which each giant crystal grain starts to generate and grow was the same, 1310°C. In the B polycrystal, the temperature Tsij11 was 60° C. when the whole consisted of giant crystal grains.

これら二種類の接合体全複数個ずつ準備し、Arガス雰
囲気下において、1280℃、1610℃、1640℃
で6時間加熱処理し、その後接合体の中央部を切断して
取り出し、鋼面研磨、エツチングを行々つで、単結晶化
の様子を観察した。A多結晶を用いたものでは、128
0℃で加熱処理した場合の単結晶化長さくL)は2.Q
lll#、であり、B多結晶を用いた場合も同じ2.O
ymであった。このとき、多結晶の平均結晶粒径はほと
んど同じ15μmであった0しかし、1610℃で加熱
処理した場合では、A多結晶を用いたものでは、多結晶
内部に、1.0〜2.0闘径の巨大結晶が発生し、単結
晶化長さくL)は1.Qgxに留壕っていた。一方B多
結晶を用いブこものでは、接合界面以外の周辺部に巨大
結晶が認められだが、その大きさは約0.2門程度であ
り、単結晶化長さくL)は2.5〜3.Q闘であった。
A plurality of these two types of bonded bodies were prepared and heated at 1280°C, 1610°C, and 1640°C in an Ar gas atmosphere.
After heating for 6 hours, the joined body was cut at the center and taken out. The steel surface was polished and etched, and the state of single crystallization was observed. For those using A polycrystal, 128
The single crystallization length L) when heat treated at 0°C is 2. Q
lll#, and the same 2. when using B polycrystal. O
It was ym. At this time, the average crystal grain size of the polycrystals was almost the same, 15 μm. A giant crystal of the fighting diameter is generated, and the single crystal length L) is 1. He was stationed at Qgx. On the other hand, in the case of using B polycrystals, giant crystals were observed in the peripheral area other than the bonding interface, but the size was about 0.2 mm, and the single crystal length L) was 2.5 ~ 3. It was a Q fight.

1540℃で加熱処理した場合では、A結晶を用いたも
のでは単結晶化けほとんど認められず、平均結晶粒径が
Q、5ff肩の巨大結晶のみからなっていた。一方B多
結晶を用いたものでは、単結晶化長さくL)はろ、5〜
Ii、Qtsmであり、周辺の巨大結晶粒の大きさは、
約0.6〜0.4であった0 発明の効果 以上のように本発明によれば、液相から同相への析出と
いう過程を経ずに、固相から同相への反応によるもので
あるため、組成偏析が少なく、均質に制御された結晶方
位を有する単結晶を得ることができ、かつこの単結晶化
成長速度を高めることがでたて、この単結晶を高歩留り
で多量に生産することができるのみならず、従来のブリ
ッジマン法における高温度(1/)00〜1750℃)
を必要としないため、白金ルツボのような高価な容器を
用いる必要はなく、焼成炉も通常のセラミックス用のも
のを利用することができる。
In the case of heat treatment at 1540° C., almost no single crystallization was observed in those using crystal A, and the sample consisted only of giant crystals with an average crystal grain size of Q and 5ff. On the other hand, in the case of using B polycrystal, the single crystallization length L) is about 5~
Ii, Qtsm, and the size of the surrounding giant crystal grains is
It was about 0.6 to 0.4.0 Effect of the Invention As described above, according to the present invention, the reaction occurs from the solid phase to the same phase without going through the process of precipitation from the liquid phase to the same phase. Therefore, it is possible to obtain a single crystal with less compositional segregation and a homogeneously controlled crystal orientation, and it is also possible to increase the growth rate of this single crystal, making it possible to produce this single crystal in large quantities with high yield. Not only can it be used, but also the high temperature (1/)00~1750℃) in the conventional Bridgman method
Therefore, there is no need to use an expensive container such as a platinum crucible, and a firing furnace for ordinary ceramics can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明で用いる単結晶−多結晶の接合体
の一例の外観を示す図、同図(b)は加熱処理後の接合
体の中央部断面の模式図、第2図は加が、処理温度に対
する粒成長の様子を示す図、第6図は本発明で用いる多
結晶の粒成長の様子を示す図である、 (1)・・・単結晶、(2)・・・′4結晶、(3)・
・・単結晶化した部分、(4)・・・巨大結晶粒子 代理人   森  本  義  弘 第1図 (、Z)
FIG. 1(a) is a diagram showing the appearance of an example of a single-crystal-polycrystal bonded body used in the present invention, FIG. 1(b) is a schematic cross-sectional view of the central part of the bonded body after heat treatment, and FIG. Figure 6 is a diagram showing grain growth with respect to processing temperature, and Figure 6 is a diagram showing grain growth of polycrystals used in the present invention.・'4 crystal, (3)・
... Single crystallized part, (4) ... Giant crystal particle agent Yoshihiro Morimoto Figure 1 (,Z)

Claims (1)

【特許請求の範囲】 l、 酸化物単結晶と、この酸化物単結晶と同一組成ま
たはそハに近い組成で、この酸化物単結晶と同一結晶構
造を有する酸化物多結晶とを接合し、アルゴンガスもし
くけ窒素ガスの少なくともいずれか一方を主成分とする
雰囲気中において、前記接合体に対して、巨大結晶粒が
生賜始める温度よりも高い温度で加熱処理を施して、前
記酸化物多結晶を単結晶とすることを特徴とする酸化物
単結晶の製造方法。 2、 酸化物単結晶および酸化物多結晶としてフェライ
ト磁性体を用いたことを特徴とする特許請求の範囲第1
項記載の酸化物単結晶の製造方法。
[Claims] l. An oxide single crystal and an oxide polycrystal having the same composition or a composition close to that of the oxide single crystal and the same crystal structure as the oxide single crystal, In an atmosphere containing at least one of argon gas and nitrogen gas as a main component, the bonded body is heat-treated at a temperature higher than the temperature at which giant crystal grains begin to grow, so that the oxide multilayer A method for producing an oxide single crystal, characterized in that the crystal is a single crystal. 2. Claim 1 characterized in that a ferrite magnetic material is used as the oxide single crystal and the oxide polycrystal.
A method for producing an oxide single crystal as described in Section 1.
JP57136916A 1982-08-05 1982-08-05 Preparation of oxide single crystal Granted JPS5926993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57136916A JPS5926993A (en) 1982-08-05 1982-08-05 Preparation of oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57136916A JPS5926993A (en) 1982-08-05 1982-08-05 Preparation of oxide single crystal

Publications (2)

Publication Number Publication Date
JPS5926993A true JPS5926993A (en) 1984-02-13
JPS6215519B2 JPS6215519B2 (en) 1987-04-08

Family

ID=15186568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57136916A Granted JPS5926993A (en) 1982-08-05 1982-08-05 Preparation of oxide single crystal

Country Status (1)

Country Link
JP (1) JPS5926993A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162496A (en) * 1979-05-31 1980-12-17 Ngk Insulators Ltd Manufacture of single crystal
JPS58156588A (en) * 1982-03-09 1983-09-17 Matsushita Electric Ind Co Ltd Preparation of single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162496A (en) * 1979-05-31 1980-12-17 Ngk Insulators Ltd Manufacture of single crystal
JPS58156588A (en) * 1982-03-09 1983-09-17 Matsushita Electric Ind Co Ltd Preparation of single crystal

Also Published As

Publication number Publication date
JPS6215519B2 (en) 1987-04-08

Similar Documents

Publication Publication Date Title
JPS60138708A (en) Magnetic head core and its manufacture
JP2003267796A (en) Oxide having perovskite structure and method for producing the same
JPS5926993A (en) Preparation of oxide single crystal
JPS6215518B2 (en)
JPS5926994A (en) Preparation of oxide single crystal
JPS5978997A (en) Manufacture of oxide single crystal
JPH0336798B2 (en)
JPS5918188A (en) Preparation of ferrite of single crystal
JPS59152285A (en) Preparation of single crystal
JPS582289A (en) Manufacture of single crystal body
JPS6249647B2 (en)
JPH0471874B2 (en)
JPS61186297A (en) Production of ferrite single crystal
JPS62113787A (en) Production of single crystal ferrite material
JPS6045158B2 (en) Method for manufacturing thin plate-like single crystal ferrite
JP2579728B2 (en) Method for producing Mn-Zn single crystal ferrite
JPH0796476B2 (en) Manufacturing method of single crystal ferrite
JPS61101484A (en) Production of single crystal ferrite
JPS61146779A (en) Production of single crystal
JPS58155719A (en) Manufacture of single crystal body
JPS629559B2 (en)
JPS62162686A (en) Production of oxide single crystal
JPS62216986A (en) Production of single crystal ferrite
JPS59195594A (en) Manufacture of single crystal
JPH04240195A (en) Production of single-crystalline ferrite